Assessing Impact of Temperature Variability of Climate Change on Mortality Based on Multiple GCM Projections in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.2. Data
2.2.1. Historical Temperature Data
2.2.2. Mortality Data
2.2.3. Future Temperature Data
3. Results
3.1. Regression Results
3.2. Model Validations
3.3. Estimated Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Mora, C.; Dousset, B.; Caldwell, I.; Powell, E.F.; Geronimo, R.C.; Bielecki, R.C.; Counsell, W.W.C.; Dietrich, S.B.; Jhonstone, T.E.; Louis, V.L.; et al. Global risk of deadly heat. Nat. Clim. Chang. 2017, 7, 501–506. [Google Scholar] [CrossRef] [Green Version]
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Hot weather and heat extremes: Health risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef]
- Hajat, S.; Haines, A.; Sarran, C.; Sharma, A.; Bates, C.; Fleming, L.E. The effect of ambient temperature on type-2-diabetes: Case-crossover analysis of 4+ million GP consultations across England. Environ. Health 2017, 16, 73. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, C.A.; Metem, S.; Kamber, D. Blood viscosity and blood pressure: Role of temperature and hyperglycemia. Am. J. Hypertens. 2001, 14, 433–438. [Google Scholar]
- Cui, J.; Sinoway, L.I. Cardiovascular responses to heat stress in chronic heart failure. Curr. Heart. Fail Rep. 2014, 11, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, S.; Zhao, Q.; Wen, B.; Gasparrini, A.; Tong, S.; Overcenco, A.; Urban, A.; Schneider, A.; Entezari, A.; et al. Global, regional, and national burden of mortality associated with short-term temperature variability from 2000–2019: A three-stage modelling study. Lancet Planet. Health 2022, 6, e410–e421. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
- Bressler, R.D.; Moore, F.C.; Rennert, K.; Anthoff, D. Estimates of country level temperature-related mortality damage functions. Sci Rep. 2021, 11, 20282. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Q.; Liu, P. Extreme temperature and mortality: Evidence from China. Int. J. Biometeorol. 2019, 63, 29–50. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Kinney, P.; Petkova, E.P.; Lavigne, E.; Zanobetti, A.; Schwartz, D.J.; Tobias, A.; Leone, M.; et al. Temporal Variation in Heat–Mortality Associations: A Multicountry Study. Environ. Health Perspect. 2015, 123, 1200–1207. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kim, H.; Byun, G.; Choi, Y.; Song, H.; Lee, J.-T. 2019: Difference in temporal variation of temperature-related mortality risk in seven major South Korean cities spanning 1998–2013. Sci. Total Environ. 2015, 656, 986–996. [Google Scholar] [CrossRef]
- Guo, Y.; Gasparrini, A.; Armstrong, G.B.; Tawatsupa, B.; Tobias, A.; Lavigne, E.; Coelho, M.S.; Pan, X.; Kim, H.; Hashizume, M.; et al. Temperature Variability and Mortality: A Multi-Country Study. Environ. Health Perspect. 2016, 124, 1554–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scovronick, N.; Sera, F.; Acquaotta, F.; Garzena, D.; Fratianni, S.; Wright, C.Y.; Gasparrini, A. The association between ambient temperature and mortality in South Africa: A time-series analysis. Environ. Res. 2018, 161, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-H.; Lim, Y.-H.; Dang, T.N.; Seposo, X.; Honda, Y.; Guo, Y.-L.L.; Jang, H.-M.; Kim, H. An Investigation on Attributes of Ambient Temperature and Diurnal Temperature Range on Mortality in Five East-Asian Countries. Sci. Rep. 2017, 7, 10207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Ou, C.-Q.; Ding, Y.; Zhou, Y.-X.; Chen, P.-Y. Daily temperature and mortality: A study of distributed lag non-linear effect and effect modification in Guangzhou. Environ. Health 2012, 11, 63. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Xiao, Y.; Li, G.; Zeng, W.; Lin, H.; Rutherford, S.; Xu, Y.; Luo, Y.; Xu, X.; Chu, C.; et al. Temperature–mortality relationship in four subtropical Chinese cities: A time-series study using a distributed lag non-linear model. Sci. Total Environ. 2013, 449, 355–362. [Google Scholar] [CrossRef]
