Feasibility Analyses and Prospects of CO2 Geological Storage by Using Abandoned Shale Gas Wells in the Sichuan Basin, China
Abstract
:1. Introduction
2. Advances in CO2 Geological Storage
2.1. CO2 Storage in Coal Seams
2.2. CO2 Storage in Hydrocarbon Reservoirs
2.3. CO2 Storage in Saline Aquifers
2.4. CO2-ESGR
3. Exploitation Status of Shale Gas in the Sichuan Basin
3.1. Shale Gas and Shale Reservoir Characteristics
3.2. Exploration and Development Process of Shale Gas
3.3. Characteristics of Abandoned Shale Gas Wells
4. Feasibility Assessment of CO2 Storage in Abandoned Shale Reservoirs
4.1. Analysis of Storage Mechanism
4.1.1. Competitive Adsorption in Organic Matters of Shale
4.1.2. Competitive Adsorption in Inorganic Matters of Shale
4.2. Evaluation of Storage Potential
5. Conclusions and Prospects
5.1. Technical Recommendations
- Due to the limitations related to the experimental setup and capability of numerical simulations, most studies are conducted in simplified reservoir conditions or assumed unrealistic ones. This will lead to errors in the results and in real life. We should further develop the technical means to ensure the maximum restoration of real situations.
- Storage analyses are conducted by assuming the wells are in relatively good condition. The differences between CO2 storage in abandoned wells and integrity wells are not fully understood. The CO2 injection and storage processes while considering the characteristics of abandoned wells require further investigation. Additionally, the optimization of the operation parameters (i.e., injection volume, time, and pressure) is required to achieve optimal storage.
5.2. Policy Recommendations
- Strengthen state and local government support measures, increase the amount of loans, and lower the interest rates for investment in CO2 shale-storage-related projects, and increase the fiscal and tax incentives and subsidies. Support the implementation of demonstration projects and encourage research centers and key laboratories.
- The government should take the initiative to establish a data management and service system that allows information sharing, to establish a technology and experience exchange platform, and to provide services for enterprise development. The approval and licensing of projects related to CO2 storage in shale optimized, and a safety and environmental protection emergency resource system should be provided. Meanwhile, an effective information disclosure and exchange platform should be established, so that enterprises can fully communicate with society.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.N.; Shen, R.R.; Zhang, X.P.; Kang, J.J.; Yuan, J.H. Summary of the connotation and realization path of China’s carbon neutrality goal. Res. Prog. Clim. Chang. 2022, 18, 240–252. (In Chinese) [Google Scholar]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.; Andrew, R.; Hauck, J.; Olsen, A.; Peters, G.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Liu, M.P. The challenges and policy recommendations to achieve the goal of carbon neutrality in China. Contemp. Pet. Petrochem. 2021, 29, 1–9. (In Chinese) [Google Scholar]
- Torp, T.; Gale, J. Demonstrating Storage of CO2 in Geological Reservoirs: The Sleipner and SACS Projects. Energy 2004, 29, 1361–1369. [Google Scholar] [CrossRef]
- Emberley, S.; Hutcheon, I.; Shevalier, M.; Durocher, K.; Mayer, B.; Gunter, W.; Perkins, E. Monitoring of fluid-rock interaction and CO2 storage through produced fluid sampling at the Weyburn CO2-injection enhanced oil recovery site, Saskatchewan, Canada. Appl. Geochem. 2005, 20, 1131–1157. [Google Scholar] [CrossRef]
- Yang, Z.J. Study on Reservoir Pressure Control and Well Placement Plan Optimization in CO2-Enhanced Brackish Water Extraction Project. Ph.D. Thesis, Jilin University, Changchun, China, 2019. [Google Scholar]
- White, C.M. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery—A review. Energy Fuels 2005, 19, 659–724. [Google Scholar] [CrossRef]
- Liu, S.N.; Zhang, L.W.; Su, X.B.; Wang, Y.; Zhao, L.X.; Gan, M.G.; Fu, X.J.; Li, X.C. A review of modeling and parameterization of mineral dissolution and precipitation chemistry for CO2 sequestration in brackish aquifers. Water Resour. Hydropower Technol. 2020, 51, 13–22. (In Chinese) [Google Scholar]
- Texas Railroad Commission Applications and Permits. Available online: http://www.rrc.state.tx.us/oil-gas/applications-and-permits/ (accessed on 22 June 2017).
