Comparison of Weighted/Unweighted and Interpolated Grid Data at Regional and Global Scales
Abstract
:1. Introduction
2. Theory
2.1. Idealized Case Study of the Weighted and Unweighted Global Averages
2.2. Statistics of Weighted Samples
2.3. Interpolation for Equal-Area Grids
3. Applications
3.1. Statistics from Weighted and Unweighted Samples
3.2. Distributions from Weighted and Interpolated Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Fang, G.; Wen, X.; Xu, M.; Zhang, Y. Characteristics analysis of drought at multiple spatiotemporal scale and assessment of CMIP6 performance over the Huaihe River Basin. J. Hydrol. Reg. Stud. 2022, 41, 101103. [Google Scholar] [CrossRef]
- Boukthir, M.; Barnier, B. Seasonal and inter-annual variations in the surface freshwater flux in the Mediterranean Sea from the ECMWF re-analysis project. J. Mar. Syst. 2000, 24, 343–354. [Google Scholar] [CrossRef]
- Kim, M.; Lee, E. Validation and Comparison of Climate Reanalysis Data in the East Asian Monsoon Region. Atmosphere 2022, 13, 1589. [Google Scholar] [CrossRef]
- Yang, Y.; Donohue, R.J.; McVicar, T.R. Global estimation of effective plant rooting depth: Implications for hydrological modeling. Water Resour. Res. 2016, 52, 8260–8276. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Liu, J.; Tuo, Y.; Chiogna, G.; Disse, M. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total. Environ. 2016, 573, 1536–1553. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Øivind, H.; Sophie Daloz, A.; Sen, S.; Badiger, S.; Krishnaswamy, J. Measuring precipitation in Eastern Himalaya: Ground validation of eleven satellite, model and gauge interpolated gridded products. J. Hydrol. 2021, 599, 126252. [Google Scholar] [CrossRef]
- Williamson, D.L. Numerical approximations for global atmospheric general circulation models. In Numerical Modelling of the Global Atmosphere in the Climate System; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Ang, R.; Kinouchi, T.; Zhao, W. Evaluation of daily gridded meteorological datasets for hydrological modeling in data-sparse basins of the largest lake in Southeast Asia. J. Hydrol. Reg. Stud. 2022, 42, 101135. [Google Scholar] [CrossRef]
- Loeb, N.G.; Wielicki, B.A.; Doelling, D.R.; Smith, G.L.; Wong, T. Toward Optimal Closure of the Earth’s Top-of-Atmosphere Radiation Budget. J. Clim. 2009, 22, 748–766. [Google Scholar] [CrossRef] [Green Version]
- Chun, S. Time-series analysis of differential pressure and flow velocity signals by means of weighted statistics. Measurement 2022, 190, 110682. [Google Scholar] [CrossRef]
- Ma, Z.; Zuckerberg, B.; Porter, W.F.; Zhang, L. Use of localized descriptive statistics for exploring the spatial pattern changes of bird species richness at multiple scales. Appl. Geogr. 2012, 32, 185–194. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, Q.; Zuo, R. Quantifying the spatial characteristics of geochemical patterns via GIS-based geographically weighted statistics. J. Geochem. Explor. 2015, 157, 110–119. [Google Scholar] [CrossRef]
- Shrestha, D.L. Returns Weighted Percentiles of a Sample. 2022. Available online: https://www.mathworks.com/matlabcentral/fileexchange/16920-returns-weighted-percentiles-of-a-sample (accessed on 4 July 2022).
