The Seismo-Ionospheric Disturbances before the 9 June 2022 Maerkang Ms6.0 Earthquake Swarm
Abstract
:1. Introduction
2. Data and Methods
2.1. Earthquake and Solar-Geomagnetic Data
2.2. Ground-Based Data
2.3. CSES Data
2.4. Analysis Method
3. Results and Analysis
3.1. Analysis of Ground-Based Ionospheric Anomalies
3.2. Analysis of CSES Ionospheric Anomalies
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.Y.; Chen, Y.I.; Pulinets, S.A.; Tsai, Y.B.; Chuo, Y.J. Seismo-ionospheric signatures prior to M ≥ 6.0 Taiwan earthquakes. Geophys. Res. Lett. 2000, 27, 3113–3116. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chuo, Y.J.; Shan, S.J.; Tsai, Y.B.; Chen, Y.I.; Pulinets, S.A.; Yu, S.B. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Ann. Geophys. 2004, 22, 1585–1593. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, J.; Shah, M.; Zafar, W.A.; Amin, M.A.; Iqbal, T. Seismoionospheric anomalies associated with earthquakes from the analysis of the ionosonde data. J. Atmos. Sol. Terr. Phys. 2018, 179, 450–458. [Google Scholar] [CrossRef]
- Shah, M.; Inyurt, S.; Ehsan, M.; Ahmed, A.; Shakir, M.; Ullah, S.; Iqbal, M.S. Seismo ionospheric anomalies in Turkey associated with M ≥ 6.0 earthquakes detected by GPS stations and GIM TEC. Adv. Space Res. 2020, 65, 2540–2550. [Google Scholar] [CrossRef]
- Le, H.; Liu, J.Y.; Liu, L. A statistical analysis of ionospheric anomalies before 736 M6.0+ earthquakes during 2002–2010. J. Geophys. Res. 2011, 116, A02303. [Google Scholar]
- Marchetti, D.; De Santis, A.; Arcangelo, S.; Poggio, F.; Jin, S.; Piscini, A.A.; Campuzano, S. Magnetic Field and Electron Density Anomalies from Swarm Satellites Preceding the Major Earthquakes of the 2016–2017 Amatrice-Norcia (Central Italy) Seismic Sequence. Pure Appl. Geophys. 2020, 177, 305–319. [Google Scholar] [CrossRef]
- Píša, D.; Parrot, M.; Santolík, O. Ionospheric density variations recorded before the 2010 Mw 8.8 earthquake in Chile. J. Geophys. Res. 2011, 116, A08309. [Google Scholar]
- Parrot, M. Statistical analysis of automatically detected ion density variations recorded by DEMETER and their relation to seismic activity. Ann. Geophys. 2012, 55, 149–155. [Google Scholar]
- Liu, J.Y.; Chen, Y.I.; Chuo, Y.J.; Tsai, H.F. Variations of ionospheric total electron content during the Chi-Chi earthquake. Geophys. Res. Lett. 2001, 28, 1381–1386. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Y.; Chen, Y.I.; Chen, C.H.; Liu, C.Y.; Chen, C.Y.; Nishihashi, M.; Li, J.Z.; Xia, Y.Q.; Oyama, K.I.; Hattori, K.; et al. Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake. J. Geophys. Res. 2008, 114, A04320. [Google Scholar]
- Chuo, Y.J.; Chen, Y.I.; Liu, J.Y.; Pulinets, S.A. Ionospheric foF2 vaiations prior to strong earthquakes in Taiwan area. Adv. Space Res. 2001, 27, 1305–1310. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.; Zhang, X.; Wang, Z.; Zhou, C. Ionospheric total electron content anomaly possibly associated with the April 4, 2010 Mw7.2 Baja California earthquake. Adv. Space Res. 2022, 69, 2126–2141. [Google Scholar] [CrossRef]
- Zhong, M.; Shan, X.; Zhang, X.; Qu, C.; Guo, X.; Jiao, Z. Thermal Infrared and Ionospheric Anomalies of the 2017 Mw6.5 Jiuzhaigou Earthquake. Remote Sens. 2020, 12, 2843. [Google Scholar] [CrossRef]