- Kinney, P.L.; Schwartz, J.; Pascal, M.; Petkova, E.; Tertre, A.L.; Medina, S.; Vautard, R. Winter Season Mortality: Will Climate Warming Bring Benefits? Environ. Res. Lett. 2015, 10, 064016. [Google Scholar] [CrossRef]
- Shaposhnikov, D.; Revich, B. Toward meta-analysis of impacts of heat and cold waves on mortality in Russian North. Urban Clim. 2016, 15, 16–24. [Google Scholar] [CrossRef]
- Greene, S.; Kalkstein, L.S.; Mills, D.M.; Samenow, J. An Examination of Climate Change on Extreme Heat Events and Climate–Mortality Relationships in Large, U.S. Cities. Wea. Clim. Soc. 2011, 3, 281–292. [Google Scholar] [CrossRef]
- Ma, W.; Zeng, W.; Zhou, M.; Wang, L.; Rutherford, S.; Lin, H.; Liu, T.; Zhang, Y.; Xiao, J.; Zhang, Y.; et al. The short-term effect of heat waves on mortality and its modifiers in China: An analysis from 66 communities. Environ. Int. 2015, 75, 103–109. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, A.; Zhai, J.; Tao, H.; Jiang, T.; Su, B.; Yang, J.; Wang, G.; Liu, Q.; Gao, C.; et al. Tens of thousands additional deaths annually in cities of China between 1.5 °C and 2.0 °C warming. Nat. Commun. 2019, 10, 3376. [Google Scholar] [CrossRef]
- Yang, J.; Yin, P.; Sun, J.; Wang, B.; Zhou, M.; Li, M.; Tong, S.; Meng, B.; Guo, Y.; Liu, Q. Heatwave and mortality in 31 major Chinese cities: Definition, vulnerability and implications. Sci. Total Environ. 2019, 649, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Denpetkul, T.; Phosri, A. Daily ambient temperature and mortality in Thailand: Estimated effects, attributable risks, and effect modifications by greenness. Sci. Total Environ. 2021, 791, 148373. [Google Scholar] [CrossRef]
- Ban, J.; Xu, D.; He, M.Z.; Sun, Q.; Chen, C.; Wang, W.; Zhu, P.; Li, T. The effect of high temperature on cause-specific mortality: A multi-county analysis in China. Environ. Int. 2017, 106, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, L.; Cirendunzhu; Woodward, A.; Liu, Q. Temperature and mortality on the roof of the world: A time-series analysis in three Tibetan counties, China. Sci. Total Environ. 2014, 485–486, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Chen, R.; Kuang, X.; Duan, X.; Kan, H. Temperature and daily mortality in Suzhou, China: A time series analysis. Sci. Total Environ. 2014, 466, 985–990. [Google Scholar] [CrossRef]
- Chen, K.; Bi, J.; Chen, J.; Chen, X.; Huang, L.; Zhou, L. Influence of heat wave definitions to the added effect of heat waves on daily mortality in Nanjing, China. Sci. Total Environ. 2015, 506-507, 18–25. [Google Scholar]
- Lin, Q.X.; Wang, L.J.; Lin, Z.Q.; Yin, P.; Huang, Z.J.; Liu, T.; Xiao, J.P.; Li, X.; Zeng, W.L.; Lin, S.; et al. Definition of heat wave based on mortality risk assessment in different regions of China Chinese. J. Prev. Med. 2019, 1, 97–102. [Google Scholar]
- Ma, Z.G.; Fu, C.B.; Ren, X.B.; Yang, C. Trend of Annual Extreme Temperature and Its Relationship to Regional Warming in Northern China. Acta Geogr. Sin. 2003, 58, 11–20. (In Chinese) [Google Scholar]
