Climatic Relationship of Vegetation in Forest Stands in the Mediterranean Vegetation Belt of the Eastern Adriatic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Selection of Weather Stations
2.3. Bioclimatic Indices
2.4. Statistical Analysis of Data
3. Results
3.1. Descriptive Statistics and Comparison of Climatic Elements with Bioclimatic Indices
3.2. Spatial Overview of the Bioclimatic Indices
3.3. Principal Component Analysis of Climatic Relationships in Vegetation Zones
4. Discussion
4.1. Sub-Mediterranean Vegetation Zone
4.2. Eu-Mediterranean Vegetation Zone
4.3. Steno-Mediterranean Vegetation Zone
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Médail, F.; Quézel, P. Biodiversity hotspots in the Mediterranean Basin: Setting global conservation priorities. Conserv. Biol. 1999, 13, 1510–1513. [Google Scholar] [CrossRef]
- Hure, M.; Batistić, M.; Kovačević, V.; Bensi, M.; Garić, R. Copepod Community structure in pre- and post- winter conditions in the Southern Adriatic Sea (NE Mediterranean). J. Mar. Sci. Eng. 2020, 8, 567. [Google Scholar] [CrossRef]
- Medail, F.; Quézel, P. Hot-Spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Ann. Mo. Bot. Gard. 1997, 84, 112–127. [Google Scholar] [CrossRef]
- Jasprica, N.; Dolina, K.; Milović, M. The flora and vegetation of the NE Mediterranean islet with centuries-long human influences. Acta Bot. Croat. 2018, 77, 126–134. [Google Scholar] [CrossRef]
- Cowling, R.M.; Rundel, P.W.; Lamont, B.B.; Kalin Arroyo, M.; Arianoutsou, M. Plant diversity in Mediterranean-climate regions. Trends Ecol. Evol. 1996, 11, 362–366. [Google Scholar] [CrossRef]
- Nikolić, T.; Antonić, O.; Alegro, A.L.; Dobrović, I.; Bogdanović, S.; Liber, Z.; Rešetnik, I. Plant species diversity of Adriatic Islands: An introductory survey. Plant Biosyst. 2008, 142, 435–445. [Google Scholar] [CrossRef]
- Rego, F.; Rocha, M.S. Climatic patterns in the Mediterranean region. Ecol. Mediterr. 2014, 40, 49–59. [Google Scholar] [CrossRef]
- Caloiero, T.; Callegari, G.; Coletta, V.; Pellicone, G.; Veltri, A. Bioclimatic analysis in a region of southern Italy (Calabria). Plant Biosyst. Int. J. Deal. Aspects Plant Biol. 2016, 150, 1282–1295. [Google Scholar] [CrossRef]
- Suc, J.-P. Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 1984, 307, 429–432. [Google Scholar] [CrossRef]
- Molero, J.M.; Marfil, J.M. The bioclimates of Sierra Nevada national park. IJGR 2015, 5, 1–11. [Google Scholar]
- Tuhkanen, S. Climatic Parameters and Indices in Plant Geography; Almqvist & Wiksell International: Uppsala/Stockholm, Sweden, 1980; ISBN 978-91-7210-467-9. [Google Scholar]
- Giacobbe, A. Le basi concrete per una classificazione ecologica della vegetazione Italiana. Arch. Bot. 1949, IX, 65–177. [Google Scholar]
- Daget, P. Le bioclimat mediterraneen: Caracteres generaux, modes de caracterisation. Vegetatio 1977, 34, 1–20. [Google Scholar] [CrossRef]
- Pesaresi, S.; Galdenzi, D.; Biondi, E.; Casavecchia, S. Bioclimate of Italy: Application of the worldwide bioclimatic classification system. J. Maps 2014, 10, 538–553. [Google Scholar] [CrossRef]
- Canu, S.; Rosati, L.; Fiori, M.; Motroni, A.; Filigheddu, R.; Farris, E. Bioclimate map of Sardinia (Italy). J. Maps 2015, 11, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Pellicone, G.; Caloiero, T.; Guagliardi, I. The de martonne aridity index in Calabria (Southern Italy). J. Maps 2019, 15, 788–796. [Google Scholar] [CrossRef]
- Gajić-Čapka, M.; Cindric, K. Secular trends in indices of precipitation extremes in Croatia, 1901–2008. Geofizika 2011, 28, 293–312. [Google Scholar]
