Research Themes, Trends and Future Priorities in the Field of Climate Change and Health: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Paper Screening
2.2. Keywords Collection
2.3. Keyword Clustering and Research Theme Extraction
2.4. Country and Funding Information Extraction
2.5. Research Trend Analysis
3. Results
3.1. Research Themes in the Field of Climate Change and Health
3.1.1. Research Theme/Cluster 1 (Drought)
3.1.2. Research Theme/Cluster 2 (Risk Assessment and Adaptation)
3.1.3. Research Theme/Cluster 3 (Ocean)
3.1.4. Research Theme/Cluster 4 (Sustainable Development)
3.1.5. Research Theme/Cluster 5 (Infectious Disease)
3.1.6. Research Theme/Cluster 6 (Phenology)
3.1.7. Research Theme/Cluster 7 (Extreme Events)
3.1.8. Research Theme/Cluster 8 (Air Pollution)
3.1.9. Research Theme/Cluster 9 (Ecosystem Change)
3.2. Research Trends in the Field of Climate Change and Health
3.2.1. Overall Trend of Publication Number and Funded Research
3.2.2. Trend of Keywords in Each Research Theme
3.2.3. Trend of the Research Theme
4. Discussion
- Understanding the occurrence and development mechanisms of extreme weather and climate events to improve the early warning and forecasting capabilities of these events;
- Strengthening the risk interconnectivity research on extreme weather and climate events and their derived disasters for better risk governance;
- Developing a high-resolution model which couples air pollution and climate change, with a better representation of the non-linear relationship between chemical substances in the atmospheric environment;
- Developing digital tools and infrastructure for bettering monitoring of pollution and greenhouse gas emissions;
- Conducting an all-cause assessment on the health impact of climate change and environmental conditions to guide risk governance;
- Investigating the co-benefit of climate change mitigation and air quality improvement and formulating policies to maximize the co-benefits;
- Understanding the spatial difference and identifying the best adaptation strategies for local regions.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Economic Forum (WEF). The Global Risks Report 2022, 17th Edition. Available online: https://www3.weforum.org/docs/WEF_The_Global_Risks_Report_2022.pdf (accessed on 15 May 2022).
- Secretary-General’s Remarks at the Climate Ambition Summit. Available online: https://www.un.org/sg/en/content/sg/statement/2020-12-12/secretary-generals-remarks-the-climate-ambition-summit-bilingual-delivered-scroll-down-for-all-english-version (accessed on 15 May 2022).
- United Nations Disaster Risk Reduction (UNDRR). Sendai Framework for Disaster Risk Reduction 2015–2030. Available online: https://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf (accessed on 15 May 2022).
- United Nations (UN). The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 15 May 2022).
- United Nations Framework Convention on Climate Change (UNFCC). Paris Agreement. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 25 November 2022).
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf (accessed on 25 November 2022).
- Bryndum-Buchholz, A.; Tittensor, D.P.; Blanchard, J.L.; Cheung, W.W.L.; Coll, M.; Galbraith, E.D.; Jennings, S.; Maury, O.; Lotze, H.K. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Glob. Chang. Biol. 2019, 25, 459–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pletterbauer, F.; Melcher, A.; Graf, W. Climate change impacts in riverine ecosystems. Riverine Ecosyst. Manag. 2018, 8, 203–223. [Google Scholar]
- Hussain, S.; Qin, S.; Nasim, W.; Bukhari, M.A.; Mubeen, M.; Fahad, S.; Raza, A.; Abdo, H.G.; Tariq, A.; Mousa, B.G.; et al. Monitoring the Dynamic Changes in Vegetation Cover Using Spatio-Temporal Remote Sensing Data from 1984 to 2020. Atmosphere 2022, 13, 1609. [Google Scholar] [CrossRef]
- Weiskopf, S.R.; Rubenstein, M.A.; Crozier, L.G.; Gaichas, S.; Griffis, R.; Halofsky, J.E.; Hyde, K.J.W.; Morelli, T.L.; Morisette, J.T.; Muñozi, R.C.; et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 2020, 733, 137782. [Google Scholar] [CrossRef] [PubMed]