- Gislason, S.; Wolff-Boenisch, D.; Stefansson, A.; Oelkers, E.; Gunnlaugsson, E.; Sigurdardottir, H.; Sigfusson, B.; Broecker, W.; Matter, J.; Stute, M.; et al. Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project. Int. J. Greenh. Gas Control 2010, 4, 537–545. [Google Scholar] [CrossRef]
- Celia, M.; Nordbotten, J. Practical Modeling Approaches for Geological Storage of Carbon Dioxide. Ground Water 2009, 47, 627–638. [Google Scholar] [CrossRef]
- Zwaan, B.; Smekens, K. CO2 Capture and Storage with Leakage in an Energy-Climate Model. Environ. Model. Assess. 2007, 14, 135–148. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.; Bardow, A.; Anthony, E.; Boston, A.; Brown, S.; Fennell, P.; Fuss, S.; Galindo, A.; Hackett, L.; et al. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef] [Green Version]
- Aminu, M.; Nabavi, S.A.; Rochelle, C.; Manovic, V. A review of developments in carbon dioxide storage. Appl. Energy 2017, 208, 1389–1419. [Google Scholar] [CrossRef] [Green Version]
- Leung, D.; Caramanna, G.; Maroto-Valer, M. An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- Bachu, S. Sequestration of CO2 in geological media: Criteria and approach for site selection in response to climate change. Energy Convers. Manag. 2000, 41, 953–970. [Google Scholar] [CrossRef]
- Ye, J.P.; Feng, S.L.; Fan, J.Q.; Wang, G.Q.; William, D.G.; Sam, W.; John, R.R. Micro-pilot test for enhanced coalbed methane recovery by injecting carbon dioxide in south part of Qinshui Basin. Acta Pet. Sin. 2007, 4, 77–80. (In Chinese) [Google Scholar]
- Cai, B.X. Basic Physical Chemistry (Upper Volume), 1st ed.; Science Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Jiang, W.P.; Cui, Y.J.; Zhang, Q.; Li, Y.H. Quantum chemical study on the coal surface interacting with CH4 and CO2. Meitan Xuebao/J. China Coal Soc. 2006, 31, 237–240. [Google Scholar]
- Zhang, H.T.; Wen, D.G.; Li, Y.L.; Zhang, J.Q.; Lu, J.C. Conditions for CO2 geological sequestration in China and some suggestions. Geol. Bull. China 2005, 24, 1107–1110. [Google Scholar]
- Gentzis, T. Subsurface sequestration of carbon dioxide—An overview from an Alberta (Canada) perspective. Int. J. Coal Geol. 2000, 43, 287–305. [Google Scholar] [CrossRef]
- Busch, A.; Gensterblum, Y. CBM and CO2-ECBM related sorption processes in coal: A review. Int. J. Coal Geol. 2011, 87, 49–71. [Google Scholar] [CrossRef]
- Mavor, M.; Gunter, W.; Robinson, J. Alberta Multiwell Micro-Pilot Testing for CBM Properties, Enhanced Methane Recovery and CO2 Storage Potential. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 26–29 September 2004. [Google Scholar]
- Fujioka, M.; Yamaguchi, S.; Nako, M. CO2-ECBM field tests in the Ishikari coal basin of Japan. Int. J. Coal Geol. 2010, 82, 287–298. [Google Scholar] [CrossRef]
- Zhang, C.J.; Shen, J.; Qin, Y.; Ye, J.P.; Zhang, B. CO2 injection to improve coalbed methane recovery rate and CO2 sequestration technology. Coal Sci. Technol. 2016, 44, 205–210. (In Chinese) [Google Scholar]
- Hamelinck, C.; Faaij, A.P.C.; Turkenburg, W.C.; Bergen, F.; Pagnier, H.; Barzandji, O.H.M.; Wolf, K.-H.; Ruijg, G.J. CO2 enhanced coalbed methane production in The Netherlands. Energy 2002, 27, 647–674. [Google Scholar] [CrossRef]
- Parson, E.; Keith, D. Fossil Fuels without CO2 Emissions: Progress, Prospects, and Policy Implications. Science 1998, 282, 1053–1054. [Google Scholar] [CrossRef]
- Goodman, A.; Hakala, A.; Bromhal, G.; Deel, D.; Rodosta, T.; Frailey, S.; Small, M.; Allen, D.; Romanov, V.; Fazio, J.; et al. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. Int. J. Greenh. Gas Control 2011, 5, 952–965. [Google Scholar] [CrossRef]
- Li, H.J.; Huang, S.C. Analysis of the Development Prospects of CO2 Capture and Storage (CCS) in China. In Proceedings of the 2010 China Coal Chemical Industry Technology, Market and Information Exchange Conference and Development Strategy Workshop, Chongqing, China, 13–16 April 2010. (In Chinese). [Google Scholar]