- Gajić-Čapka, M.; Cindric, K.; Pasarić, Z. Trends in precipitation indices in Croatia, 1961–2010. Theor. Appl. Climatol. 2014, 121, 167–177. [Google Scholar] [CrossRef]
- Cindrić, K.; Pasarić, Z.; Gajić-Čapka, M. Spatial and temporal analysis of dry spells in Croatia. Theor. Appl. Climatol. 2010, 102, 171–184. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Penzar, B.; Penzar, I.; Orlić, M. Vrijeme i Klima Hrvatskog Jadrana (Weather and Climate of the Croatian Adriatics); Dr. Feletar, Hrvatski Hidrografski Institut: Zagreb/Koprivnica/Split, Croatia, 2001; ISBN 953-6235-63-3. [Google Scholar]
- Médail, F.; Monnet, A.-C.; Pavon, D.; Nikolic, T.; Dimopoulos, P.; Bacchetta, G.; Arroyo, J.; Barina, Z.; Albassatneh, M.C.; Domina, G.; et al. What is a tree in the Mediterranean Basin hotspot? A critical analysis. For. Ecosyst. 2019, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Trinajstić, I. Fitogeografsko raščlanjenje klimazonalne šumske vegetacije Hrvatske (Plantgeographycal division of klimazonal forest vegetation of Croatia). Šumar. List 1998, 122, 407–421. [Google Scholar]
- Trinajstić, I. Fitogeografska raščlanjenost biljnoga pokrova (Phytogeographic analysis of Croatian Mediterranean vegetation cover). In Šume Hrvatskoga Sredozemlja/Forests of the Croatian Mediterranean; Akademija Šumarskih Znanosti: Zagreb, Croatia, 2011; pp. 182–193. ISBN 978-953-98571-5-6. [Google Scholar]
- Seletković, Z.; Tikvić, I.; Vučetić, M.; Ugarković, D. Climatic features and the vegetation of Mediterranean Croatia. In Šume Hrvatskoga Sredozemlja; Akademija Šumarskih Znanosti: Zagreb, Croatia, 2011; pp. 142–161. ISBN 978-953-98571-5-6. [Google Scholar]
- Šegota, T.; Filipčić, A. Climatology for Geographers; Školska Knjiga: Zagreb, Croatia, 1996; p. 471. [Google Scholar]
- Topić, V.; Butorac, L. Protuerizijska, hidrološka i vodozaštitna uloga sredozemnih šuma. In Šume Hrvatskog Sredozemlja; Matić, S., Ed.; Akademija Šumarskih Znanosti: Zagreb, Croatia, 2011; pp. 307–337. ISBN 978-953-98571-5-6. [Google Scholar]
- IEN Bioportal—Geoportal of the Croatian Nature Protection Information System, Institute for Environment and Nature of Republic of Croatia. Available online: http://services.bioportal.hr/gis/ (accessed on 2 April 2022).
- Vukelić, J. Forest Vegetation in Croatia; Šumarski Fakultet, Sveučilište u Zagrebu, DZZP: Zagreb, Croatia, 2012; ISBN 978-953-292-024-6. [Google Scholar]
- Pasta, S.; de Rigo, D.; Caudullo, G. Quercus pubescens in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel- Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; ISBN 978-92-79-36740-3. [Google Scholar]
- Barbero, M.; Loisel, R.; Quézel, P. Biogeography, ecology and history of Mediterranean Quercus ilex ecosystems. In Quercus ilex L. Ecosystems: Function, Dynamics and Management; Romane, F., Terradas, J., Eds.; Advances in Vegetation Science; Springer: Dordrecht, The Netherlands, 1992; pp. 19–34. ISBN 978-94-017-2836-2. [Google Scholar]
- Davies, C.; Moss, D.; Hill, M. EUNIS Habitat Classification Revised 2004; European Environment Agency: Copenhagen, Denmark, 2004. [Google Scholar]
- Devillers, P.; Devillers-Terschuren, J.; Ledant, J. CORINE biotopes manual: Habitats of the European community. Pub. EUR 1991, 1–3, 12587. [Google Scholar]
- Biondi, E.; Blasi, C.; Burrascano, S.; Casavecchia, S.; Copiz, R.; Del Vico, E.; Galdenzi, D.; Gigante, D.; Lasen, C.; Spampinato, G.; et al. Manuale Italiano Di Interpretazione Degli Habitat (Direttiva 92/43/CEE); Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Direzione per la Protezione della Natura: Rome, Italy, 2010.