- Sintayehu, D.W. Impact of climate change on biodiversity and associated key ecosystem services in Africa: A systematic review. Ecosyst. Health Sustain. 2018, 4, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Stewart, I.T.; Rogers, J.; Graham, A. Water security under severe drought and climate change: Disparate impacts of the recent severe drought on environmental flows and water supplies in Central California. J. Hydrol. X 2020, 7, 100054. [Google Scholar] [CrossRef]
- Saxena, R.; Vanga, S.K.; Wang, J.; Orsat, V.; Raghavan, V. Millets for food security in the context of climate change: A review. Sustainability 2018, 10, 2228. [Google Scholar] [CrossRef] [Green Version]
- Palin, E.J.; Stipanovic Oslakovic, I.; Gavin, K.; Quinn, A. Implications of climate change for railway infrastructure. WIREs Clim. Chang. 2021, 12, e728. [Google Scholar] [CrossRef]
- Allard, R.F. Climate change adaptation: Infrastructure and extreme weather. In Industry, Innovation and Infrastructure; Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer: Cham, Switzerland, 2021; pp. 105–116. [Google Scholar] [CrossRef]
- Romanello, M.; McGushin, A.; Di Napoli, C.; Drummond, P.; Hughes, N.; Jamart, L.; Kennar, H.; Lampard, P.; Rodriguez, B.S.; Arnell, N.; et al. The 2021 report of the Lancet Countdown on health and climate change: Code red for a healthy future. Lancet 2021, 398, 1619–1662. [Google Scholar] [CrossRef]
- Diaz, D.; Moore, F. Quantifying the economic risks of climate change. Nat. Clim. Chang. 2017, 7, 774–782. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate change impacts on cultural heritage: A literature review. WIREs Clim. Chang. 2021, 12, e710. [Google Scholar] [CrossRef]
- ISC-UNDRR-IRDR. A Framework for Global Science in Support of Risk Informed Sustainable Development and Planetary Health. Available online: https://council.science/wp-content/uploads/2020/06/DRR_GlobalScience-Framework-FINAL.pdf (accessed on 25 November 2022).
- Intergovernmental Panel on Climate Change Reports. Available online: https://www.ipcc.ch/reports/ (accessed on 25 November 2022).
- The Lancet Countdown. Available online: https://www.lancetcountdown.org (accessed on 25 November 2022).
- Haunschild, R.; Bornmann, L.; Marx, W. Climate change research in view of bibliometrics. PLoS ONE 2016, 11, e0160393. [Google Scholar] [CrossRef] [Green Version]
- Sweileh, W.M. Bibliometric analysis of peer-reviewed literature on climate change and human health with an emphasis on infectious diseases. Glob. Health 2020, 16, 44. [Google Scholar] [CrossRef]
- Wang, B.; Pan, S.Y.; Ke, R.Y.; Wang, K.; Wei, Y.M. An overview of climate change vulnerability: A bibliometric analysis based on Web of Science database. Nat. Hazards 2014, 74, 1649–1666. [Google Scholar] [CrossRef]
- Sweileh, W.M. Bibliometric analysis of peer-reviewed literature on food security in the context of climate change from 1980 to 2019. Agric. Food Secur. 2020, 9, 11. [Google Scholar] [CrossRef]
- Einecker, R.; Kirby, A. Climate change: A bibliometric study of adaptation, mitigation and resilience. Sustainability 2020, 12, 6935. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Visualizing bibliometric networks. In Measuring Scholarly Impact: Methods and Practice; Ding, Y., Rousseau, R., Wolfram, D., Eds.; Springer: Cham, Switzerland, 2014; pp. 285–320. [Google Scholar]
- World Economic Situation and Prospects (WESP). Statistical Annex to World Economic Situation and Prospects 2022. Available online: https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/WESP2022_ANNEX.pdf (accessed on 25 November 2022).
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- United Nations Environment Programme (UNEP). Frontiers 2022: Noise, Blazes and Mismatches. Available online: https://www.unep.org/resources/frontiers-2022-noise-blazes-and-mismatches (accessed on 25 November 2022).