- Cardil, A.; Molina, D.M.; Kobziar, L.N. Extreme temperature days and their potential impacts on southern Europe. Nat. Hazards Earth Syst. Sci. 2014, 14, 3005–3014. [Google Scholar] [CrossRef] [Green Version]
- Deschênes, O.; Greenstone, M. Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US. Am. Econ. J. Appl. Econ. 2011, 3, 152–185. [Google Scholar] [CrossRef]
- Domrös, M.; Gongbing, P. Climate Zones of China. In The Climate of China; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Xu, Y.; Xu, C.H. The Projection of Temperature and Precipitation over China under RCP Scenarios using a CMIP5 Multi-Model Ensemble. Atmos. Ocean. Sci. Lett. 2012, 5, 527–533. [Google Scholar]
- Jiang, D.; Hu, D.; Tian, Z.; Lang, X. Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon. Adv. Atmos. Sci. 2020, 37, 1102–1118. [Google Scholar] [CrossRef]
- Thrasher, B.; Wang, W.; Michaelis, A.; Melton, F.; Lee, T.; Nemani, R. NASA Global Daily Downscaled Projections, CMIP6. Sci. Data 2022, 9, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kilbourne, E.M. Heat Waves and Hot Environments; Oxford University Press: Oxoford, UK, 1997. [Google Scholar]
- Kinney, P.L. A new measure of health effects. Nat. Clim. Chang. 2012, 2, 233–234. [Google Scholar] [CrossRef]
- Huang, W.; Kan, H.; Kovats, S. The impact of the 2003 heat wave on mortality in Shanghai, China. Sci. Total Environ. 2010, 408, 2418–2420. [Google Scholar] [CrossRef]
- Ma, W.; Yang, C.; Tan, J.; Song, W.; Chen, B.; Kan, H. Modifiers of the temperature–mortality association in Shanghai, China. Int. J. Biometeorol. 2012, 56, 205–207. [Google Scholar] [CrossRef]
- Péres, W.E.; Ribeiro, A.F.S.; Russo, A.; Nunes, B. The Association between Air Temperature and Mortality in Two Brazilian Health Regions. Climate 2020, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Xi, W.; Yu, X.T. Prediction and Analysis of the Population Age Structure in China. Stat. Decis. 2015, 5, 112–116. (In Chinese) [Google Scholar]
- Zhang, Z.; Dai, Z.J.; Yang, J. Evaluating the Two-dimensional Mortality Model for Mortality Study in China. Chin. J. Popul. Sci. 2017, 1, 81–91. [Google Scholar]
- Benos, N.; Karkalakos, S.; Zotou, S. Spatial and economic patterns in life expectancy among us states. Appl. Econ. 2019, 51, 5856–5869. [Google Scholar] [CrossRef]
- Benmarhnia, T.; Zunzunegui, M.V.; Llácer, A.; Béland, F. Impact of the economic crisis on the health of older persons in spain: Research clues based on an analysis of mortality. sespas report 2014. Gac. Sanit. 2014, 28, 137–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariizumi, H.; Schirle, T. Are recessions really good for your health? Evidence from Canada. Soc. Sci. Med. 2012, 74, 1224–1231. [Google Scholar] [CrossRef] [PubMed]
Model Name | Modeling Center | Simulation Period | Resolution |
---|---|---|---|
Australian Community Climate and Earth System Simulator version 1 (ACCESS1-0) | Australia | 2006–2050 | 0.25° × 0.25° |
Beijing Climate Center Climate System Model version 1 (BCC-CSM1-1) | China | 2006–2050 | 0.25° × 0.25° |
Beijing National University Earth System Model (BNU-ESM) | China | 2006–2050 | 0.25° × 0.25° |
Canadian Earth System Model version 2 (CanESM2) | Canada | 2006–2050 | 0.25° × 0.25° |
Community Climate System Model version 4 (CCSM4) | USA | 2006–2050 | 0.25° × 0.25° |
Community Earth System Model, version 1-Biogeochemistry (CESM1-BGC) | USA | 2006–2050 | 0.25° × 0.25° |
Centre National de Recherches Météorologiques Climate Model version 5 (CNRM-CM5) | France | 2006–2050 | 0.25° × 0.25° |