- Mauri, A.; Di Leo, M.; de Rigo, D.; Caudullo, G. Pinus halepensis and Pinus brutia in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; ISBN 978-92-79-36740-3. [Google Scholar]
- Boulli, A.; Baaziz, M.; M’Hirit, O. Polymorphism of natural populations of Pinus halepensis Mill. in Morocco as revealed by morphological characters. Euphytica 2001, 119, 309–316. [Google Scholar] [CrossRef]
- Torregrosa, A.; Taylor, M.D.; Flint, L.E.; Flint, A.L. Present, future, and novel bioclimates of the San Francisco, California region. PLoS ONE 2013, 8, e58450. [Google Scholar] [CrossRef] [Green Version]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Dufour-Dror, J.-M.; Ertas, A. Bioclimatic perspectives in the distribution of Quercus ithaburensis decne. subspecies in Turkey and in the Levant. J. Biogeogr. 2004, 31, 461–474. [Google Scholar] [CrossRef]
- Gaussen, H. Théorie et classification des climats et microclimate. 8me congrès internat. Bot. Paris Sect. 1954, 7, 125–130. [Google Scholar]
- UNESCO/FAO. Bioclimatic Map of the Mediterranean Zone: Ecological Study of the Mediterranean Zone: Explanatory Notes—UNESCO Digital Library; UNESCO: Paris, France; FAO: Rome, Italy, 1963. [Google Scholar]
- Rivas-Martínez, S.; Rivas-Sáenz, S.; Penas, A. Worldwide bioclimatic classification system. Glob. Geobot. 2011, 1, 1–634. [Google Scholar]
- Lang, R. Versuch Einer Exakten Klassifikation der Böden in Klimatischer und Geologischer Hinsicht; Verlag für Fachliteratur: Berlin, Germany, 1915. [Google Scholar]
- De Martonne, E. Areisme et Indice d’aridite; Comptes Rendus de L’Academy of Science: Paris, France, 1926; p. 1395. English: Regions of interior basin drainage. Geogr. Rev. 1926, 17, 397–414. [Google Scholar] [CrossRef]
- Ellenberg, H. Vegetation Mitteleuropas Mit Den Alpen in Ökologischer Sicht, 4th ed.; Verlag Eugen Ulmer: Stuttgart, Germany, 1986. [Google Scholar]
- Rasztovits, E.; Móricz, N.; Berki, I.; Pötzelsberger, E.; Mátyás, C. Evaluating the performance of stochastic distribution models for European beech at low-elevation xeric limits. Időjárás 2012, 116, 173–194. [Google Scholar]
- Emberger, L. Une classification biogéographique des climats. Recueil Trav. Lab. Bot. Geol. Zool. Univ. Fac. Sci. Montpellier 1955, 7, 3–43. [Google Scholar]
- Blondel, J.; Aronson, J. Biology and Wildlife of the Mediterranean Region; Oxford University Press: Oxford, UK, 1999; ISBN 978-0-19-850035-3. [Google Scholar]
- Mhirit, O. Climats et bioclimats de la forêt. In Le Grand Livre de la Forêt Marocaine; Mardaga: Sprimont, Belgium, 1999; pp. 54–60. ISBN 2-87009-686-0. [Google Scholar]
- Monachus KlimaSoft 2.1. Available online: https://climatediagrams.net (accessed on 15 April 2022).
- Statistica (Data Analysis Software System), version 13; TIBCO Software Inc.: Palo Alto, CA, USA, 2018.
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2022. Available online: http://qgis.osgeo.org (accessed on 15 April 2022).
- Geographic Resources Analysis Support System (GRASS), Version 8.2; GRASS Development Team: Corvallis, OR, USA, 2012.