- Eitzinger, A.; Binder, C.R.; Meyer, M.A. Risk perception and decision-making: Do farmers consider risks from climate change? Clim. Chang. 2018, 151, 507–524. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Han, Z. Climate change risk perception in Taiwan: Correlation with individual and societal factors. Int. J. Environ. Res. Public Health 2018, 15, 91. [Google Scholar] [CrossRef] [Green Version]
- Dias, M.; Madeira, C.; Jogee, N.; Ferreira, A.; Gouveia, R.; Cabral, H.; Diniz, M.; Vinagre, C. Oxidative stress on scleractinian coral fragments following exposure to high temperature and low salinity. Ecol. Indic. 2019, 107, 105586. [Google Scholar] [CrossRef]
- Brakel, J.; Jakobsson-Thor, S.; Bockelmann, A.C.; Reusch, T.B. Modulation of the eelgrass–Labyrinthula zosterae interaction under predicted ocean warming, salinity change and light limitation. Front. Mar. Sci. 2019, 6, 268. [Google Scholar] [CrossRef]
- Seung, C.K.; Ianelli, J.N. Evaluating alternative policies for managing an Alaska pollock fishery with climate change. Ocean Coast. Manag. 2019, 178, 104837. [Google Scholar] [CrossRef]
- Kapur, M.R.; Franklin, E.C. Simulating future climate impacts on tropical fisheries: Are contemporary spatial fishery management strategies sufficient? Can. J. Fish. Aqua. Sci. 2017, 74, 1974–1989. [Google Scholar] [CrossRef] [Green Version]
- Akhiljith, P.J.; Liya, V.B.; Rojith, G.; Zacharia, P.U.; Grinson, G.; Ajith, S.; Lakshmi, P.M.; Sajna, V.H.; Sathianandan, T.V. Climatic projections of Indian Ocean during 2030, 2050, 2080 with implications on fisheries sector. J. Coast. Res. 2019, 86, 198–208. [Google Scholar] [CrossRef]
- Health, T.L.P. Will the COVID-19 pandemic threaten the SDGs? Lancet Public Health 2020, 5, e460. [Google Scholar] [CrossRef]
- Srivastava, A.; Sharma, R.K.; Suresh, A. Impact of Covid-19 on sustainable development goals. Int. J. Adv. Sci. Tech. 2020, 29, 4968–4972. [Google Scholar]
- Liang, L.; Gong, P. Climate change and human infectious diseases: A synthesis of research findings from global and spatio-temporal perspectives. Environ. Int. 2017, 103, 99–108. [Google Scholar] [CrossRef]
- Smith, E. The effect of potential climate change on infectious disease presentation. J. Nurse Pract. 2019, 15, 405–409. [Google Scholar] [CrossRef]
- Liao, W.; Liu, X.; Li, D.; Luo, M.; Wang, D.; Wang, S.; Baldwin, J.; Lin, L.J.; Li, X.; Feng, K.S.; et al. Stronger contributions of urbanization to heat wave trends in wet climates. Geophys. Res. Lett. 2018, 45, 11–310. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Lau, N.C. Increasing heat stress in urban areas of eastern China: Acceleration by urbanization. Geophys. Res. Lett. 2018, 45, 13. [Google Scholar] [CrossRef]
- Mu, M.; Zhang, R. Addressing the issue of fog and haze: A promising perspective from meteorological science and technology. Sci. China Earth Sci. 2014, 57, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R. Warming boosts air pollution. Nat. Clim. Chang. 2017, 7, 238–239. [Google Scholar] [CrossRef]
- Vandyck, T.; Keramidas, K.; Tchung-Ming, S.; Weitzel, M.; Van Dingenen, R. Quantifying air quality co-benefits of climate policy across sectors and regions. Clim. Chang. 2020, 163, 1501–1517. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Dai, H.; Xu, X.; Fujimori, S.; Hasegawa, T.; Yi, K.; Masui, T.; Kurata, G. Co-benefits of climate mitigation on air quality and human health in Asian countries. Environ. Int. 2018, 119, 309–318. [Google Scholar] [CrossRef]
- Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Gleeson, T.; Moosdorf, N.; Befus, K.M.; Schneider, A.; Hartmann, J.; Lehner, B. Global patterns and dynamics of climate–groundwater interactions. Nat. Clim. Chang. 2019, 9, 137–141. [Google Scholar] [CrossRef]
