Health Risks Associated with Polycyclic Aromatic Hydrocarbons (PAHs) in Dustfall Collected from Universities in Wuhan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Pretreatment and Chemical Analysis
2.3. Quality Assurance and Quality Control (QA/QC)
2.4. Source Identification
2.5. Health Risk Assessment of PAHs in Dustfall
3. Results and Discussion
3.1. Concentration of PAHs in Dustfall
3.2. Composition of PAHs in Dustfall
3.3. Spatial Distribution of PAHs
3.4. Source Identification
3.5. Human Risk Assessments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qu, C.; Albanese, S.; Lima, A.; Hope, D.; Pond, P.; Fortelli, A.; Romano, N.; Cerino, P.; Pizzolante, A.; De Vivo, B. The occurrence of OCPs, PCBs, and PAHs in the soil, air, and bulk deposition of the Naples metropolitan area, southern Italy: Implications for sources and environmental processes. Environ. Int. 2019, 124, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Chen, W.P.; Liao, X.L.; Wang, M.E.; Ouyang, Z.Y.; Jiao, W.T.; Bai, Y. Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environ. Pollut. 2011, 159, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Nunez-Delgado, A.; Sueiro-Blanco, P.; Labandeir, S.S.; Torrijos, R.C. Polycyclic aromatic hydrocarbons concentrations in a waste from fuel oil spill and its mixture with other materials: Time-course evolution. J. Clean. Prod. 2018, 172, 1910–1917. [Google Scholar] [CrossRef]
- Wang, C.; Wu, S.; Zhou, S.; Wang, H.; Li, B.; Chen, H.; Yu, Y.; Shi, Y. Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: Concentration, source, spatial distribution, and potential human health risk. Sci. Total Environ. 2015, 527, 375–383. [Google Scholar] [CrossRef]
- Dat, N.D.; Chang, M.B. Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Sci. Total Environ. 2017, 609, 682–693. [Google Scholar] [CrossRef]
- Wu, S.P.; Tao, S.; Xu, F.L.; Dawson, R.; Lan, T.; Li, B.G.; Cao, J. Polycyclic aromatic hydrocarbons in dustfall in Tianjin, China. Sci. Total Environ. 2005, 345, 115–126. [Google Scholar] [CrossRef]
- Bermudez, G.M.A.; Jasan, R.; Pla, R.; Pignata, M.L. Heavy metals and trace elements in atmospheric fall-out: Their relationship with topsoil and wheat element composition. J. Hazard. Mater. 2012, 213, 447–456. [Google Scholar] [CrossRef]
- Pan, Y.P.; Wang, Y.S. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China. Atmos. Chem. Phys. 2015, 15, 951–972. [Google Scholar] [CrossRef] [Green Version]
- He, Q.S.; Zhang, L.; Cui, Y.; Cheng, M.C.; Guo, L.L.; Liu, M.; Chen, L.G. Particle dry deposition of polycyclic aromatic hydrocarbons and its risk assessment in a typical coal-polluted and basin city, northern China. Atmos. Pollut. Res. 2017, 8, 1081–1089. [Google Scholar] [CrossRef]
- Lang, Q.Y.; Zhang, Q.; Jaffe, R. Organic aerosols in the Miami area, USA: Temporal variability of atmospheric particles and wet/dry deposition. Chemosphere 2002, 47, 427–441. [Google Scholar] [CrossRef]
- Chen, J.; Fan, B.; Li, J.; Wang, X.; Li, W.; Cui, L.; Liu, Z. Development of human health ambient water quality criteria of 12 polycyclic aromatic hydrocarbons (PAH) and risk assessment in China. Chemosphere 2020, 252, 126590. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Jahan, S.A.; Kabir, E.; Brown, R.J.C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef]