- Blasi, C.; Carranza, M.L.; Filesi, L.; Tilia, A.; Acosta, A. Relation between climate and vegetation along a Mediterranean-temperate boundary in central Italy. Glob. Ecol. Biogeogr. 1999, 8, 17–27. [Google Scholar] [CrossRef]
- Prpić, B.; Tikvić, I.; Idžojtić, M.; Seletković, Z. Ekološka konstitucija značajnijih vrsta drveća i grmlja. In Šume Hrvatskoga Sredozemlja/Forests of the Croatian Mediterranean; Akademija Šumarskih Znanosti: Zagreb, Croatia, 2011; pp. 245–287. ISBN 978-953-98571-5-6. [Google Scholar]
- Aguilera, F.; Orlandi, F.; Oteros, J.; Tommaso, B.; Fornaciari, M. Bioclimatic characterisation of the Mediterranean region: Future climate projections for Spain, Italy and Tunisia. Ital. J. Agrometeorol. 2015, 2015, 45–58. [Google Scholar]
- Raicich, F. On the fresh balance of the Adriatic Sea. J. Mar. Syst. 1996, 9, 305–319. [Google Scholar] [CrossRef]
- Osborn, H.B. Estimating precipitation in mountainous regions. J. Hydraul. Eng. 1984, 110, 1859–1863. [Google Scholar] [CrossRef]
- Waring, R.H.; Running, S.W. Forest Ecosystems: Analysis at Multiple Scales, 2nd ed.; Running Academic Press Inc.: San Diego, CA, USA, 1998; ISBN 978-0-12-735443-9. [Google Scholar]
- Gajić-Čapka, M.; Zaninovic, K. Long-term trends in temperature, precipitation and runoff at the Croatian Eastern Adriatic Coast. In Proceedings of the BALWOIS (Balkan Water Observation and Information System) Conference, Ohrid, North Macedonia, 23–26 May 2006. [Google Scholar]
- Breckle, S.-W. Walter’s Vegetation of the Earth: The Ecological Systems of the Geo-Biosphere, 4th ed.; Completely Revised and Enlarged 2002 Edition; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 978-3-540-43315-6. [Google Scholar]
- Patarčić, M.; Gajić-Čapka, M.; Cindrić, K.; Branković, Č. Recent and near-future changes in precipitation-extreme indices over the Croatian Adriatic coast. Clim. Res. 2014, 61, 157–176. [Google Scholar] [CrossRef]
- Bagnouls, F.; Gaussen, H. Les climats biologiques et leur classification. Ann. Géogr. 1957, 66, 193–220. [Google Scholar] [CrossRef]
- Le Houerou, H.N. An agro-bioclimatic classification of Arid and Semiarid Lands in the isoclimatic Mediterranean zones. Arid Land Res. Manag. 2004, 18, 301–346. [Google Scholar] [CrossRef]
- Rivas-Martinez, S.; Penas, A.; del Rio, S.; Diaz Gonzalez, T.E.; Rivas-Saenz, S. Bioclimatology of the Iberian Peninsula and the Balearic Islands. In The Vegetation of the Iberian Peninsula; Plant and Vegetation; Springer: Berlin/Heidelberg, Germany, 2017; p. 676. ISBN 978-3-319-56140-0. [Google Scholar]
- Piñar Fuentes, J.C.; Cano-Ortiz, A.; Musarella, C.M.; Quinto Canas, R.; Pinto Gomes, C.J.; Spampinato, G.; del Río, S.; Cano, E. Bioclimatology, structure, and conservation perspectives of Quercus pyrenaica, Acer opalus subsp. granatensis, and Corylus avellana deciduous forests on Mediterranean bioclimate in the south-central part of the Iberian Peninsula. Sustainability 2019, 11, 6500. [Google Scholar] [CrossRef] [Green Version]