- Zhu, F.; Wu, Y.; Lin, J.; Zhou, Y.; Xiong, J.; Yang, J. Anomalous response of ionospheric VTEC before the Wenchuan earthquake. Acta Seismologica 2009, 31, 180–187. [Google Scholar]
- Parrot, M. Statistical analysis of the ion density measured by the satellite DEMETER in relation with the seismic activity. Earthq. Sci. 2011, 24, 513–521. [Google Scholar] [CrossRef]
- Zhang, X.; Fidani, C.; Huang, J.; Shen, X.; Zeren, Z.; Qian, J. Burst increases of precipitating electrons recorded by the DEMETER satellite before strong earthquakes. Nat. Hazards Earth Syst. Sci. 2013, 13, 197–209. [Google Scholar] [CrossRef] [Green Version]
- De Santis, A.; Marchetti, D.; Spogli, L.; Cianchini, G.; Pavon-Carrasco, F.J.; De Franceschi, G.; Di Giovambattista, R.; Perrone, L.; Qamili, E.; Cesaroni, C.; et al. Magnetic Field and Electron Density Data Analysis from Swarm Satellites Searching for Ionospheric Effects by Great Earthquakes: 12 Case Studies from 2014 to 2016. Atmosphere 2019, 10, 371. [Google Scholar] [CrossRef] [Green Version]
- Parrot, M.; Li, M. DEMETER results related to seismic activity. Ursi Radio Sci. Bull. 2017, 88, 18–25. [Google Scholar]
- Li, M.; Parrot, M. Statistical analysis of the ionospheric ion density recorded by DEMETER in the epicenter areas of earthquakes as well as in their magnetically conjugate point areas. Adv. Space Res. 2018, 61, 974–984. [Google Scholar] [CrossRef]
- Yan, R.; Parrot, M.; Pinçon, J.L. Statistical study on variations of the ionospheric ion density observed by DEMETER and related to seismic activities. J. Geophys. Res. Space Phys. 2017, 122, 12421–12429. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wang, H.; Liu, J.; Shen, X. Two Large Earthquakes Registered by the CSES Satellite during Its Earthquake Prediction Practice in China. Atmosphere 2022, 13, 751. [Google Scholar] [CrossRef]
- Du, X.; Zhang, X. Ionospheric Disturbances Possibly Associated with Yangbi Ms6.4 and Maduo Ms7.4 Earthquakes in China from China Seismo Electromagnetic Satellite. Atmosphere 2022, 13, 438. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, L.; Nie, L. The Ionospheric Responses from Satellite Observations within Middle Latitudes to the Strong Magnetic Storm on 25–26 August 2018. Atmosphere 2022, 13, 1271. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; Parrot, M.; Saradjian, M.R. Electron and ion density variations before strong earthquakes (M > 6.0) using DEMETER and GPS data. Nat. Hazards Earth Syst. Sci. 2010, 10, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, Y.; Boudjada, M.; Liu, J.; Magnes, W.; Zhou, Y.; Du, X. Multi-Experiment Observations of Ionospheric Disturbances as Precursory Effects of the Indonesian Ms6.9 Earthquake on 5 August 2018. Remote Sens. 2020, 12, 4050. [Google Scholar] [CrossRef]
- Hayakawa, M. Electromagnetic phenomena associated with earthquakes: A frontier in terrestrial electromagnetic noise environment. Recent Res. Dev. Geophys. 2004, 6, 81–112. [Google Scholar]
- Molchanov, O.; Fedorov, E.; Schekotov, A.; Gordeev, E.; Chebrov, V.; Surkov, V.; Rozhnoi1, A.; Andreevsky, S.; Iudin, D.; Yunga, S.; et al. Lithosphere-atmosphere-ionosphere coupling as governing mechanism for preseismic short-term events in atmosphere and ionosphere. Nat. Hazards Earth Syst. Sci. 2004, 4, 757–767. [Google Scholar] [CrossRef]