- Holloway, S.; Savage, D. The potential for aquifer disposal of carbon dioxide in the UK. Energy Convers. Manag. 1993, 34, 925–932. [Google Scholar] [CrossRef]
- Bouvart, F.; Prieur, A. Comparison of Life Cycle GHG Emissions and Energy Consumption of combined Electricity and H2 production pathways with CCS: Selection of technologies with Natural Gas, Coal and Lignite as fuel for the European HYPOGEN Programme. Energy Procedia 2009, 1, 3779–3786. [Google Scholar] [CrossRef] [Green Version]
- Liu, B. Current Status and Example Analysis of CO2 Reservoir Burial Technology. Master’s Thesis, Northeastern Petroleum University, Xi’an, China, 2016. (In Chinese). [Google Scholar]
- Metz, B.; Davidson, O.; de Coninck, H.; Loos, M.; Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Zhang, W.; Li, Y.; Omambia, A. Reactive transport modeling of effects of convective mixing on long-term CO2 geological storage in deep saline formations. Int. J. Greenh. Gas Control 2011, 5, 241–256. [Google Scholar] [CrossRef]
- De Silva, P.N.K.; Ranjith, P.G.; Choi, S.K. A study of methodologies for CO2 storage capacity estimation of coal. Fuel 2012, 91, 1–15. [Google Scholar] [CrossRef]
- Wei, W.; Su, Y.M.; Guo, D.B.; Li, F.Y.; Su, H.; Jiang, F.H.; Tan, M.X.; Wu, C.B.J. Carbonate cement diagenesis and formation mechanism of the Lower Cretaceous sandstone reservoir in the Chagan Depression. Geochemistry 2015, 44, 590–599. (In Chinese) [Google Scholar]
- Zhang, L. Effect of temperature on corrosion behavior of five typical steels under supercritical CO2 conditions. Oil Gas Storage Transp. 2020, 39, 1031–1036. (In Chinese) [Google Scholar]
- Bachu, S.; Adams, J.J. Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers. Manag. 2003, 44, 3151–3175. [Google Scholar] [CrossRef]
- Zhu, P.Y. Geological sequestration of CO2 in brackish water formations and progress in its application. Clean Coal Technol. 2021, 27, 33–38. (In Chinese) [Google Scholar]
- Guo, J.Q.; Wen, D.G.; Zhang, S.Q.; Xu, T.F.; Diao, Y.J.; Jia, X.F. Evaluation of geological storage potential of carbon dioxide in China and demonstration project. Geol. Surv. China 2015, 36–46. (In Chinese) [Google Scholar] [CrossRef]
- Nuttal, B.C.; Eble, C.; Bustin, R.M.; Drahovzal, J.A. Analysis of Devonian black shales in Kentucky for potential carbon dioxide sequestration and enhanced natural gas production. In Greenhouse Gas Control Technologies 7, Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, BC, Canada, 5–9 September 2004; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2005; pp. 2225–2228. [Google Scholar] [CrossRef]
- Busch, A.; Alles, S.; Gensterblum, Y.; Prinz, D.; Dewhurst, D.; Raven, M.; Stanjek, H.; Krooss, B. Carbon dioxide storage potential of shales. Int. J. Greenh. Gas Control 2008, 2, 297–308. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.B.; Hou, L.H.; Chen, C.; Guo, J.Y.; Yang, C.L.; Wang, Y.F.; Li, Z.S.; Cui, Z.S.; Cui, H.Y.; et al. Geochemical characteristics and resource potential of shale gas in the Sichuan Basin. Nat. Gas Geosci. 2021, 32, 1093–1106. (In Chinese) [Google Scholar] [CrossRef]
- Curtis, J. Fractured shale-gas systems. AAPG Bull. 2002, 86, 1921–1938. [Google Scholar]
- Wang, W.F.; Liu, P.; Chen, C.; Wang, H.L.; Jiang, S.; Zhang, Z.C. Shale gas reservoir formation theory and resource evaluation method. Nat. Gas Geosci. 2013, 24, 429–438. (In Chinese) [Google Scholar]
- Zhang, J.C.; Jin, Z.J.; Yuan, M.S. Mechanisms and distribution of shale gas reservoirs. Nat. Gas Ind. 2004, 24, 15–18, 131–132. (In Chinese) [Google Scholar]
- Zhang, J.C.; Xue, H.; Zhang, D.M.; Xue, J. Shale gas and its reservoir formation mechanism. Mod. Geol. 2003, 4, 466. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=XDDZ200304019&DbName=CJFQ2003 (accessed on 31 August 2022). (In Chinese).