- Branković, Č.; Güttler, I.; Gajić-Čapka, M. Evaluating climate change at the Croatian Adriatic from observations and regional climate models’ simulations. Clim. Dyn. 2013, 41, 2353–2373. [Google Scholar] [CrossRef]
- Timbal, J.; Aussenac, G. An overview of ecology and silviculture of indigenous oaks in France. Ann. For. Sci. 1996, 53, 649–661. [Google Scholar] [CrossRef]
- De Rigo, D.; Caudullo, G. Quercus ilex in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel- Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; ISBN 978-92-79-36740-3. [Google Scholar]
- Chambel, M.R.; Climent, J.; Pichot, C.; Ducci, F. Mediterranean pines (Pinus halepensis mill. and Brutia ten). In Forest Tree Breeding in Europe: Current State-of-the-Art and Perspectives; Pâques, L.E., Ed.; Managing Forest Ecosystems; Springer: Dordrecht, The Netherlands, 2013; pp. 229–265. ISBN 978-94-007-6146-9. [Google Scholar]
- Bonacci, O.; Patekar, M.; Pola, M.; Roje-Bonacci, T. Analyses of climate variations at four meteorological stations on remote islands in the Croatian part of the Adriatic Sea. Atmosphere 2020, 11, 1044. [Google Scholar] [CrossRef]
- Bonacci, O.; Andrić, I.; Vrsalović, A.; Bonacci, D. Precipitation regime changes at four Croatian meteorological stations. Atmosphere 2021, 12, 885. [Google Scholar] [CrossRef]
- Perčec Tadić, M.; Gajić-Čapka, M.; Zaninović, K.; Cindrić, K. Drought vulnerability in Croatia. Agric. Conspec. Sci. 2014, 79, 31–38. [Google Scholar]
- Calamassi, R.; Della Rocca, G.; Falusi, M.; Paolettiinstb, E.; Strati, S. Resistance to water stress in seedlings of eight European provenances of Pinus halepensis mill. Ann. For. Sci. 2001, 58, 663–672. [Google Scholar] [CrossRef] [Green Version]
- Henderson, L. Alien weeds and invasive plants: A complete guide to declared weeds and invader in South Africa, including another 36 species invasive in that region. In Plant Protection Research Institute Handbook; Plant Protection Research Institute: Pretoria, South Africa, 2001; ISBN 978-1-86849-192-6. [Google Scholar]
- Rouget, M.; Richardson, D.M.; Milton, S.J.; Polakow, D. Predicting invasion dynamics of four alien pinus species in a highly fragmented semi-arid shrubland in South Africa. Plant Ecol. 2001, 152, 79–92. [Google Scholar] [CrossRef]
- Fady, B.; Semerci, H.; Vendramin, G.G. Aleppo pine (Pinus halepensis) and Brutia pine (Pinus brutia). In EUFORGEN Technical Guidelines for Genetic Conservation and Use; International Plant Genetic Resources Institute: Rome, Italy, 2003; ISBN 978-92-9043-571-6. [Google Scholar]
- De las Heras, J.; Moya, D.; Vega, J.A.; Daskalakou, E.; Vallejo, V.R.; Grigoriadis, N.; Tsitsoni, T.; Baeza, J.; Valdecantos, A.; Fernández, C.; et al. Post-fire management of serotinous pine forests. In Post-Fire Management and Restoration of Southern European Forests; Moreira, F., Arianoutsou, M., Corona, P., de las Heras, J., Eds.; Managing Forest Ecosystems; Springer: Dordrecht, The Netherlands, 2012; pp. 121–150. ISBN 978-94-007-2208-8. [Google Scholar]