- Skrbic, B.; Durisic-Mladenovic, N.; Zivancev, J.; Tadic, D. Seasonal occurrence and cancer risk assessment of polycyclic aromatic hydrocarbons in street dust from the Novi Sad city, Serbia. Sci. Total Environ. 2019, 647, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Al-Harbi, M.; Alhajri, I.; Whalen, J.K. Health risks associated with the polycyclic aromatic hydrocarbons in indoor dust collected from houses in Kuwait. Environ. Pollut. 2020, 266, 115054. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, M.A.; Hassan, S.K.; Alzahrani, N.A.; Al Sharif, M.Y.; Khoder, M.I. Classroom dust-bound polycyclic aromatic hydrocarbons in Jeddah Primary Schools, Saudi Arabia: Level, characteristics and health risk assessment. Int. J. Environ. Res. Public Health 2020, 17, 2779. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Q.; Qu, C.K.; Qi, S.H.; Cao, J.J.; Zhan, C.L.; Xing, X.L.; Xiao, Y.L.; Zheng, J.R.; Xiao, W.S. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric dustfall from the industrial corridor in Hubei Province, Central China. Environ. Geochem. Health 2015, 37, 891–903. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Z.W.; Cheng, H.R.; Lv, X.P.; Gong, W.; Wang, X.M.; Zhang, G. Seasonal variations and chemical characteristics of PM2.5 in Wuhan, central China. Sci. Total Environ. 2015, 518, 97–105. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Zhan, C.; Zhang, J.; Xu, J.; Wang, A.; Zhang, H.; Xu, J.; Guo, J.; Liu, X. Evaluating heavy metals contamination in campus dust in Wuhan, the university cluster in Central China: Distribution and potential human health risk analysis. Environ. Earth Sci. 2022, 81, 1–13. [Google Scholar] [CrossRef]
- Wu, Z.E.; Lyu, H.H.; Guo, Y.; Man, Q.L.; Niu, H.Y.; Li, J.Y.; Jing, X.H.; Ren, G.B.; Ma, X.D. Polycyclic aromatic hydrocarbons and polybrominated diphenyl ethers inside university campus: Indoor dust-bound pollution characteristics and health risks to university student. Build. Environ. 2022, 221, 109312. [Google Scholar] [CrossRef]
- Oliveira, M.; Slezakova, K.; Delerue-Matos, C.; Pereira, M.C.; Morais, S. Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: A review on indoor and outdoor exposure levels, major sources and health impacts. Environ. Int. 2019, 124, 180–204. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Bin, P.; He, A.J. Opinions from the epicenter: An online survey of university students in Wuhan amidst the COVID-19 outbreak(11). J. Chin. Gov. 2020, 5, 234–248. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Zhou, L.L.; Xue, N.D.; Li, F.S.; Li, Y.W.; Vogt, R.D.; Cong, X.; Yan, Y.Z.; Liu, B. Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: Comparison of three receptor models. Sci. Total Environ. 2013, 443, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Hamid, N.; Syed, J.H.; Junaid, M.; Mahmood, A.; Li, J.; Zhang, G.; Malik, R.N. Elucidating the urban levels, sources and health risks of polycyclic aromatic hydrocarbons (PAHs) in Pakistan: Implications for changing energy demand. Sci. Total Environ. 