- Jarvie, D.; Hill, R.; Ruble, T.; Pollastro, R. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Hill, R.; Zhang, E.; Katz, B.; Tang, Y. Modeling of gas generation from the Barnett Shale, Fort Worth Basin, Texas. AAPG Bull. 2007, 91, 501–521. [Google Scholar] [CrossRef]
- Pu, B.L. Analysis of Shale Gas Formation Conditions in the Sichuan Basin. Master’s Thesis, China University of Petroleum (East China), Qingdao, China, 2008. (In Chinese). [Google Scholar]
- Dong, B.X.; Cheng, Y.F.; Liu, Y.C.; Yi, X.B.; Yang, L.; Wu, L.Y.; Wang, B. Petrophysical properties of shale gas reservoirs. J. Xi’an Univ. Pet. (Nat. Sci. Ed.) 2013, 28, 25–28. (In Chinese) [Google Scholar]
- Zhang, F. Analysis of shale gas reservoir formation conditions and development. Petrochem. Technol. 2021, 28, 120–121. (In Chinese) [Google Scholar]
- Zou, C.N. Unconventional Oil and Gas Geology; Geological Publishing: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Zhang, J.C.; Shi, S.; Wang, D.S.; Tong, Z.Y.; Hou, X.D.; Niu, J.L.; Li, X.Q.; Li, Z.M.; Zhang, P.; Huang, Y.Q. Shale gas exploration areas and development directions in China. Nat. Gas Ind. 2021, 41, 69–80. (In Chinese) [Google Scholar]
- Liu, Y.F.; Liu, D.R.; Peng, C.; Zhang, R.G. Current status of shale gas exploration and development in China and progress of key technologies. Mod. Chem. Ind. 2022, 42, 16–20. (In Chinese) [Google Scholar]
- Cao, C.H.; Li, L.W.; Liu, Y.H.; Du, L.; Li, P.Z.; He, J. Factors Affecting Shale Gas Chemistry and Stable Isotope and Noble Gas Isotope Composition and Distribution: A Case Study of Lower Silurian Longmaxi Shale Gas, Sichuan Basin. Energies 2020, 13, 5981. [Google Scholar] [CrossRef]
- Dai, J.; Zou, C.; Dong, D.; Ni, Y.; Wu, W.; Gong, D.; Wang, Y.; Huang, S.; Huang, J.; Fang, C.; et al. Geochemical characteristics of marine and terrestrial shale gas in China. Mar. Pet. Geol. 2016, 76, 444–463. [Google Scholar] [CrossRef]
- Zou, C.; Dong, D.; Wang, Y.; Li, X.; Huang, J.; Wang, S.; Guan, Q.; Zhang, C.; Wang, H.; Liu, H.; et al. Shale gas in China: Characteristics, challenges and prospects (I). Pet. Explor. Dev. 2015, 42, 753–767. [Google Scholar] [CrossRef]
- Dai, J.; Zou, C.; Liao, S.; Dong, D.; Ni, Y.; Huang, J.; Wu, W.; Gong, D.; Huang, S.; Hu, G. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin. Org. Geochem. 2014, 74, 3–12. [Google Scholar] [CrossRef]
- Long, S.X.; Lu, T.; Li, Q.W.; Yang, G.Q.; Li, D.H. On the development ideas and targets of China’s shale gas in the 14th Five-Year Plan. Nat. Gas Ind. 2021, 41, 1–10. (In Chinese) [Google Scholar]
- China’s Shale Gas Industry Production in 2019, Domestic Shale Gas Production to Reach 100 Billion Cubic Meters in 2030. Available online: https://baijiahao.baidu.com/s?id=1646855542896658376&wfr=spider&for=pc (accessed on 15 June 2022).
- Shale Gas Industry 2019 In-Depth Research Report. Available online: https://www.doc88.com/p-69339033387114.html (accessed on 15 June 2022).
- Competitive Pattern of China’s Shale Gas Industry in 2018: Two Dominant Players in CNPC and Sinopec. Available online: https://free.chinabaogao.com/nengyuan/201901/01153930912019.html (accessed on 15 June 2022).