- Hirst, J.M.; Stedman, O.J. The epidemiology of Phytophthora infestans: I. Climate, ecoclimate and the phenology of disease outbreak. Ann. Appl. Biol. 1960, 48, 471–488. [Google Scholar] [CrossRef]
- Coakley, S.M. Climate variability in the Pacific Northwest and its effect on stripe rust disease of winter wheat. Clim. Change 1979, 2, 33–51. [Google Scholar] [CrossRef]
- Post, J.D. Climatic variability and the European mortality wave of the early 1740s. J. Interdiscip. Hist. 1984, 15, 1–30. [Google Scholar] [CrossRef]
- Zinsstag, J.; Schelling, E.; Crump, L.; Whittaker, M.; Tanner, M.; Stephen, C. One Health: The Theory and Practice of Integrated Health Approaches; CAB International: Wallingford, UK; Boston, MA, USA, 2020. [Google Scholar]
- Zhang, R.; Tang, X.; Liu, J.; Visbeck, M.; Guo, H.D.; Murray, V.; Mcgillycuddy, C.; Ke, B.; Kalonjim, G.; Zhai, P.M.; et al. From concept to action: A united, holistic and One Health approach to respond to the climate change crisis. Infect. Dis. Poverty 2022, 11, 17. [Google Scholar] [CrossRef]
- Jacobsen, K.H. Will COVID-19 generate global preparedness? Lancet 2020, 395, 1013–1014. [Google Scholar] [CrossRef] [PubMed]
- Frutos, R.; Gavotte, L.; Serra-Cobo, J.; Chen, T.; Devaux, C. COVID-19 and emerging infectious diseases: The society is still unprepared for the next pandemic. Environ. Res. 2021, 202, 111676. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, H.; Tang, X.; Kumar, R.; Zhang, R.H.; Brasseur, G.; Churchill, B.; Alam, B.; Kan, H.D.; Liao, H.; Zhu, T.; et al. Toward Better and Healthier Air Quality: Implementation of WHO 2021 Global Air Quality Guidelines in Asia. Bull. Am. Meteorol. Soc. 2022, 103, E1696–E1703. [Google Scholar] [CrossRef]
- Rühlemann, A.; Jordan, J.C. Risk perception and culture: Implications for vulnerability and adaptation to climate change. Disasters 2021, 45, 424–452. [Google Scholar] [CrossRef]
- Shi, J.; Visschers, V.H.; Siegrist, M. Public perception of climate change: The importance of knowledge and cultural worldviews. Risk Anal. 2015, 35, 2183–2201. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). United in Science 2022: A Multi-Organization High-Level Compilation of the Most Recent Science Related to Climate Change, Impacts and Responses. Available online: https://library.wmo.int/doc_num.php?explnum_id=11308 (accessed on 25 November 2022).
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf (accessed on 25 November 2022).
- United Nations (UN). Department of Economic and Social Affairs, Population Division, 2019: World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). Available online: https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf (accessed on 25 November 2022).
- Urban Climate Change Research Network (UCCRN). UCCRN Technical Report: The Future We Do not Want. Available online: https://www.c40.org/wp-content/uploads/2021/08/1789_Future_We_Dont_Want_Report_1.4_hi-res_120618.original.pdf (accessed on 25 November 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, H.; Tang, X.; Zhang, R. Research Themes, Trends and Future Priorities in the Field of Climate Change and Health: A Review. Atmosphere 2022, 13, 2076. https://doi.org/10.3390/atmos13122076
Ouyang H, Tang X, Zhang R. Research Themes, Trends and Future Priorities in the Field of Climate Change and Health: A Review. Atmosphere. 2022; 13(12):2076. https://doi.org/10.3390/atmos13122076
Chicago/Turabian StyleOuyang, Huiling, Xu Tang, and Renhe Zhang. 2022. "Research Themes, Trends and Future Priorities in the Field of Climate Change and Health: A Review" Atmosphere 13, no. 12: 2076. https://doi.org/10.3390/atmos13122076
APA StyleOuyang, H., Tang, X., & Zhang, R. (2022). Research Themes, Trends and Future Priorities in the Field of Climate Change and Health: A Review. Atmosphere, 13(12), 2076. https://doi.org/10.3390/atmos13122076