2018, 619, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Sanders, M.; Sivertsen, S.; Scott, G. Origin and distribution of polycyclic aromatic hydrocarbons in surficial sediments from the Savannah River. Arch. Environ. Con. Tox. 2002, 43, 438–448. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Namiesnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, N.; Wang, Y.; Ren, Y.; Yuan, Z.; Li, N. Concentrations of polycyclic aromatic hydrocarbons in street dust from bus stops in Qingyang city: Estimates of lifetime cancer risk and sources of exposure for daily commuters in Northwest China. Environ. Pollut. 2020, 266, 115222. [Google Scholar] [CrossRef]
- Delgado-Saborit, J.M.; Stark, C.; Harrison, R.M. Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards. Environ. Int. 2011, 37, 383–392. [Google Scholar] [CrossRef]
- Nisbet, I.C.T.; Lagoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Manoli, E.; Kouras, A.; Karagkiozidou, O.; Argyropoulos, G.; Voutsa, D.; Samara, C. Polycyclic aromatic hydrocarbons (PAHs) at traffic and urban background sites of northern Greece: Source apportionment of ambient PAH levels and PAH-induced lung cancer risk. Environ. Sci. Pollut. Res. 2016, 23, 3556–3568. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhan, C.; Zhang, J.; Liu, H.; Xiao, Y.; Zhang, L.; Guo, J.; Liu, X.; Xing, X.; Cao, J. Polycyclic aromatic hydrocarbons in railway stations dust of the mega traffic hub city, central China: Human health risk and relationship with black carbon. Ecotoxicol. Environ. Saf. 2020, 205, 111155. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Zhu, L.Z.; Shen, X.Y. Polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of Hangzhou, China. Environ. Sci. Technol. 2001, 35, 840–844. [Google Scholar] [CrossRef]
- Xing, X.; Chen, Z.; Tian, Q.; Mao, Y.; Liu, W.; Shi, M.; Cheng, C.; Hu, T.; Zhu, G.; Li, Y.; et al. Characterization and source identification of PM2.5-bound polycyclic aromatic hydrocarbons in urban, suburban, and rural ambient air, central China during summer harvest. Ecotoxicol. Environ. Saf. 2020, 191, 110219. [Google Scholar] [CrossRef] [PubMed]
- Ma, D. Distribution and Sources of Priority Polycyclic Aromatic Hydrocarbons(PAHs) in Dustfall at Lanzhou. Environ. Monit. China 2012, 28, 101–105. [Google Scholar]
- Wu, S.; Lan, T.; Zuo, Q.; Liu, W.; Cao, J.; Li, B.; Xu, F.; Shen, W.; Qin, B.; Sun, R.; et al. PAHs in the dust fallfrom tianjin area collected during winter and summer seasons. Acta Sci. Circumst. 2004, 24, 1066–1073. [Google Scholar]
- Xie, C.; Lu, X. Pollution characteristics and risk assessment of PAHs in July dustfall from different functional areas in Xi’an. Environ. Pollut. Control 2019, 41, 452–457. [Google Scholar]
- Chen, Y.; Zhu, L. The dry, wet deposition of polycyclic aromatic hydrocarbons in Hangzhou city. Ecol. Environ. Sci. 2010, 19, 1720–1723. [Google Scholar]
- Yang, C.; Zhong, N.N.; Chen, D.Y. Study on priority polycyclic aromatic hydrocarbons in dustfall in a coal-mining area, Henan, China. In Proceedings of the 2nd German/Chinese/Polish Symposium on Environmental Technology, Beijing, China, 19–21 September 2006; pp. 401–409. [Google Scholar]
