Factors Influencing the CO2 Corrosion Pattern of Oil–Water Mixed Transmission Pipeline during High Water Content Period
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effect of Temperature Pressure on Corrosion
3.2. Effect of CO2 Partial Pressure on Corrosion
3.3. Effect of SRB Content on Corrosion
3.4. Effect of Ca2+ + Mg2+ Content on Corrosion
3.5. Effect of Cl− Content
3.6. Analysis of Main Control Factors
4. Conclusions
- (1)
- The corrosion rate of HH oil field gathering pipeline in the high water content period showed a positive correlation with temperature pressure, CO2 partial pressure, SRB content, Ca2+ + Mg2+ content, and Cl− content. The corrosion rate reached the maximum of 0.4697mm/a at the temperature and pressure of 313 K + 3.5 MPa, 0 bacteria/mL, total mineralization of 100,000 mg/L, Ca2+ + Mg2+ content of 11,000 mg/L, Cl− content of 49,250 mg/L, and CO2 partial pressure of 0.17MPa.
- (2)
- In high water conditions, with the temperature pressure, CO2 partial pressure, SRB content, Ca2+ + Mg2+ content, Cl− content increases, 20# steel corrosion products are gradually increased when the presence of CO2, the formed corrosion products film is looser, and the existence of gaps, cannot effectively prevent the occurrence of corrosion.
- (3)
- A 20# steel gathering pipeline in the high water content period for oil–water mixing shows the following impact of factors on the size of corrosion: CO2 partial pressure > SRB content > Cl− content > Ca2+ + Mg2+ content > temperature pressure, where the partial pressure of CO2 for the control of the corrosion rate of the main control factors, and Eta square value of up to 0.934. Therefore, the effect of CO2 partial pressure should be considered first in the corrosion problem of high water-bearing catchment system containing CO2.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, Y.; Bai, Y.; Li, Z.; Liu, J. The corrosion behavior of X65 steel in CO2/oil/water environment of gathering pipeline. Anti-Corrosion Methods Mater. 2019, 66, 174–187. [Google Scholar] [CrossRef]
- Bastidas, D.M. Corrosion and Protection of Metals. Metals 2020, 10, 458. [Google Scholar] [CrossRef] [Green Version]
- Yaro, A.S.; Abdul-Khalik, K.R.; Khadom, A. Effect of CO2 corrosion behavior of mild steel in oilfield produced water. J. Loss Prev. Process Ind. 2015, 38, 24–38. [Google Scholar] [CrossRef]
- Rmpsa, B.; Hbs, B.; Inb, C.; Lfs, D.; Amps, D. Naphthenic corrosion of API 5L X70 steel in aqueous/oil environment using electrochemical surface-resolved and analytical techniques. Electrochim. Acta 2022, 407, 139900. [Google Scholar]
- Wei, L.; Pang, X.; Gao, K. Effects of Crude Oil on Corrosion Behavior of Pipeline Steel Under Wet CO2 Condition. In CORROSION 2014; OnePetro: Richardson, TX, USA, 2014. [Google Scholar]
- Hu, Z.Y.; Duan, D.L.; Hou, S.H.; Ding, X.J.; Li, S. Preliminary Study on Corrosion Behaviour of Carbon Steel in Oil–Water Two-Phase Fluids. J. Mater. Sci. Technol. 2015, 31, 1274–1281. [Google Scholar] [CrossRef]
- Qin, M.; He, G.; Liao, K.; Zou, Q.; Zhao, S.; Jiang, X.; Zhang, S.J. Performance, CO2-O2-SRB-Cl Multifactor Synergistic Corrosion in Shale Gas Pipelines at a Low Liquid Flow Rate. J. Mater. Eng. Perform. 2022, 31, 4820–4835. [Google Scholar] [CrossRef]
- Shaoyan, F. Corrosion Factors Analysis of Oilfield Water Injection System. Oilfield Chem. 2015, 32, 277–281. (In Chinese) [Google Scholar]
- LI Cheng, W.C.; Chen, X.; Lu, J.; Zhang, Z.; Shi, L. Corrosion Law and Protection Measures of Shale Gas Well Wellbores. Corros. Prot. 2020, 41, 35–40. (In Chinese) [Google Scholar]
- Tianli, S.; Guo, Z.; Zhonghong, L.; Xiaoyu, Y.; Bing, W.; Dezhi, Z. Study on main control factor of surface systerm corrosion in Yuanba sulfur gas field. Chem. Engineegine Oil Gas 2021, 50, 77–82. (In Chinese) [Google Scholar]
- Yanshuang, G.; Tan, G.; Chao, A.; Ailiang, Z.; Kexi, L. Analysis of main controlling factors of flow corrosion of gathering and transportation pipelines based on Pearson correlation coefficient. Chem. Eng. Oil Gas 2021, 50, 93–99. (In Chinese) [Google Scholar]
- Jun, F.X.; Li, L.; Gang, Y.Z.; Qiang, Z.Y. Corrosion Behavior and Mechanism of Oil Casing Steel in CO2 Salt Solution. J. Mater. Sci. Forum 2021, 6114, 534–538. [Google Scholar]