Vegetation Zone | Abbreviation | Weather Station | Latitude | Longitude | Altitude (m) |
---|---|---|---|---|---|
Sub-Mediterranean | Sub1 | Kukuljanovo | 45°19′48.88″ N | 14°31′12.02″ E | 355 |
Sub2 | Rijeka | 45°19′37.07″ N | 14°26′45.16″ E | 120 | |
Sub3 | Bakar | 45°18′17.18″ N | 14°32′9.90″ E | 2 | |
Sub4 | Butoniga | 45°17′41.50″ N | 13°57′48.68″ E | 50 | |
Sub5 | Pazin | 45°14′22.20″ N | 13°56′14.19″ E | 291 | |
Sub6 | Omišalj | 45°12′38.84″ N | 14°33′22.47″ E | 85 | |
Sub7 | Crikvenica | 45°10′19.54″ N | 14°41′30.87″ E | 2 | |
Sub8 | Malinska | 45°7′26.61″ N | 14°31′42.29″ E | 1 | |
Sub9 | Krk | 45°1′31.86″ N | 14°34′24.24″ E | 28 | |
Sub10 | Senj | 44°59′23.83″ N | 14°54′1.80″ E | 26 | |
Su11 | Karlobag | 44°31′29.38″ N | 15° 4′27.76″ E | 30 | |
Sub12 | Knin | 44°2′28.06″ N | 16°11′46.81″ E | 255 | |
Sub13 | Sinj | 43°42′16.24″ N | 16°38′20.36″ E | 308 | |
Sub14 | Imotski | 43°27′0.00″ N | 17°12′59.98″ E | 435 | |
Eu-Mediterranean | Eu1 | Novigrad | 45°19′0.83″ N | 13°33′45.62″ E | 34 |
Eu2 | Poreč | 45°13′60.00″ N | 13°35′60.00″ E | 15 | |
Eu3 | Rovinj | 45°7′18.00″ N | 13°37′45.33″ E | 20 | |
Eu4 | Cres | 44°57′0.00″ N | 14°25′0.00″ E | 5 | |
Eu5 | Pula | 44°52′0.00″ N | 13°50′60.00″ E | 43 | |
Eu6 | Rab | 44°45′31.70″ N | 14°45′33.32″ E | 24 | |
Eu7 | Mali Lošinj | 44°31′55.89″ N | 14°28′6.64″ E | 53 | |
Eu8 | Pag | 44°26′30.69″ N | 15° 3′4.03″ E | 3 | |
Eu9 | Zadar | 44° 7′60.00″ N | 15°13′0.00″ E | 5 | |
Eu10 | Biograd | 43°55′60.00″ N | 15°26′60.00″ E | 8 | |
Eu11 | Šibenik | 43°43′51.51″ N | 15°53′40.22″ E | 77 | |
Eu12 | Split | 43°31′0.00″ N | 16°25′60.00″ E | 122 | |
Eu13 | Makarska | 43°17′37.08″ N | 17° 1′10.94″ E | 52 | |
Eu14 | Opuzen | 43°1′0.00″ N | 17°34′0.00″ E | 2 | |
Eu15 | Orebić | 42°58′27.88″ N | 17°10′34.72″ E | 6 | |
Eu16 | Ston | 42°49′60.00″ N | 17°41′60.00″ E | 2 | |
Eu17 | Dubrovnik | 42°38′60.00″ N | 18° 4′60.00″ E | 52 | |
Steno-Mediterranean | St1 | Sutivan | 43°23′7.14″ N | 16°28′44.00″ E | 6 |
St2 | Hvar | 43°10′20.77″ N | 16°26′29.62″ E | 20 | |
St3 | Komiža | 43°2′39.72″ N | 16°5′22.18″ E | 20 | |
St4 | Vela Luka | 42°57′40.99″ N | 16°42′56.51″ E | 5 | |
St5 | Korčula | 42°57′37.46″ N | 17°8′6.61″ E | 15 | |
St6 | Mljet | 42°46′59.84″ N | 17°21′47.57″ E | 30 | |
St7 | Lastovo | 42°46′0.00″ N | 16°53′60.00″ E | 186 |
Bioclimatic Indices | Formula | Reference |
---|---|---|
Annual potential evapotranspiration (PET) | a = 6.7 × 10−7 × I3 − 7.7 × 10−5 × I2 + 1.8 × 10−2 × I + 0.49 | [38] |
Dry season water deficit (DSWD) | Pi—PETi | [39] |
Length of the dry season (LDS) | Pi < 2Ti | [40,41] |
Ombro-evapotranspiration index (Ioe) | P/PET | [42] |
Lang’s rain factor (LRF) | P/T | [43] |
De Martonne aridity index (DMI) | P/(T + 10) | [44] |
Continentality index (CONTINENTY) | Tmax−Tmin | [42] |
Ellenberg Index (EQ) | (Tmax/P)1000 | [45] |
Ombrothermic Index (Io) | (Pp/Tp)10 | [42] |
Ombrothermic index of the summer quarter (Iosq) | (P6–8/T6–8)/10 | [46] |
Thermicity Index (It) | (T + m + M) 10 | [46] |
Emberger’s pluviothermic quotient (Q2) | [47] |