- Qi, S.H.; Yan, J.; Zhang, G.; Fu, J.M.; Sheng, G.Y.; Wang, Z.S.; Tong, S.M.; Tang, U.W.; Min, Y.S. Distribution of polycyclic aromatic hydrocarbons in aerosols and dustfall in Macao. Environ. Monit. Assess. 2001, 72, 115–127. [Google Scholar]
- Franco, C.F.J.; de Resende, M.F.; Furtado, L.D.; Brasil, T.F.; Eberlin, M.N.; Netto, A.D.P. Polycyclic aromatic hydrocarbons (PAHs) in street dust of Rio de Janeiro and Niteroi, Brazil: Particle size distribution, sources and cancer risk assessment. Sci. Total Environ. 2017, 599, 305–313. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Abbasi, H.S.; Moore, F.; Delshab, H.; Soltani, N. Polycyclic Aromatic Hydrocarbons in Street Dust of Bushehr City, Iran: Status, Source, and Human Health Risk Assessment. Polycycl. Aromat. Compd. 2020, 40, 61–75. [Google Scholar] [CrossRef]
- Konstantinova, E.; Minkina, T.; Konstantinov, A.; Sushkova, S.; Antonenko, E.; Kurasova, A.; Loiko, S. Pollution status and human health risk assessment of potentially toxic elements and polycyclic aromatic hydrocarbons in urban street dust of Tyumen city, Russia. Environ. Geochem. Health 2022, 44, 409–432. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, M.; Li, L.Y.; Salmanzadeh, M. Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran. J. Hazard. Mater. 2012, 227, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Soltani, N.; Keshavarzi, B.; Moore, F.; Tavakol, T.; Lahijanzadeh, A.R.; Jaafarzadeh, N.; Kermani, M. Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Sci. Total Environ. 2015, 505, 712–723. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Bandowe, B.A.M.; Han, Y.M.; Cao, J.J.; Zhan, C.L.; Wilcke, W. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi’an, Central China. Chemosphere 2015, 134, 512–520. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Zhan, C.L.; Liu, H.X.; Liu, T.; Yao, R.Z.; Hu, T.P.; Xiao, W.S.; Xing, X.L.; Xu, H.M.; Cao, J.J. Characterization of Polycyclic Aromatic Hydrocarbons (PAHs), Iron and Black Carbon within Street Dust from a Steel Industrial City, Central China. Aerosol Air Qual. Res. 2016, 16, 2452–2461. [Google Scholar] [CrossRef]
- Tasdemir, Y.; Esen, F. Dry deposition fluxes and deposition velocities of PAHs at an urban site in Turkey. Atmos. Environ. 2007, 41, 1288–1301. [Google Scholar] [CrossRef]
- Zhao, X.S.; Ding, J.; You, H. Spatial distribution and temporal trends of polycyclic aromatic hydrocarbons (PAHs) in water and sediment from Songhua River, China. Environ. Geochem. Health 2014, 36, 131–143. [Google Scholar] [CrossRef]
- Balati, A.; Shahbazi, A.; Amini, M.M.; Hashemi, S.H. Adsorption of polycyclic aromatic hydrocarbons from wastewater by using silica-based organic-inorganic nanohybrid material. J. Water Reuse Desalination 2015, 5, 50–63. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Shen, Y.; Zhang, S.; Ye, Y.; Shen, Q.; Hu, J.; Wang, X. Application of spatial analysis and multivariate analysis techniques in distribution and source study of polycyclic aromatic hydrocarbons in the topsoil of Beijing, China. Environ. Geol. 2009, 56, 1041–1050. [Google Scholar] [CrossRef]