- Kamogawa, M. Preseismic lithosphere-atmosphere-ionosphere coupling. Eos Trans. Am. Geophys. Union 2014, 87, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Pulinets, S.A.; Boyarchuk, K. Ionospheric Precursors of Earthquakes; Springer: Berlin/Heidelberg, Germany, 2004; pp. 75–169. [Google Scholar]
- Pulinets, S.A.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model—An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Boyarchuk, K.; Hegai, V.V. Quasielectrostatic model of atmosphere-thermosphere-ionosphere coupling. Adv. Space Res. 2000, 26, 1209–1218. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Chmyrev, V.M.; Yaschenko, A.K. Theoretical model of DC electric field formation in the ionosphere stimulated by seismic activity. J. Atmos. Sol.-Terr. Phys. 2005, 67, 1259–1268. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Yaschenko, A.K.; Hayakawa, M. A perturbation of DC electric field caused by light ion adhesion to aerosols during the growth in seismic-related atmospheric radioactivity. Nat. Hazards Earth Syst. Sci. 2007, 7, 155–163. [Google Scholar] [CrossRef]
- Wu, L.X.; Qin, K.; Liu, S.J. GEOSS-based thermal parameters analysis for earthquake anomaly recognition. Proc. IEEE 2012, 100, 2891–2907. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, X. The development in seismo-ionospheric coupling mechanism. Prog. Earthq. Sci. 2022, 52, 193–202, (In Chinese with an English abstract). [Google Scholar]
- Xiong, B. Ionospheric Response to Solar Flare and GPS-TEC Monitoring. Ph.D. Thesis, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China, May 2012. [Google Scholar]
- Chen, Y.I.; Chuo, J.Y.; Liu, J.Y.; Puilnets, S.A. A Statistical Study of Ionospheric Precursors of Strong Earthquake at Taiwan Area, XXIVth General Ass.; URSI: Paris, France, 1999; p. 745. [Google Scholar]
- Xie, T.; Chen, B.; Wu, L.; Dai, W.; Kuang, C.; Miao, Z. Detecting seismo-ionospheric anomalies possibly associated with the 2019 Ridgecrest (California) earthquakes by GNSS, CSES, and Swarm observations. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028761. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, C.; Long, F.; Yan, Y. Suspected Seismo-Ionospheric Anomalies before Three Major Earthquakes Detected by GIMs and GPS TEC of Permanent Stations. Remote Sens. 2022, 14, 20. [Google Scholar] [CrossRef]
- Tao, D.; Wang, G.; Zong, J.; Wen, Y.; Cao, J.; Battiston, R.; Zeren, Z. Are the Significant Ionospheric Anomalies Associated with the 2007 Great Deep-Focus Undersea Jakarta–Java Earthquake? Remote Sens. 2022, 14, 2211. [Google Scholar] [CrossRef]
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the Size of Earthquake Preparation Zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Dai, D.Q.; Yang, Z.G.; Xi, N.; Deng, W.Z.; Xu, T.R.; Sun, L. Preliminary Analysis of Emergency Production and Source Parameters of the M6.0 Earthquake on June 10, 2022 in Maerkang City, Sichuan Province. Earthq. Res. China 2022, 38, 370–382, (In Chinese with an English abstract). [Google Scholar]
- Chen, T.; Zhang, X.; Zhang, X.; Jin, X.; Wu, H.; Ti, S.; Li, R.; Li, L.; Wang, S. Imminet estimation of earthquake hazard by regional network monitoring the near surface vertical atmospheric electrostatic field. Chinese. J. Geophys. 2021, 64, 1145–1154, (In Chinese with an English abstract). [Google Scholar]