Climate Element/Index | Sub-Mediterranean | Eu-Mediterranean | Steno-Mediterranean | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean ± Std. Dev. | Min | Max | Mean ± Std. Dev. | Min | Max | Mean ± Std. Dev. | |
T | 13.00 | 15.30 | 13.93 ± 1.17 a | 15.50 | 17.40 | 15.23 ± 0.96 b | 15.90 | 17.50 | 16.19 ± 0.51 c |
m | −1.6 | 6.3 | 6.09 ± 3.95 a | 2.7 | 8.4 | 10.69 ± 2.69 b | 3.2 | 8.3 | 12.50 ± 1.11 b |
M | 26.00 | 31.80 | 23.56 ± 5.88 a | 28.2 | 32.4 | 20.33 ± 3.03 a | 28.4 | 31.8 | 20.37 ± 0.75 a |
P | 730.5 | 1971.6 | 1233.41 ± 213.05 a | 486.6 | 1019.5 | 933.84 ± 149.58 b | 383.7 | 1031.9 | 721.22 ± 119.82 c |
PET | 674.47 | 817.77 | 801.76 ± 48.02 a | 784.82 | 830.15 | 847.95 ± 37.33 b | 791.78 | 829.54 | 880.40 ± 21.75 b |
DSWD | −282.22 | −42.67 | −215.50 ± 61.45 a | −439.14 | −183.53 | −325.47 ± 53.69 b | −487.02 | −168.96 | −440.22 ± 23.87 c |
LDS | 0 | 3 | 0.57 ± 0.64 a | 1 | 7 | 1.58 ± 0.61 b | 2 | 8 | 3.14 ± 0.37 c |
Ioe | 28.17 | 59.91 | 39.02 ± 8.21 a | 7.58 | 18.67 | 25.64 ± 4.81 b | 6.92 | 18.67 | 19.40 ± 3.48 c |
LRF | 87.50 | 145.20 | 88.78 ± 15.68 a | 30.41 | 64.94 | 61.31 ± 9.20 b | 23.54 | 64.90 | 44.83 ± 6.85 c |
DMI | 4.26 | 6.96 | 51.55 ± 8.77 a | 1.56 | 3.31 | 36.97 ± 5.60 b | 1.22 | 3.32 | 27.71 ± 4.30 c |
CONTINETY | 2.80 | 22.60 | 18.73 ± 0.51 a | 16.0 | 21.7 | 17.74 ± 0.90 b | 15.00 | 18.90 | 16.95 ± 0.95 c |
EQ | 11.16 | 19.79 | 19.79 ± 2.89 a | 24.42 | 53.18 | 27.08 ± 4.24 b | 23.45 | 63.33 | 35.46 ± 4.69 c |
Io | 6.08 | 10.10 | 6.16 ± 1.08 a | 2.11 | 4.52 | 4.25 ± 0.63 b | 1.63 | 4.51 | 3.11 ± 0.47 c |
Iosq | 0.24 | 0.88 | 0.30 ± 0.07 a | 0.03 | 0.26 | 0.20 ± 0.04 b | 0.03 | 0.30 | 0.11 ± 0.01 c |
It | 393.00 | 464.00 | 435.87 ± 40.75 a | 467.00 | 523.00 | 440.63 ± 75.37 a | 480.00 | 527.00 | 490.70 ± 15.01 b |
Q2 | 44.23 | 78.47 | 163.96 ± 44.32 a | 22.24 | 48.21 | 122.67 ± 20.81 b | 13.97 | 40.74 | 98.97 ± 17.20 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ugarković, D.; Paulić, V.; Šapić, I.; Poljak, I.; Ančić, M.; Tikvić, I.; Stankić, I. Climatic Relationship of Vegetation in Forest Stands in the Mediterranean Vegetation Belt of the Eastern Adriatic. Atmosphere 2022, 13, 1709. https://doi.org/10.3390/atmos13101709
Ugarković D, Paulić V, Šapić I, Poljak I, Ančić M, Tikvić I, Stankić I. Climatic Relationship of Vegetation in Forest Stands in the Mediterranean Vegetation Belt of the Eastern Adriatic. Atmosphere. 2022; 13(10):1709. https://doi.org/10.3390/atmos13101709
Chicago/Turabian StyleUgarković, Damir, Vinko Paulić, Irena Šapić, Igor Poljak, Mario Ančić, Ivica Tikvić, and Igor Stankić. 2022. "Climatic Relationship of Vegetation in Forest Stands in the Mediterranean Vegetation Belt of the Eastern Adriatic" Atmosphere 13, no. 10: 1709. https://doi.org/10.3390/atmos13101709
APA StyleUgarković, D., Paulić, V., Šapić, I., Poljak, I., Ančić, M., Tikvić, I., & Stankić, I. (2022). Climatic Relationship of Vegetation in Forest Stands in the Mediterranean Vegetation Belt of the Eastern Adriatic. Atmosphere, 13(10), 1709. https://doi.org/10.3390/atmos13101709