Joint Contribution of Preceding Pacific SST and Yunnan-Guizhou Plateau Soil Moisture to September Precipitation over the Middle Reaches of the Yellow River
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Atmospheric Circulation Anomalies Associated with the Variability of the September MRYR Precipitation
3.2. The Effect of Preceding SM Anomalies
3.3. Contribution of the Preceding Pacific SSTAs and the Bridge Effect of YGP SM Anomalies
3.4. Joint Effect of the YGP SM and SPSP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, J.; Zhao, G.; Mu, X.; Tian, P.; Tian, X. Analysis on runoff regime in middle Yellow River and its driving factors. J. Hydroelectr. Eng. 2020, 39, 90–103. (In Chinese) [Google Scholar]
- Wang, X.; Yang, D.; Feng, X.; Cheng, C.; Zhou, C.; Zhang, X.; Ao, Y. Impacts of ecological restoration on water resources in middle reaches of Yellow River. Bull. Soil Water Conserv. 2020, 40, 205–212. (In Chinese) [Google Scholar]
- Wei, J.; Ren, W.; Zhang, L. Review of the autumn flood prevention in the Yellow River in 2021. China Flood Drought Manag. 2012, 22, 62–64. (In Chinese) [Google Scholar]
- Gao, Z.; Li, W.; Li, H. Study on the influence of storm flood and environmental change in the Yellow River Basin. Yellow River Water Conserv. Press Zhengzhou China 2022. (In Chinese) [Google Scholar]
- Wang, J.; Wang, H.; Wu, X.; Lu, T. A quantitative evaluation of the mechanism on sediment transport in the Yellow River Basin over the recent 70a. Yellow River. 2022, 44, 14–19. (In Chinese) [Google Scholar]
- Song, M.; Wang, Y.; Shi, Y. Characteristics of water resources and water environment in different sections of the Yellow River Basin and ecological protection paths. Water Resour. Dev. Manag. 2022, 6, 17–25. (In Chinese) [Google Scholar]
- Huang, J.; Zhang, G.; Yu, H.; Wang, S.; Guan, X.; Ren, Y. Characteristics of climate change in the Yellow River Basin during recent 40 years. J. Water Conserv. 2020, 51, 1048–1058. (In Chinese) [Google Scholar]
- Feng, Q.; Jia, Y. Analysis of Weihe autumn flood in 2011 in Weinan city of Shaanxi province. China Flood Drought Manag. 2012, 22, 57–58. (In Chinese) [Google Scholar]
- Cai, X.; Kang, L.; Sun, X.; Li, Q.; Mao, M. Study of circulation characteristics in autumn flood period over Weihe and Hanjiang River Basins and the causes of flood by the heavy rains in 2011. Torrential Rain Disasters 2013, 32, 120–125. (In Chinese) [Google Scholar]
- Wei, X.; Zhao, L. Review of flood and drought disaster prevention in the Yellow River Basin in 2021. China Flood Drought Manag. 2021, 31, 16–18. (In Chinese) [Google Scholar]
- Yasuda, H.; Berndtsson, R.; Saito, T.; Anyoji, H.; Zhang, X. Prediction of Chinese Loess Plateau summer rainfall using Pacific Ocean spring sea surface temperature. Hydrol. Process. 2009, 23, 719–729. [Google Scholar] [CrossRef]
- Yuan, F.; Yasuda, H.; Berndtsson, R.; Uvo, C.B.; Zhang, L.; Hao, Z.; Wang, X. Regional sea-surface temperatures explain spatial and temporal variation of summer precipitation in the source region of the Yellow River. Hydrol. Sci. J. 2016, 61, 1383–1394. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Berndtsson, R.; Uvo, C.B.; Zhang, L.; Jiang, P. Summer precipitation prediction in the source region of the Yellow River using climate indices. Hydrol. Res. 2016, 47, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, D.; Li, L.; Deng, W. Decadal variability of droughts and floods in the Yellow River basin during the last five centuries and relations with the North Atlantic SST. Int. J. Climatol. 2013, 33, 3217–3228. [Google Scholar] [CrossRef]