- Zhou, C.; Liu, Y.; Zhao, S.; Liu, J.; Zhang, X.; Huang, J.; Shen, X.; Ni, B.; Zhao, Z. An electric field penetration model for seismo-ionospheric research. Adv. Space Res. 2017, 60, 2217–2232. [Google Scholar] [CrossRef]
- Smirnov, S. Association of the negative anomalies of the quasistaticelectric field in atmosphere with Kamchatka seismicity. Nat. Hazards Earth Syst. Sci. 2008, 8, 745–749. [Google Scholar] [CrossRef]
- Choudhury, A.; Guha, A.; De, B.K.; Roy, R. A statistical study on precursory effects of earthquakes observed through the atmospheric vertical electric field in northeast India. Ann. Geophys. 2013, 56, 1861–1867. [Google Scholar]
- Zhang, X.; Chen, H.; Liu, J.; Shen, X.; Miao, Y.; Du, X.; Qian, J. Ground-based and satellite DC-ULF electric field anomalies around Wenchuan M8.0 earthquake. Adv. Space Res. 2012, 50, 85–95. [Google Scholar] [CrossRef]
- Hao, J.; Tang, T.; Li, D. Advancement of the study on taking the anomalies of static atmospheric field as index of short-term and imminent earthquake prediction. Earthquake 1998, 18, 245–256. [Google Scholar]
- Molchanov, O.A. On the origin of low-and middler-latitude ionospheric turbulence. Phys. Chem. Earth 2004, 9, 559–567. [Google Scholar] [CrossRef]
- Piersanti, M.; Materassi, M.; Battiston, R. Magnetospheric-ionospheric-lithospheric coupling model. Observations during the 5 August 2018 Bayan earthquake. Remote Sens. 2020, 12, 3299. [Google Scholar] [CrossRef]
- Qi, Y.; Wu, L.; Ding, Y.; Liu, Y.; Chen, S.; Wang, X.; Mao, W. Extraction and Discrimination of MBT Anomalies Possibly Associated with the Mw 7.3 Maduo (Qinghai, China) Earthquake on 21 May 2021. Remote Sens. 2021, 13, 4726. [Google Scholar] [CrossRef]
- Takashi, M.; Takano, T. Detection algorithm of earthquake-related rock failures from satellite-borne microwave radiometer data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1768–1776. [Google Scholar]
- Jing, F.; Singh, R.P.; Cui, Y.; Sun, K. Microwave brightness temperature characteristics of three strong earthquakes in Sichuan province, China. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2020, 13, 513–522. [Google Scholar] [CrossRef]
- Jing, F.; Singh, R.P.; Sun, K.; Shen, X. Passive microwave response associated with two main earthquakes in Tibetan Plateau, China. Adv. Space Res. 2018, 62, 1675–1689. [Google Scholar] [CrossRef]
- Liu, J.Y.; Le, H.; Chen, Y.I.; Chen, C.H.; Liu, L.; Wan, W.; Su, Y.Z.; Sun, Y.Y.; Lin, C.H.; Chen, M.Q. Observations and simulations of seismoionospheric GPS total electron content anomalies before the 12 January 2010 M7 Haiti earthquake. J. Geophys. Res. 2011, 116, A04302. [Google Scholar]
- Liu, J.Y.; Chen, C.H.; Chen, Y.I.; Yang, W.H.; Oyama, K.I.; Kuo, K.W. A statistical study of ionospheric earthquake precursors monitored by using equatorial ionization anomaly of GPS TEC in Taiwan during 2001–2007. J. Asian Earth Sci. 2010, 39, 76–80. [Google Scholar] [CrossRef]
- Liu, J.; Huang, J.P.; Zhang, X.M. Ionospheric perturbations in plasma parameters before global strong earthquakes. Adv. Space Res. 2014, 53, 776–787. [Google Scholar] [CrossRef]
- Li, M.; Shen, X.; Parrot, M.; Zhang, X.; Zhang, Y.; Yu, C.; Yan, R.; Liu, D.; Lu, H.; Guo, F.; et al. Primary joint statistical seismic influence on ionospheric parameters recorded by the CSES and DEMETER satellites. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028116. [Google Scholar] [CrossRef]