- Formation Conditions and Key Technologies for Exploration and Development of Marine Shale Gas Fields in the Changning-Weiyuan Block of the Sichuan Basin. Available online: https://www.sohu.com/a/501445155_121123791 (accessed on 15 June 2022).
- Chongqing Fuling Shale Gas Field Daily Production Maintained at 19 Million Cubic Meters. Available online: https://www.sohu.com/a/498807864_362042 (accessed on 15 June 2022).
- China’s Cumulative New Proven Geological Reserves of Shale Gas Exceed Trillion Cubic Meters. Available online: http://energy.people.com.cn/n1/2018/0711/c71661-30139464.html (accessed on 15 June 2022).
- Analysis of the Current Situation of Shale Gas Development and Utilization in China in 2020, with Domestic Production Exceeding 20 Billion Cubic Meters 2022. Available online: https://www.sohu.com/a/518110173_120113054 (accessed on 15 June 2022).
- Westphal, D.; Weijermars, R. Economic appraisal and scoping of geothermal energy extraction projects using depleted hydrocarbon wells. Energy Strategy Rev. 2018, 22, 348–364. [Google Scholar] [CrossRef]
- Zou, C.N.; Dong, D.Z.; Wang, S.J.; Li, J.Z.; Li, X.J.; Wang, Y.M.; Li, D.H.; Cheng, K.M. Geological characteristics, formation mechanism and resource potential of shale gas in China. Pet. Explor. Dev. 2010, 37, 641–653. (In Chinese) [Google Scholar] [CrossRef]
- Chen, M.; Ge, H.K.; Zhao, J.Z.; Yao, J. The Key Fundamentals for the Efficient Exploitation of Shale Oil and Gas and Its Related Challenges. Pet. Drill. Tech. 2015, 43, 7–14. (In Chinese) [Google Scholar]
- He, X.P.; Zhang, P.X.; Fang, D.Z.; Mei, J.W.; He, G.S.; Lu, B. Production characteristics of normal pressure shale gas in Pengshui-Wulong area, southeast Chongqing. Pet. Geol. Recovery Effic. 2018, 25, 72–79. (In Chinese) [Google Scholar]
- Liu, X.W.; Liao, R.G.; Zhang, Y.; Gao, D.W.; Zhang, H.L.; Li, T.; Zhang, C. Application of surface-downhole combined microseismic monitoring technology in the Fuling shale gas field and its enlightenment. Nat. Gas Ind. 2016, 36, 56–62. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Q.W. Discussion on Evaluation-analysis Method of Volume Modification after Shale Gas Well Fracturing. J. Jianghan Pet. Univ. Staff Work. 2020, 33, 34–37. (In Chinese) [Google Scholar]
- Shu, Z.G.; Liu, L.; Liang, B.; Lu, Y.Q.; Zheng, A.W.; Bao, H.Y. Study on productivity evaluation method of shale gas well based on material balance principle. Nat. Gas Geosci. 2021, 32, 262–267. (In Chinese) [Google Scholar]
- Liu, X.L. Well test analysis and evaluation after shale-gas volume fracturing stimulation. Nat. Gas Ind. 2016, 36, 66–72. (In Chinese) [Google Scholar]
- Wang, Y.Y.; Liu, H.; Wang, W.H.; Hu, X.H.; Guo, Y.D.; Dai, C. Evaluation of shale gas well fracturing performance based on flowback water production data. Pet. Geol. Recovery Effic. 2019, 26, 125–131. (In Chinese) [Google Scholar]
- Chen, Z.; Liao, X.; Zhao, X.; Li, X. Appraising Carbon Geological-Storage Potential in Unconventional Reservoirs: Engineering-Parameters Analysis. SPE Reserv. Eval. Eng. 2017, 21, 476–488. [Google Scholar] [CrossRef]
- Klewiah, I.; Berawala, D.; Walker, H.C.; Andersen, P.; Nadeau, P.H. Review of Experimental Sorption Studies of CO2 and CH4 in Shales. J. Nat. Gas Sci. Eng. 2020, 73, 103045. [Google Scholar] [CrossRef]
- Rani, S.; Padmanabhan, E.; Prusty, B. Review of gas adsorption in shales for enhanced methane recovery and CO2 storage. J. Pet. Sci. Eng. 2018, 175, 634–643. [Google Scholar] [CrossRef]
- Liu, D.Q. Study on the CO2 Enhanced Shale Gas Recovery Technology in Ordos Basin, China. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2017. (In Chinese). [Google Scholar]