- Kavouras, I.G.; Koutrakis, P.; Tsapakis, M.; Lagoudaki, E.; Stephanou, E.G.; Von Baer, D.; Oyola, P. Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environ. Sci. Technol. 2001, 35, 2288–2294. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.F.; Ding, X.A.; Bai, Z.P.; Han, B.; Chen, L.; Shi, J.W.; Li, Z.Y. A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5-10 in five typical cities of Liaoning Province, China. J. Hazard Mater. 2010, 183, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Gong, Y.; Ma, J.; Wei, H.; Liu, Q.; Liu, L.; Wu, H.; Yang, S.; Chen, Y. Potential sources, influencing factors, and health risks of polycyclic aromatic hydrocarbons (PAHs) in the surface soil of urban parks in Beijing, China. Environ. Pollut. 2020, 260, 114016. [Google Scholar] [CrossRef]
- Gunawardena, J.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Role of traffic in atmospheric accumulation of heavy metals and polycyclic aromatic hydrocarbons. Atmos. Environ. 2012, 54, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Suman, S.; Sinha, A.; Tarafdar, A. Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India. Sci. Total Environ. 2016, 545–546, 353–360. [Google Scholar] [CrossRef] [PubMed]
- McDonough, C.A.; Khairy, M.A.; Muir, D.C.G.; Lohmann, R. Significance of Population Centers As Sources of Gaseous and Dissolved PAHs in the Lower Great Lakes. Environ. Sci. Technol. 2014, 48, 7789–7797. [Google Scholar] [CrossRef] [Green Version]
- Augusto, S.; Maguas, C.; Matos, J.; Pereira, M.J.; Soares, A.; Branquinho, C. Spatial Modeling of PAHs in Lichens for Fingerprinting of Multisource Atmospheric Pollution. Environ. Sci. Technol. 2009, 43, 7762–7769. [Google Scholar] [CrossRef]
- Aghadadashi, V.; Mehdinia, A.; Bakhtiari, A.R.; Mohammadi, J.; Moradi, M. Source, spatial distribution, and toxicity potential of Polycyclic Aromatic Hydrocarbons in sediments from Iran’s environmentally hot zones, the Persian Gulf. Ecotoxicol. Environ. Saf. 2019, 173, 514–525. [Google Scholar] [CrossRef]
- Fang, G.C.; Wu, Y.S.; Chen, J.C.; Chang, C.N.; Ho, T.T. Characteristic of polycyclic aromatic hydrocarbon concentrations and source identification for fine and coarse particulates at Taichung Harbor near Taiwan Strait during 2004–2005. Sci. Total Environ. 2006, 366, 729–738. [Google Scholar] [CrossRef]
- Kwon, H.O.; Choi, S.D. Polycyclic aromatic hydrocarbons (PAHs) in soils from a multi-industrial city, South Korea. Sci. Total Environ. 2014, 470–471, 1494–1501. [Google Scholar] [CrossRef]
- Wang, X.T.; Miao, Y.; Zhang, Y.; Li, Y.C.; Wu, M.H.; Yu, G. Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: Occurrence, source apportionment and potential human health risk. Sci. Total Environ. 2013, 447, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.M.; Smith, D.J.T.; Luhana, L. Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in Birmingham, U.K. Environ. Sci. Technol. 1996, 30, 825–832. [Google Scholar] [CrossRef]