- Chang, J.; Shi, H.; Zuo, X. Response analysis of precipitation in the Yellow River Basin and the circulation in autumn to ENSO and IOD. Meteorol. Environ. Sci. 2013, 36, 15–20. (In Chinese) [Google Scholar]
- Entin, J.K.; Robock, A.; Vinnikov, K.Y.; Hollinger, S.E.; Liu, S.X.; Namkhai, A. Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res. Atmos. 2000, 105, 11865–11877. [Google Scholar] [CrossRef]
- Douville, H.; Conil, S.; Tyteca, S.; Voldoire, A. Soil moisture memory and West African monsoon predictability: Artefact or reality? Clim. Dyn. 2007, 28, 723–742. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.; Ha, K.J. Early Indian summer monsoon onset driven by low soil moisture in the Iranian desert. Geophys. Res. Lett. 2019, 46, 10568–10577. [Google Scholar] [CrossRef] [Green Version]
- Ullah, W.; Wang, G.; Gao, Z.; Hagan, D.F.T.; Bhatti, A.S.; Zhu, C. Observed linkage between Tibetan Plateau soil moisture and South Asian summer precipitation and the possible mechanism. J. Clim. 2020, 34, 361–377. [Google Scholar] [CrossRef]
- He, K.; Liu, G.; Wu, R.; Nan, S.; Li, J.; Yue, X.; Wang, H.; Wei, X.; Li, R. Effect of preceding soil moisture-snow cover anomalies around Turan Plain on June precipitation over the southern Yangtze River valley. Atmos. Res. 2021, 264, 105853. [Google Scholar] [CrossRef]
- Dong, X.; Zhou, Y.; Chen, H.; Zhou, B.; Sun, S. Lag impacts of the anomalous July soil moisture over southern China on the August rainfall over the Huang-Huai River Basin. Clim. Dyn. 2021, 58, 1737–1754. [Google Scholar] [CrossRef]
- Giannini, A.; Saravanan, R.; Chang, P. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 2003, 302, 1027–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Zhao, P.; Chen, J.; Yang, S. Preceding factors of summer Asian-Pacific Oscillation and the physical mechanism for their potential influences. J. Clim. 2015, 28, 2531–2543. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G.; Wang, S.; He, K. Precursory signals (SST and soil moisture) of summer surface temperature anomalies over the Tibetan Plateau. Atmosphere 2021, 12, 146. [Google Scholar] [CrossRef]
- He, K.; Liu, G.; Wu, R.; Nan, S.; Wang, S.; Zhou, C.; Qi, D.; Mao, X.; Wang, H.; Wei, X. Oceanic and land relay effects in the link between spring sea surface temperatures in the Indian Ocean and summer precipitation over the Tibetan Plateau. Atmos. Res. 2022, 266, 105953. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, R.; Zhao, Y.; Wang, Z. Different responses of Central Asian precipitation to strong and weak El Niño events. J. Clim. 2022, 35, 1497–1514. [Google Scholar] [CrossRef]
- Xie, P.; Arkin, P.A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parkerd, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108, 1063–1082. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Hu, M.; Gong, D.; Wang, L.; Zhou, T. Possible influence of January–March Arctic Oscillation on the convection of tropical North Pacific and North Atlantic. Acta Meteorol. Sin. 2012, 70, 479–491. (In Chinese) [Google Scholar]
- Yue, X.; Liu, G.; Chen, J.; Zhou, C. Synergistic regulation of the interdecadal variability in summer precipitation over the Tianshan mountains by sea surface temperature anomalies in the high-latitude Northwest Atlantic Ocean and the Mediterranean Sea. Atmos. Res. 2020, 233, 104717. [Google Scholar] [CrossRef]