- Tinni, A.; Sondergeld, C.; Rai, C. Hydrocarbon Storage Mechanism in Shale Reservoirs and Impact on Hydrocarbon Production. In Proceedings of the Unconventional Resources Technology Conference, Austin, TX, USA, 24–26 July 2017. [Google Scholar] [CrossRef]
- Sui, H.G.; Yao, J. The molecular modelling of CO2/CH4 competitive adsorption patterns in Kerogen. J. China Univ. Pet. 2016, 40, 147–154. (In Chinese) [Google Scholar]
- Sui, H.G.; Yao, J. The CO2/CH4 Competitive Adsorption in Kerogen: A Molecular Simulation. Sci. Technol. Eng. 2016, 16, 128–131, 135. (In Chinese) [Google Scholar]
- Coussy, O. Poromechanics; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Brochard, L.; Vandamme, M.; Pellenq, R. Poromechanics of microporous media. J. Mech. Phys. Solids 2012, 60, 606–622. [Google Scholar] [CrossRef]
- Brochard, L.; Vandamme, M.; Pellenq, R.; Fen-Chong, T. Adsorption-Induced Deformation of Microporous Materials: Coal Swelling Induced by CO2-CH4 Competitive Adsorption. Langmuir 2011, 28, 2659–2670. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhao, H.; Qi, N.; Li, Y. Molecular Insights into the Enhanced Shale Gas Recovery by Carbon Dioxide in Kerogen Slit-Nanopores. J. Phys. Chem. C 2017, 121, 10233–10241. [Google Scholar] [CrossRef]
- Ortiz Cancino, O.; Pérez, D.; Pozo, M.; Bessières, D. Adsorption of pure CO2 and a CO2/CH4 mixture on a black shale sample: Manometry and microcalorimetry measurements. J. Pet. Sci. Eng. 2017, 159, 307–313. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, X.S.; Li, J.; Chen, K.F.; Zhang, Z.X.; Li, P.P.; Zhang, Y.H. Adsorption characteristics of CH4 and CO2 on shale and its application to binary mixture adsorption under high-pressure conditions: A case study of the Longmaxi Formation shale in Jiaoshiba area of Sichuan Basin. Geochimica 2019, 48, 580–589. (In Chinese) [Google Scholar]
- Shuo, D.; Gu, M.; Du, X.; Xian, X. Adsorption Equilibrium of CO2 and CH4 and Their Mixture on Sichuan Basin Shale. Energy Fuels 2016, 30, 2248–2256. [Google Scholar]
- Billemont, P.; Coasne, B.; De Weireld, G. Adsorption of Carbon Dioxide, Methane, and Their Mixtures in Porous Carbons: Effect of Surface Chemistry, Water Content, and Pore Disorder. Langmuir 2013, 29, 3328–3338. [Google Scholar] [CrossRef]
- Huang, L.; Ning, Z.F.; Wang, Q.; Qin, H.B.; Ye, H.T.; Zhang, W.T.; Li, Z.Y.; Sun, Y.D. Effect of moisture on CH4/CO2 adsorption on kerogen: A molecular simulation study. Pet. Sci. Bull. 2017, 2, 422–430. (In Chinese) [Google Scholar]
- Lopes, F.; Grande, C.; Ribeiro, A.; Loureiro, J.; Evaggelos, O.; Nikolakis, V.; Rodrigues, A. Adsorption of H2, CO2, CH4, CO, N2 and H2O in activated carbon and zeolite for hydrogen production. Sep. Sci. Technol. 2009, 44, 1045–1073. [Google Scholar] [CrossRef]
- Billemont, P.; Coasne, B.; De Weireld, G. An Experimental and Molecular Simulation Study of the Adsorption of Carbon Dioxide and Methane in Nanoporous Carbons in the Presence of Water. Langmuir 2011, 27, 1015–1024. [Google Scholar] [CrossRef]
- Jin, Z.; Firoozabadi, A. Phase behavior and flow in shale nanopores from molecular simulations. Fluid Phase Equilibria 2016, 430, 156–168. [Google Scholar] [CrossRef]
- Jing, S.S. Molecular Simulation of CO2/CH4 Mass Transfer Process in Sandstone Micropores. Master’s Thesis, Southwest Petroleum University, Chengdu, China, 2015. (In Chinese). [Google Scholar]
- Xiong, J.; Liu, X.J.; Liang, L.X. Adsorption of methane in quartz by Grand Canonical Monte Carlo simulation. Nat. Gas Geosci. 2016, 27, 1532–1540. (In Chinese) [Google Scholar]
- Jin, Z.; Firoozabadi, A. Effect of water on methane and carbon dioxide sorption in clay minerals by Monte Carlo simulations. Fluid Phase Equilibria 2014, 382, 10–20. [Google Scholar] [CrossRef]