No. | EQ Date and Time (UT) | Lat./°N | Lon./°E | Ms | Depth (km) |
---|---|---|---|---|---|
1 | 9 June 2022 16:03:09 | 32.27 | 101.82 | 5.8 | 10 |
2 | 9 June 2022 17:28:34 | 32.25 | 101.82 | 6.0 | 13 |
3 | 9 June 2022 19:27:00 | 32.24 | 101.85 | 5.2 | 15 |
No. | EQ Date (UT) | EQ | Lat./°N | Lon./°E | Ms | Depth (km) | Abnormal Parameters | Abnormal Date | Pre EQ (DAY) |
---|---|---|---|---|---|---|---|---|---|
1 | 23 Apr 2019 | Motuo, Tibet | 28.4 | 94.61 | 6.3 | 10 | fOF2, LAP (Ne, Te) | 20 Apr 2019 | −3 |
GIM, GPS TEC, fOF2 | 21 Apr 2019 | −2 | |||||||
2 | 17 Jun 2019 | Changning, Sichuan | 28.34 | 104.9 | 6 | 16 | GIM, GPS TEC, fOF2, LAP (Ne, Te) | 14 Jun 2019 | −3 |
3 | 21 May 2021 | Yangbi, Yunnan | 25.67 | 99.87 | 6.4 | 8 | GIM, GPS TEC, fOF2, | 7 May 2021 | −14 |
GIM, GPS TEC, LAP (Ne, Te), PAP (He+, O+) | 8 May 2021 | −13 | |||||||
GIM, GPS TEC, fOF2, LAP (Ne, Te), PAP (He+, O+) | 9 May 2021 | −12 | |||||||
4 | 21 May 2021 | Maduo, Qinghai | 34.59 | 98.34 | 7.4 | 17 | GIM, GPS TEC, fOF2, | 7 May 2021 | −14 |
GIM, GPS TEC, LAP (Ne, Te), PAP (He+, O+) | 8 May 2021 | −13 | |||||||
GIM, GPS TEC, fOF2, LAP (Ne, Te), PAP (He+, O+) | 9 May 2021 | −12 | |||||||
5 | 15 Sep 2021 | Luxian, Sichuan | 29.2 | 105.34 | 6.0 | 10 | GIM, GPS TEC, fOF2, LAP (Ne), PAP (He+, O+) | 4 Sep 2021 | −11 |
6 | 7 Jan 2022 | Menyuan, Qinghai | 37.77 | 101.26 | 6.9 | 12 | GIM, GPS TEC, fOF2, LAP (Ne, Te), PAP (He+, O+) | 23 Dec 2021 | −15 |
fOF2, LAP (Ne, Te), PAP (He+, O+) | 24 Dec 2021 | −14 | |||||||
GIM, GPS TEC, fOF2, PAP (He+, O+) | 26 Dec 2021 | −12 | |||||||
7 | 25 Mar 2022 | Delingha, Qinghai | 38.5 | 97.33 | 6.0 | 10 | fOF2, LAP (Ne), PAP (He+, O+) | 22 Mar 2022 | −3 |
GIM, GPS TEC, LAP (Ne), PAP (He+, O+) | 24 Mar 2022 | −1 | |||||||
8 | 1 Jun 2022 | Lushan, Sichuan | 30.37 | 102.94 | 6.1 | 17 | GIM, GPS TEC | 17 May 2022 | −14 |
GIM, GPS TEC, fOF2 | 18 May 2022 | −13 | |||||||
9 | 9 Jun 2022 | Maerkang, Sichuan | 32.25 | 101.82 | 6.0 | 13 | GIM, GPS TEC, fOF2, LAP (Ne, Te), PAP (He+, O+) | 2 Jun 2022 | −7 |
GIM, GPS TEC, fOF2 | 3 Jun 2022 | −6 | |||||||
GIM, GPS TEC, PAP (He+, O+) | 4 Jun 2022 | −5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, X.; Wu, W.; Chen, C.; Wang, M.; Yang, M.; Guo, Y.; Wang, J. The Seismo-Ionospheric Disturbances before the 9 June 2022 Maerkang Ms6.0 Earthquake Swarm. Atmosphere 2022, 13, 1745. https://doi.org/10.3390/atmos13111745
Liu J, Zhang X, Wu W, Chen C, Wang M, Yang M, Guo Y, Wang J. The Seismo-Ionospheric Disturbances before the 9 June 2022 Maerkang Ms6.0 Earthquake Swarm. Atmosphere. 2022; 13(11):1745. https://doi.org/10.3390/atmos13111745
Chicago/Turabian StyleLiu, Jiang, Xuemin Zhang, Weiwei Wu, Cong Chen, Mingming Wang, Muping Yang, Yufan Guo, and Jun Wang. 2022. "The Seismo-Ionospheric Disturbances before the 9 June 2022 Maerkang Ms6.0 Earthquake Swarm" Atmosphere 13, no. 11: 1745. https://doi.org/10.3390/atmos13111745
APA StyleLiu, J., Zhang, X., Wu, W., Chen, C., Wang, M., Yang, M., Guo, Y., & Wang, J. (2022). The Seismo-Ionospheric Disturbances before the 9 June 2022 Maerkang Ms6.0 Earthquake Swarm. Atmosphere, 13(11), 1745. https://doi.org/10.3390/atmos13111745