- Cao, H.; Chao, S.; Qiao, L.; Jiang, Y.; Zeng, X.; Fan, X. Urbanization-related changes in soil PAHs and potential health risks of emission sources in a township in Southern Jiangsu, China. Sci. Total Environ. 2017, 575, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sheng, G.; Bi, X.; Feng, Y.; Mai, B.; Fu, J. Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. Environ. Sci. Technol. 2005, 39, 1861–1867. [Google Scholar] [CrossRef] [PubMed]
- Larsen, R.K.; Baker, J.E. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods. Environ. Sci. Technol. 2003, 37, 1873–1881. [Google Scholar] [CrossRef]
- Teixeira, E.C.; Mattiuzi, C.D.P.; Agudelo-Castañeda, D.M.; de Oliveira Garcia, K.; Wiegand, F. Polycyclic aromatic hydrocarbons study in atmospheric fine and coarse particles using diagnostic ratios and receptor model in urban/industrial region. Environ. Monit. Assess. 2013, 185, 9587–9602. [Google Scholar] [CrossRef]
- Dong, T.T.T.; Lee, B.-K. Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere 2009, 74, 1245–1253. [Google Scholar] [CrossRef]
- Khpalwak, W.; Jadoon, W.A.; Abdel-dayem, S.M.; Sakugawa, H. Polycyclic aromatic hydrocarbons in urban road Implications for human health. Chemosphere 2019, 218, 517–526. [Google Scholar] [CrossRef]
- Wang, L.J.; Zhang, S.W.; Wang, L.; Zhang, W.J.; Shi, X.M.; Lu, X.W.; Li, X.P.; Li, X.Y. Concentration and Risk Evaluation of Polycyclic Aromatic Hydrocarbons in Urban Soil in the Typical Semi-Arid City of Xi’an in Northwest China. Int. J. Environ. Res. Public Health 2018, 15, 607. [Google Scholar] [CrossRef] [Green Version]
- Maertens, R.M.; Yang, X.F.; Zhu, J.P.; Gagne, R.W.; Douglas, G.R.; White, P.A. Mutagenic and carcinogenic hazards of settled house dust I: Polycyclic aromatic hydrocarbon content and excess lifetime cancer risk from preschool exposure. Environ. Sci. Technol. 2008, 42, 1747–1753. [Google Scholar] [CrossRef] [Green Version]
- Eom, I.C.; Rast, C.; Veber, A.M.; Vasseur, P. Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecotoxicol. Environ. Saf. 2007, 67, 190–205. [Google Scholar] [CrossRef] [PubMed]
Target Compounds | Abbr | Rings | TEF a | Library | Dormitory | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Median | Mean | Min | Max | Median | Mean | ||||
naphthalene | NaP | 2 | 0.001 | 0.09 | 0.46 | 0.16 | 0.19 | 0.05 | 0.38 | 0.12 | 0.17 |
acenaphthylene | Acy | 3 | 0.001 | 0.02 | 0.14 | 0.04 | 0.06 | 0.02 | 0.09 | 0.05 | 0.05 |
acenaphthene | Ace | 3 | 0.001 | 0.01 | 0.11 | 0.02 | 0.03 | 0.009 | 0.05 | 0.02 | 0.02 |
fluorene | Flu | 3 | 0.001 | 0.03 | 0.29 | 0.06 | 0.08 | 0.02 | 0.12 | 0.05 | 0.06 |
phenanthrene | Phe | 3 | 0.001 | 0.36 | 1.36 | 0.55 | 0.63 | 0.36 | 1.58 | 0.53 | 0.68 |
anthracene | Ant | 3 | 0.01 | 0.02 | 0.10 | 0.04 | 0.04 | 0.02 | 0.10 | 0.04 | 0.05 |
fluoranthene | Fla | 4 | 0.001 | 0.34 | 1.94 | 0.57 | 0.70 | 0.35 | 1.64 | 0.55 | 0.72 |
pyrene | Pyr | 4 | 0.001 | 0.21 | 1.10 | 0.39 | 0.46 | 0.22 | 1.16 | 0.40 | 0.48 |
benzo[a]anthracene | BaA | 4 | 0.1 | 0.05 | 0.41 | 0.13 | 0.15 | 0.06 | 0.38 | 0.12 | 0.14 |
chrysene | Chr | 4 | 0.01 | 0.27 | 1.56 | 0.40 | 0.55 | 0.26 | 1.32 | 0.42 | 0.54 |
benzo[b]fluoranthene | BbF | 5 | 0.1 | 0.03 | 1.91 | 0.47 | 0.61 | 0.003 | 1.33 | 0.46 | 0.58 |
benzo[k]fluoranthene | BkF | 5 | 0.1 | 0.03 | 1.16 | 0.16 | 0.30 | 0.10 | 1.35 | 0.20 | 0.36 |