- Kadoura, A.; Nair, A.; Sun, S. Adsorption of Carbon Dioxide, Methane, and Their Mixture by Montmorillonite in the Presence of Water. Microporous Mesoporous Mater. 2016, 225, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Liu, S.; Yang, X. Molecular simulation of preferential adsorption of CO2 over CH4 in Na-montmorillonite clay material. Appl. Surf. Sci. 2015, 356, 1262–1271. [Google Scholar] [CrossRef]
- Lu, X.-C.; Li, F.-C.; Watson, A. Adsorption Measurements in Devonian Shales. Fuel 1995, 74, 599–603. [Google Scholar] [CrossRef]
- Zhang, M.H.; Guo, P.; Jiang, W.; Chen, H. Researches on Adsorption Property of CO2 and CH4 in Illite. World Sci-Tech R & D 2016, 38, 950–954. (In Chinese) [Google Scholar]
- Ou, Z.P. Molecular Dynamics Study of Methane Diffusion in Nanopores. Master’s Thesis, Southwest Petroleum University, Chengdu, China, 2014. (In Chinese). [Google Scholar]
- Wang, J. Methane Afsorption in Illite by Molecular Simulation. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 2015. (In Chinese). [Google Scholar]
- Heller, R.; Zoback, M. Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. J. Unconv. Oil Gas Resour. 2014, 8, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.P.; Zhang, B.; Kang, T.H. Molecular Simulation of CO2/CH4 Competitive Adsorption in Kaolinite Based on Adsorption Potential Theory. Bull. Miner. Petrol. Geochem. 2018, 37, 724–730. (In Chinese) [Google Scholar]
- Kalantari-Dahaghi, A. Numerical Simulation and Modeling of Enhanced Gas Recovery and CO2 Sequestration in Shale Gas Reservoirs: A Feasibility Study. In Proceedings of the 2010 SPE International Conference on CO2 Capture, Storage, and Utilization, New Orleans, LA, USA, 10–12 November 2010. [Google Scholar]
- Zhang, J. Adsorption and Desorption of Continental Shale Gas in Fuxian District of Ordos Basin. Master’s Thesis, Southwest Petroleum University, Chengdu, China, 2013. (In Chinese). [Google Scholar]
- Tao, Z.; Clarens, A. Estimating the Carbon Sequestration Capacity of Shale Formations Using Methane Production Rates. Environ. Sci. Technol. 2013, 47, 11318–11325. [Google Scholar] [CrossRef]
- Godec, M.; Koperna, G.; Petrusak, R.; Oudinot, A. Potential for enhanced gas recovery and CO2 storage in the Marcellus Shale in the Eastern United States. Int. J. Coal Geol. 2013, 118, 95–104. [Google Scholar] [CrossRef]
- Sun, H.; Yao, J.; Gao, S.-H.; Fan, D.-Y.; Wang, C.-C.; Sun, Z. Numerical study of CO2 enhanced natural gas recovery and sequestration in shale gas reservoirs. Int. J. Greenh. Gas Control 2013, 19, 406–419. [Google Scholar] [CrossRef]
- Zhou, J.P.; Xian, X.F.; Lu, Y.Y.; Jiang, Y.D.; Liu, Z.F. Carbon dioxide sequestration and potential estimation in shale gas reservoirs. In Proceedings of the 4th Symposium on Underground Waste Disposal, Nanchang, China, 23–27 September 2012. [Google Scholar]
- Lu, Y.Y.; Zhou, J.P.; Xian, X.F.; Tang, J.R.; Zhou, L.; Jiang, Y.D.; Xia, B.W.; Wang, X.Z.; Kang, Y. Research progress and prospect of the integrated supercritical CO2 enhanced shale gas recovery and geological sequestration. Nat. Gas Ind. 2021, 41, 60–73. (In Chinese) [Google Scholar]
- Tang, J.R.; Zhang, J.; Lu, Y.Y.; Wang, X.C.; Chen, X.Y.; Zhou, J.K.; Lu, Z.H. Absolute adsorption capacity of shale on CO2 and its influencing factors. J. China Coal Soc. 2020, 45, 2838–2845. (In Chinese) [Google Scholar]
- Ning, Y.J. Research on the Factors Influencing Porosity in the Process of CO2 Storage in the Saline Aquifer. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2020. (In Chinese). [Google Scholar]