- Wu, R.; Kinter, J.L., III; Kirtman, B.P. Discrepancy of interdecadal changes in the Asian region among the NCEP-NCAR reanalysis, objective analyses, and observations. J. Clim. 2005, 18, 3048–3067. [Google Scholar] [CrossRef]
- Wu, R.; Yang, S.; Wen, Z.; Huang, G.; Hu, K. Interdecadal change in the relationship of southern China summer rainfall with tropical Indo-Pacific SST. Theor. Appl. Climatol. 2012, 108, 119–133. [Google Scholar] [CrossRef]
- Betts, A.K.; Ball, J.H.; Beljaars, A.C.M.; Miller, M.J.; Viterbo, P.A. The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res. Atmos. 1996, 101, 7209–7225. [Google Scholar] [CrossRef] [Green Version]
- Schär, C.; Lüthi, D.; Beyerle, U.; Heise, E. The soil–precipitation feedback: A process study with a regional climate model. J. Clim. 1999, 12, 722–741. [Google Scholar] [CrossRef]
- Eltahir, E.A.B. A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res. 1998, 34, 765–776. [Google Scholar] [CrossRef]
- Matsuno, T. Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Jpn. 1966, 44, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Gill, A.E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 1980, 106, 447–462. [Google Scholar] [CrossRef]
- Yue, S.; Wang, B.; Yang, K.; Xie, Z.; Lu, H.; He, J. Mechanisms of the decadal variability of monsoon rainfall in the southern Tibetan Plateau. Environ. Res. Lett. 2021, 16, 014011. [Google Scholar] [CrossRef]
- Lu, R. Interannual variation of North China rainfall in rainy season and SSTs in the equatorial eastern Pacific. Chin. Sci. Bull. 2005, 50, 2069–2073. [Google Scholar] [CrossRef]
- Qiu, S.; Zhou, W. Variation in summer rainfall over the Yangtze River region during warming and Hiatus periods. Atmosphere 2019, 10, 173. [Google Scholar] [CrossRef]
- Chen, D.; Nan, S.; Liu, G.; Zhou, C.; Shi, R.; Ao, Y.; Li, X. Improvement in the Prediction of Summer Precipitation in the North China–Hetao Region Using the Tropospheric Temperature Over the Tibetan Plateau in Spring. Front. Earth Sci. 2021, 9, 708567. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, X.; Yao, J.; Dong, X.; Li, H. The concurrent effects of the South Asian monsoon and the plateau monsoon over the Tibetan Plateau on summer rainfall in the Tarim Basin of China. Int. J. Climatol. 2019, 39, 74–88. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, L.; Liu, G.; Wei, X.; Zhang, T.; Feng, Y. Joint Contribution of Preceding Pacific SST and Yunnan-Guizhou Plateau Soil Moisture to September Precipitation over the Middle Reaches of the Yellow River. Atmosphere 2022, 13, 1737. https://doi.org/10.3390/atmos13101737
Jin L, Liu G, Wei X, Zhang T, Feng Y. Joint Contribution of Preceding Pacific SST and Yunnan-Guizhou Plateau Soil Moisture to September Precipitation over the Middle Reaches of the Yellow River. Atmosphere. 2022; 13(10):1737. https://doi.org/10.3390/atmos13101737
Chicago/Turabian StyleJin, Lijun, Ge Liu, Xinchen Wei, Ting Zhang, and Yuhan Feng. 2022. "Joint Contribution of Preceding Pacific SST and Yunnan-Guizhou Plateau Soil Moisture to September Precipitation over the Middle Reaches of the Yellow River" Atmosphere 13, no. 10: 1737. https://doi.org/10.3390/atmos13101737
APA StyleJin, L., Liu, G., Wei, X., Zhang, T., & Feng, Y. (2022). Joint Contribution of Preceding Pacific SST and Yunnan-Guizhou Plateau Soil Moisture to September Precipitation over the Middle Reaches of the Yellow River. Atmosphere, 13(10), 1737. https://doi.org/10.3390/atmos13101737