Australian Commonwealth Scientific and Industrial Research Organization MK3 version 6 (CSIRO-MK3-6-0) | Australia | 2006–2050 | 0.25° × 0.25° |
Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL-CM3) | USA | 2006–2050 | 0.25° × 0.25° |
Geophysical Fluid Dynamics Laboratory Earth System Model (GFDL-ESM2G) | USA | 2006–2050 | 0.25° × 0.25° |
Geophysical Fluid Dynamics Laboratory Earth System Model (GFDL-ESM2M) | USA | 2006–2050 | 0.25° × 0.25° |
Institute of Numerical Mathematics climate model version 4 (INMCM4) | Russia | 2006–2050 | 0.25° × 0.25° |
Institute Pierre-Simon Laplace Climate Model version 5A Low Resolution (IPSL-CM5A-LR) | France | 2006–2050 | 0.25° × 0.25° |
Institute Pierre-Simon Laplace Climate Model version 5A Middle Resolution (IPSL-CM5A-MR) | France | 2006–2050 | 0.25° × 0.25° |
Model for Interdisciplinary Research on Climate-Earth System version 5 (MIROC5) | Japan | 2006–2050 | 0.25° × 0.25° |
Model for Interdisciplinary Research on Climate-Earth System (MIROC-ESM) | Japan | 2006–2050 | 0.25° × 0.25° |
Atmospheric Chemistry Coupled Version of Model for Interdisciplinary Research on Climate-Earth System (MIROC-ESM-CHEM) | Japan | 2006–2050 | 0.25° × 0.25° |
Max-Planck Institute Earth System Model-Low Resolution (MPI-ESM-LR) | Germany | 2006–2050 | 0.25° × 0.25° |
Max-Planck Institute Earth System Model-Middle Resolution (MPI-ESM-MR) | Germany | 2006–2050 | 0.25° × 0.25° |
Meteorological Research Institute Coupled General Circulation Model version 3 (MRI-CGCM3) | Japan | 2006–2050 | 0.25° × 0.25° |
Norwegian Earth System Model version 1 with Intermediate Resolution (NorESM1-M) | Norway | 2006–2050 | 0.25° × 0.25° |
Category | TD1 | TD2 | TD3 | TD4 | TD5 | TD6 | TD7 | TD8 | TD9 | TD10 |
---|---|---|---|---|---|---|---|---|---|---|
China | 0.284 | 0.286 | 0.280 | 0.291 | 0.292 | 0.293 | 0.284 | 0.294 | 0.277 | 0.300 |
United States | 0.690 | 0.590 | 0.640 | 0.360 | 0.270 | 0.000 | 0.120 | 0.230 | 0.330 | 0.940 |
Category | TD1 | TD2 | TD3 | TD4 | TD5 | TD6 | TD7 | TD8 | TD9 | TD10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
RCP4.5 | RDM | −0.5 | −0.4 | −1.6 | −5.1 | −2.4 | −1.7 | −2.8 | −4.8 | 17.2 | 2.0 |
RUM | −5.3 | −2.4 | −0.2 | −0.2 | −1.6 | −2.6 | −1.9 | 7.5 | 6.5 | 0.2 | |
RIM | −4.4 | −3.6 | −1.0 | −0.5 | −3.7 | 0.3 | −4.4 | 14.7 | 2.4 | 0.2 | |
RCP8.5 | RDM | −0.7 | −0.5 | −2.1 | −6.1 | −3.1 | −1.7 | −3.0 | −6.8 | 20.4 | 3.6 |
RUM | −6.8 | −3.3 | −0.2 | 0.1 | −1.7 | −3.3 | −2.7 | 7.8 | 9.5 | 0.5 | |
RIM | −5.8 | −4.5 | −1.2 | −0.1 | −4.0 | 0.2 | −5.3 | 16.8 | 3.7 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Ma, Q.; Wang, Y.; Wang, X.; Zhang, X.; Luan, Q. Assessing Impact of Temperature Variability of Climate Change on Mortality Based on Multiple GCM Projections in China. Atmosphere 2022, 13, 1775. https://doi.org/10.3390/atmos13111775
Zheng X, Ma Q, Wang Y, Wang X, Zhang X, Luan Q. Assessing Impact of Temperature Variability of Climate Change on Mortality Based on Multiple GCM Projections in China. Atmosphere. 2022; 13(11):1775. https://doi.org/10.3390/atmos13111775
Chicago/Turabian StyleZheng, Xiangyi, Qingyuan Ma, Ying Wang, Xia Wang, Xinren Zhang, and Qingzu Luan. 2022. "Assessing Impact of Temperature Variability of Climate Change on Mortality Based on Multiple GCM Projections in China" Atmosphere 13, no. 11: 1775. https://doi.org/10.3390/atmos13111775
APA StyleZheng, X., Ma, Q., Wang, Y., Wang, X., Zhang, X., & Luan, Q. (2022). Assessing Impact of Temperature Variability of Climate Change on Mortality Based on Multiple GCM Projections in China. Atmosphere, 13(11), 1775. https://doi.org/10.3390/atmos13111775