- Tang, L.R.; Jiang, Y.; Yan, J.; Li, G.H.; Wang, Y.; He, Y.W.; Qin, J.Z.; Tang, Y. Study on calculation method of CO2 storage potential in depleted gas reservoir. Pet. Reserv. Eval. Dev. 2021, 11, 858–863. (In Chinese) [Google Scholar]
- Bond, L.P.L. Applications of carbon dioxide in enhanced oil recovery. Energy Convers. Manag. J. Can. Pet. Technol. 2003, 33, 579–586. [Google Scholar] [CrossRef]
- Xu, H.J.; Sang, S.X.; Yang, J.F.; Liu, H.H. CO2 storage capacity of anthracite coal in deep burial depth conditions and its potential uncertainty analysis: A case study of the No. 3 coal seam in the Zhengzhuang Block in Qinshui Basin, China. Geosci. J. 2021, 5, 715–729. [Google Scholar] [CrossRef]
- Zhang, J.C.; Xu, B.; Nie, H.K.; Wang, Z.Y.; Lin, T.; Jiang, S.L.; Song, X.W.; Zhang, Q.; Wang, G.Y.; Zhang, P.X. Exploration potential of shale gas resources in China. Nat. Gas Ind. 2008, 6, 136–140. [Google Scholar]
- Yang, P.; Yin, F.; Yu, Q.; Wang, Z.J.; Liu, J.H.; Zhang, D.; Zhang, D.G. Evolution Anomaly of Organic Matter and Characteristics of Palaeogeothermal Field in the Southeast Edge of Sichuan Basin. Nat. Gas Geosci. 2015, 7, 1299–1309. [Google Scholar]
Blocks | Daily Gas Production per Well/×104 m3 | Stored Depth/m | Favorable Area/km2 | EUR per Well/×108 m3 | Well Numbers (2020) | Cumulative Production/×108 m3 (2020) | Accumulative Prove Geological Reserves/×108 m3 |
---|---|---|---|---|---|---|---|
Changning block | 23 | <4000 | 4450 | 1.13 | >1000 | 115 | >6000 |
Weiyuan block | 17 | 8500 | 0.78 | 6200 | |||
Fuling block | 18.3 | 6000 | 0.85 | >400 | 78 | 9000 |
Influential Factors | Sensitivity Analysis | Recommendations |
---|---|---|
Fracture conductivity | The storage potential increases with the increase in fracture conductivity; the enhancement becomes stable once the fracture conductivity exceeds 300 mD·m. | Fracture conductivity > 10 mD·m. |
Fracture number | The storage volume boosts significantly with the increase in fracture number. | Fracture numbers > 2; the more hydraulic fractures, the better storage performance. |
Fracture length | The storage volume increases with the lengthened fracture. | Preference is given to the abandoned wells with multi-stage fracturing, which are preferred because of their large storage capacity. |
Matrix permeability | Higher permeability yields a larger storage volume. | Massive fracturing is beneficial to store CO2. |
Lateral section length | The longer the horizontal well, the larger SRV and the higher the storage capacity. | Longer lateral sections are preferred to store CO2. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, X.; Chen, X.; Wang, Y.; Dai, D.; Dong, J.; Liu, W. Feasibility Analyses and Prospects of CO2 Geological Storage by Using Abandoned Shale Gas Wells in the Sichuan Basin, China. Atmosphere 2022, 13, 1698. https://doi.org/10.3390/atmos13101698
Lai X, Chen X, Wang Y, Dai D, Dong J, Liu W. Feasibility Analyses and Prospects of CO2 Geological Storage by Using Abandoned Shale Gas Wells in the Sichuan Basin, China. Atmosphere. 2022; 13(10):1698. https://doi.org/10.3390/atmos13101698
Chicago/Turabian StyleLai, Xiaopeng, Xingyi Chen, Yunhan Wang, Dengjin Dai, Jie Dong, and Wei Liu. 2022. "Feasibility Analyses and Prospects of CO2 Geological Storage by Using Abandoned Shale Gas Wells in the Sichuan Basin, China" Atmosphere 13, no. 10: 1698. https://doi.org/10.3390/atmos13101698
APA StyleLai, X., Chen, X., Wang, Y., Dai, D., Dong, J., & Liu, W. (2022). Feasibility Analyses and Prospects of CO2 Geological Storage by Using Abandoned Shale Gas Wells in the Sichuan Basin, China. Atmosphere, 13(10), 1698. https://doi.org/10.3390/atmos13101698