benzo[a]pyrene | BaP | 5 | 1 | 0.003 | 0.93 | 0.26 | 0.31 | 0.15 | 0.75 | 0.30 | 0.35 |
dibenzo[a,h]anthracene | DaA | 5 | 1 | 0.16 | 1.25 | 0.26 | 0.39 | 0.007 | 1.54 | 0.27 | 0.38 |
indeno[1,2,3-cd]pyrene | IcdP | 6 | 0.1 | 0.01 | 0.67 | 0.05 | 0.11 | 0.009 | 1.37 | 0.06 | 0.14 |
benzo[g,h,i]perylene | BghiP | 6 | 0.01 | 0.18 | 1.39 | 0.31 | 0.46 | 0.17 | 1.14 | 0.33 | 0.45 |
sumof 16 PAHs | Σ16PAHs b | — | 2.45 | 13.40 | 4.16 | 5.06 | 2.61 | 10.57 | 3.75 | 5.19 | |
7 carcinogenic PAHs | Σ7CPAHs c | — | 1.07 | 6.84 | 1.87 | 2.41 | 1.10 | 5.76 | 1.94 | 2.50 |
PC1 | PC2 | PC3 | |
---|---|---|---|
NaP | 0.909 | 0.144 | 0.113 |
Acy | 0.694 | 0.413 | 0.145 |
Ace | 0.95 | 0.122 | 0.015 |
Flu | 0.948 | 0.129 | 0.03 |
Phe | 0.703 | 0.596 | 0.204 |
Ant | 0.583 | 0.348 | 0.557 |
Fla | 0.652 | 0.676 | 0.263 |
Pyr | 0.627 | 0.694 | 0.267 |
BaA | 0.811 | 0.466 | 0.095 |
Chr | 0.249 | 0.83 | 0.403 |
BbF | 0.319 | 0.928 | -0.016 |
BkF | -0.033 | 0.461 | 0.624 |
BaP | 0.295 | 0.81 | 0.452 |
DaA | 0.044 | -0.173 | 0.973 |
IcdP | 0.118 | 0.384 | 0.837 |
BghiP | 0.237 | 0.53 | 0.727 |
% of variance | 35.851 | 29.630 | 21.687 |
cumulative % | 35.851 | 65.481 | 87.168 |
Exposure Pathways | ILCRsing a | ILCRsder b | ILCRsinh c | ILCRs d | |
---|---|---|---|---|---|
Libraries | mean | 1.346 × 10−6 | 2.391 × 10−6 | 1.044 × 10−10 | 3.738 × 10−6 |
min | 5.937 × 10−7 | 1.055 × 10−6 | 4.605 × 10−11 | 1.648 × 10−6 | |
max | 4.107 × 10−6 | 7.296 × 10−6 | 3.185 × 10−10 | 1.140 × 10−5 | |
median | 1.017 × 10−6 | 1.806 × 10−6 | 7.885 × 10−11 | 2.823 × 10−6 | |
Dormitories | mean | 1.414 × 10−6 | 2.511 × 10−6 | 1.096 × 10−10 | 3.925 × 10−6 |
min | 4.429 × 10−7 | 7.867 × 10−7 | 3.435 × 10−11 | 1.230 × 10−6 | |
max | 4.064 × 10−6 | 7.220 × 10−6 | 3.152 × 10−10 | 1.128 × 10−5 | |
median | 1.016 × 10−6 | 1.804 × 10−6 | 7.876 × 10−11 | 2.820 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Mao, Y.; Xu, J.; Chen, W.; Hu, T.; Xu, C.; Liu, W.; Qu, C.; Chen, W.; Zhang, J.; et al. Health Risks Associated with Polycyclic Aromatic Hydrocarbons (PAHs) in Dustfall Collected from Universities in Wuhan, China. Atmosphere 2022, 13, 1707. https://doi.org/10.3390/atmos13101707
Liu Y, Mao Y, Xu J, Chen W, Hu T, Xu C, Liu W, Qu C, Chen W, Zhang J, et al. Health Risks Associated with Polycyclic Aromatic Hydrocarbons (PAHs) in Dustfall Collected from Universities in Wuhan, China. Atmosphere. 2022; 13(10):1707. https://doi.org/10.3390/atmos13101707
Chicago/Turabian StyleLiu, Ying, Yao Mao, Jun Xu, Wenmin Chen, Tianpeng Hu, Chengyan Xu, Weijie Liu, Chengkai Qu, Wei Chen, Jiaquan Zhang, and et al. 2022. "Health Risks Associated with Polycyclic Aromatic Hydrocarbons (PAHs) in Dustfall Collected from Universities in Wuhan, China" Atmosphere 13, no. 10: 1707. https://doi.org/10.3390/atmos13101707
APA StyleLiu, Y., Mao, Y., Xu, J., Chen, W., Hu, T., Xu, C., Liu, W., Qu, C., Chen, W., Zhang, J., Xing, X., & Qi, S. (2022). Health Risks Associated with Polycyclic Aromatic Hydrocarbons (PAHs) in Dustfall Collected from Universities in Wuhan, China. Atmosphere, 13(10), 1707. https://doi.org/10.3390/atmos13101707