- Wang, S.; Yin, X.; Zhang, H.; Liu, D.; Du, N. Coupling Effects of pH and Dissolved Oxygen on the Corrosion Behavior and Mechanism of X80 Steel in Acidic Soil Simulated Solution. Materials 2019, 12, 3175. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Liao, K.; Zhou, F.; Leng, J.; Huang, Q.; He, G. Effect of Temperature on the Corrosion Behavior of L245NS Steel in a CO2/H2S/O2 Multi-component Thermal Fluid Collection and Transportation System. Arab. J. Sci. Eng. 2021. prepublish. [Google Scholar] [CrossRef]
- Ma, W.; Qu, H.; Huang, W.; Dou, Y.; Wang, Z. Study on Failure Behavior of Gas Well Tubing Under CO2 Corrosion After Erosion. J. Fail. Anal. Prev. 2020, 20, 950–957. [Google Scholar] [CrossRef]
- Motte, R.D.; Basilico, E.; Rémy, M.; Kittel, J.; Marcelin, S. A study by electrochemical impedance spectroscopy and surface analysis of corrosion product layers formed during CO2 corrosion of low alloy steel. Corros. Sci. 2020, 172, 108666. [Google Scholar] [CrossRef]
- Sun, X.; Cui, H.; Li, Z.; He, R.; Liu, Z.; Lu, L. Effect of Service Environmental Parameters on Electrochemical Corrosion Behavior of L80 Casing Steel. Materials 2021, 14, 5575. [Google Scholar] [CrossRef]
- Peng, X.; Liu, X. Modification of D-W model for corrosion rate of shale gas pipeline under the synergistic corrosion of SRB and CO2. Anti–Corros. Methods Mater. 2021, 68, 150–159. [Google Scholar] [CrossRef]
- Chang, P.; Shi, R.X.; Wang, L.; Han, W.; Ye, C.D.; Ma, Y. Study on Source Analysis of the Cation in Produced Water from Sulige Gas Field and Anti-Scaling Measures. Key Eng. Mater. 2019, 4838, 505–510. [Google Scholar] [CrossRef]
- Xiaoqi, Y.; Yongqiang, R.; Luyao, H.; Shuai, Z.; Lei, Z.; Yong, H. The role of Cl- in the formation of the corrosion products and localised corrosion of 15Cr martensite stainless steel under an CO2-containing extreme oilfield condition. Corros. Sci. 2022, 194, 109935. [Google Scholar]
- Kexi, L.; Min, Q.; Guoxi, H.; Na, Y.; Shijian, Z. Study on corrosion mechanism and the risk of the shale gas gathering pipelines. Eng. Fail. Anal. 2021, 128, 105622. [Google Scholar]
- Chen, X.; Zhang, Z.; Zhang, H.; Yan, H.; Liu, F.; Tu, S. Influence of Air Pollution Factors on Corrosion of Metal Equipment in Transmission and Transformation Power Stations. Atmosphere 2022, 13, 1041. [Google Scholar] [CrossRef]
Element | C | Si | Mn | P | S | Cr | Ni | Cu | Fe |
---|---|---|---|---|---|---|---|---|---|
Elemental Content, % | 0.200 | 0.210 | 0.410 | 0.014 | 0.005 | 0.060 | 0.050 | 0.165 | Residuals |
Ionic Content, mg/L | Mineralization, mg/L | ||||||
---|---|---|---|---|---|---|---|
K+ + Na+ | Ca2+ | Mg2+ | Ba2+ + Sr2+ | Cl− | HCO3− | SO42+ | 99,383.4 |
24,385.5 | 10,588 | 446.6 | 2520.6 | 49,250.5 | 26.8 | 47.9 |
Density, g/cm3 | Viscosity, mPa·s | Sulfur Content, % |
---|---|---|
0.835~0.869 | 3.53~15.8 | 0.07~0.09 |
Temperature + Pressure | Rotational Speed (r/min) | CO2 Partial Pressure (MPa) | Water Content (%) | Bacterial Content (SRB) (pcs/mL) | Ca2+ Content (mg/L) | Cl− Content (mg/L) | Soaking Time (h) |
---|---|---|---|---|---|---|---|
298 K + 0.5 MPa 308 K + 2.5 MPa 313 K + 3.5 MPa | 125 | 0.05 0.1 0.17 | 90 | 0 | 7700 | 40,000 | 72 |
60 | 9500 | 45,000 | |||||
120 | 11,000 | 49,250 | |||||
300 | 12,500 | 55,000 | |||||
600 | 14,000 | 60,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Shi, L.; Zou, M.; Wang, C. Factors Influencing the CO2 Corrosion Pattern of Oil–Water Mixed Transmission Pipeline during High Water Content Period. Atmosphere 2022, 13, 1687. https://doi.org/10.3390/atmos13101687
Yang Z, Shi L, Zou M, Wang C. Factors Influencing the CO2 Corrosion Pattern of Oil–Water Mixed Transmission Pipeline during High Water Content Period. Atmosphere. 2022; 13(10):1687. https://doi.org/10.3390/atmos13101687
Chicago/Turabian StyleYang, Zhonghua, Lihong Shi, Minghua Zou, and Changquan Wang. 2022. "Factors Influencing the CO2 Corrosion Pattern of Oil–Water Mixed Transmission Pipeline during High Water Content Period" Atmosphere 13, no. 10: 1687. https://doi.org/10.3390/atmos13101687
APA StyleYang, Z., Shi, L., Zou, M., & Wang, C. (2022). Factors Influencing the CO2 Corrosion Pattern of Oil–Water Mixed Transmission Pipeline during High Water Content Period. Atmosphere, 13(10), 1687. https://doi.org/10.3390/atmos13101687