- Snyder, J.P. Flattening the Earth: Two Thousand Years of Map Projections; University of Chicago Press: Chicago, IL, USA, 1997. [Google Scholar]
- Li, J.; Gan, T.Y.; Chen, Y.D.; Gu, X.; Hu, Z.; Zhou, Q.; Lai, Y. Tackling resolution mismatch of precipitation extremes from gridded GCMs and site-scale observations: Implication to assessment and future projection. Atmos. Res. 2020, 239, 104908. [Google Scholar] [CrossRef]
- Longo-Minnolo, G.; Vanella, D.; Consoli, S.; Pappalardo, S.; Ramírez-Cuesta, J.M. Assessing the use of ERA5-Land reanalysis and spatial interpolation methods for retrieving precipitation estimates at basin scale. Atmos. Res. 2022, 271, 106131. [Google Scholar] [CrossRef]
- Viggiano, M.; Busetto, L.; Cimini, D.; Di Paola, F.; Geraldi, E.; Ranghetti, L.; Ricciardelli, E.; Romano, F. A new spatial modeling and interpolation approach for high-resolution temperature maps combining reanalysis data and ground measurements. Agric. For. Meteorol. 2019, 276–277, 107590. [Google Scholar] [CrossRef]
- Malkin, Z. A New Equal-area Isolatitudinal Grid on a Spherical Surface. Astron. J. 2019, 158, 158. [Google Scholar] [CrossRef] [Green Version]
- Cochran, W.G. Sampling Techniques; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Särndal, C.E.; Swensson, B.; Wretman, J. Model Assisted Survey Sampling; Springer Science & Business Media: New York, NY, USA, 2003. [Google Scholar]
- Price, G.R. Extension of covariance selection mathematics. Ann. Hum. Genet. 1972, 35, 485–490. [Google Scholar] [CrossRef]
- Iverson, K.E. A programming language. In Proceedings of the Spring Joint Computer Conference, Hoboken, NJ, USA, 1–3 May 1962; pp. 345–351. [Google Scholar]
- Delwiche, L.D.; Slaughter, S.J. The Little SAS Book: A Primer: A Programming Approach; Technical Report; SAS Institute: Cary, NC, USA, 2012; ISBN 978-1-61290-400-9. [Google Scholar]
- Rao, C.R. On discrete distributions arising out of methods of ascertainment. Sankhyā Indian J. Stat. Ser. A 1965, 311–324. [Google Scholar]
- Rossow, W.B.; Schiffer, R.A. ISCCP cloud data products. Bull. Am. Meteorol. Soc. 1991, 72, 2–20. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef]
- Osborn, T.J.; Jones, P.D.; Lister, D.H.; Morice, C.P.; Simpson, I.R.; Winn, J.P.; Hogan, E.; Harris, I.C. Land Surface Air Temperature Variations Across the Globe Updated to 2019: The CRUTEM5 Data Set. J. Geophys. Res. Atmos. 2021, 126. [Google Scholar] [CrossRef]
- Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; Winn, J.P.; Hogan, E.; Killick, R.E.; Dunn, R.J.H.; Osborn, T.J.; Jones, P.D.; Simpson, I.R. An Updated Assessment of Near-Surface Temperature Change From 1850: The HadCRUT5 Data Set. J. Geophys. Res. Atmos. 2021, 126, e2019JD032361. [Google Scholar] [CrossRef]
Region | Global | China | United States | Canada | 0–10 N | 0–20 N | 0–40 N | 0–60 N |
---|---|---|---|---|---|---|---|---|
MAE | 5.0202 | 0.3491 | 1.8592 | 2.1612 | 0.0013 | 0.0096 | 0.4656 | 1.9577 |
RMSE | 5.0207 | 0.3498 | 1.8621 | 2.1623 | 0.0013 | 0.0096 | 0.4657 | 1.9582 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, R.; Li, Y.; Yin, J.; Ma, X. Comparison of Weighted/Unweighted and Interpolated Grid Data at Regional and Global Scales. Atmosphere 2022, 13, 2071. https://doi.org/10.3390/atmos13122071
Wei R, Li Y, Yin J, Ma X. Comparison of Weighted/Unweighted and Interpolated Grid Data at Regional and Global Scales. Atmosphere. 2022; 13(12):2071. https://doi.org/10.3390/atmos13122071
Chicago/Turabian StyleWei, Rui, Yuxin Li, Jun Yin, and Xieyao Ma. 2022. "Comparison of Weighted/Unweighted and Interpolated Grid Data at Regional and Global Scales" Atmosphere 13, no. 12: 2071. https://doi.org/10.3390/atmos13122071
APA StyleWei, R., Li, Y., Yin, J., & Ma, X. (2022). Comparison of Weighted/Unweighted and Interpolated Grid Data at Regional and Global Scales. Atmosphere, 13(12), 2071. https://doi.org/10.3390/atmos13122071