Temporal and Spatial Variation in Vegetation Coverage and Its Response to Climatic Change in Marshes of Sanjiang Plain, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
3. Results and Discussions
3.1. Spatiotemporal Change in NDVI in Marsh Vegetation of Sanjiang Plain
3.2. Correlation between NDVI of Marsh Vegetation and Climatic Factors in Sanjiang Plain
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitsch, W.J.; Bernal, B.; Nahlik, A.M.; Mander, Ü.; Zhang, L.; Anderson, C.J.; Jørgensen, S.E.; Brix, H. Wetlands, carbon, and climate change. Landsc. Ecol. 2013, 28, 583–597. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Xue, Z.; Jiang, M.; Lu, X.; Zhang, Q. Spatiotemporal variation in vegetation spring phenology and its response to climate change in freshwater marshes of Northeast China. Sci. Total Environ. 2019, 666, 1169–1177. [Google Scholar] [CrossRef]
- Benelli, S.; Bartoli, M. Worms and submersed macrophytes reduce methane release and increase nutrient removal in organic sediments. Limnol. Oceanogr. Lett. 2021, 6, 329–338. [Google Scholar] [CrossRef]
- Cabral, A.; Dittmar, T.; Call, M.; Scholten, J.; Rezende, C.; Asp, N.; Gledhill, M.; Seidel, M.; Santos, I. Carbon and alkalinity outwelling across the groundwater-creek-shelf continuum off Amazonian mangroves. Limnol. Oceanogr. Lett. 2021, 6, 369–378. [Google Scholar] [CrossRef]
- Keppeler, F.; Olin, J.; López-Duarte, P.; Polito, M.; Hooper-Bùi, L.; Taylor, S.; Rabalais, N.; Fodrie, F.; Roberts, B.; Turner, R.; et al. Body size, trophic position, and the coupling of different energy pathways across a saltmarsh landscape. Limnol. Oceanogr. Lett. 2021, 6, 360–368. [Google Scholar] [CrossRef]
- Marlow, J.; Spietz, R.; Kim, K.Y.; Ellisman, M.; Girguis, P.; Hatzenpichler, R. Spatially resolved correlative microscopy and microbial identification reveal dynamic depth- and mineral-dependent anabolic activity in salt marsh sediment. Environ. Microbiol. 2021, 23, 4756–4777. [Google Scholar] [CrossRef]
- Shen, X.; Jiang, M.; Lu, X. Diverse impacts of day and night temperature on spring phenology in freshwater marshes of the Tibetan Plateau. Limnol. Oceanogr. Lett. 2022. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, A.; Dong, B. Changes in global vegetation activity and its driving factors during 1982–2013. Agric. For. Meteorol. 2018, 249, 198–209. [Google Scholar] [CrossRef]
- Shen, X.; Xue, Z.; Jiang, M.; Lu, X. Spatiotemporal change of vegetation coverage and its relationship with climate change in freshwater marshes of Northeast China. Wetlands 2019, 39, 429–439. [Google Scholar] [CrossRef]
- Gao, J.; Jiao, K.; Wu, S. Investigating the spatially heterogeneous relationships between climate factors and NDVI in China during 1982 to 2013. J. Geogr. Sci. 2019, 29, 1597–1609. [Google Scholar] [CrossRef]
- Fitzpatrick, M.C.; Gove, A.D.; Sanders, N.J.; Dunn, R.R. Climate change, plant migration, and range collapse in a global biodiversity hotspot: The Banksia (Proteaceae) of Western Australia. Glob. Chang Biol. 2008, 14, 1337–1352. [Google Scholar] [CrossRef]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology and global climate change: Current progresses and challenges. Glob. Chang. Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef]
- Hoffmann, W.A.; Jackson, R.B. Vegetation–climate feedbacks in the conversion of tropical savanna to grassland. J. Clim. 2000, 13, 1593–1602. [Google Scholar] [CrossRef]
- Crookston, N.L.; Rehfeldt, G.E.; Dixon, G.E.; Weiskittel, A.R. Addressing climate change in the forest vegetation simulator to assess impacts on landscape forest dynamics. For. Ecol. Manag. 2010, 260, 1198–1211. [Google Scholar] [CrossRef]
- Wan, J.Z.; Wang, C.J.; Qu, H.; Liu, R.; Zhang, Z.X. Vulnerability of forest vegetation to anthropogenic climate change in China. Sci. Total Environ. 2018, 621, 1633–1641. [Google Scholar] [CrossRef]
- Zarei, A.; Asadi, E.; Ebrahimi, A.; Jafari, M.; Malekian, A.; Nasrabadi, H.M.; Chemura, A.; Maskell, G. Prediction of future grassland vegetation cover fluctuation under climate change scenarios. Ecol. Indic. 2020, 119, 106858. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, X.; Jiang, M.; Lu, X. Vegetation change and its response to climate change between 2000 and 2016 in marshes of the Songnen Plain, Northeast China. Sustainability 2020, 12, 3569. [Google Scholar] [CrossRef]
- Aukes, P.J.; Schiff, S.L.; Venkiteswaran, J.J.; Elgood, R.J.; Spoelstra, J. Size-based characterization of freshwater dissolved organic matter finds similarities within a waterbody type across different Canadian ecozones. Limnol. Oceanogr. Lett. 2021, 6, 85–95. [Google Scholar] [CrossRef]
- Hu, Z.; Borsje, B.W.; van Belzen, J.; Willemsen, P.W.; Wang, H.; Peng, Y.; Yuan, L.; Dominicis, M.D.; Wolf, J.; Temmerman, S.; et al. Mechanistic modeling of marsh seedling establishment provides a positive outlook for coastal wetland restoration under global climate change. Geophys. Res. Lett. 2021, 48, e2021GL095596. [Google Scholar] [CrossRef]
- Luk, S.Y.; Todd-Brown, K.; Eagle, M.; McNichol, A.P.; Sanderman, J.; Gosselin, K.; Spivak, A.C. Soil organic carbon development and turnover in natural and disturbed salt marsh environments. Geophys. Res. Lett. 2021, 48, e2020GL090287. [Google Scholar] [CrossRef]
- Mobilian, C.; Wisnoski, N.I.; Lennon, J.T.; Alber, M.; Widney, S.; Craft, C.B. Differential effects of press vs.pulse seawater intrusion on microbial communities of a tidal freshwater marsh. Limnol. Oceanogr. Lett. 2020. [Google Scholar] [CrossRef]
- Rietl, A.; Megonigal, J.; Herbert, E.; Kirwan, M. Vegetation type and decomposition priming mediate brackish marsh carbon accumulation under interacting facets of global change. Geophys. Res. Lett. 2021, 48, e2020GL092051. [Google Scholar] [CrossRef]
- Saderne, V.; Fusi, M.; Thomson, T.; Dunne, A.; Mahmud, F.; Roth, F.; Carvalho, S.; Duarte, C.M. Total alkalinity production in a mangrove ecosystem reveals an overlooked Blue Carbon component. Limnol. Oceanogr. Lett. 2021, 6, 61–67. [Google Scholar] [CrossRef]
- Schutte, C.A.; Moore, W.S.; Wilson, A.M.; Joye, S.B. Groundwater-driven methane export reduces salt marsh blue carbon potential. Glob. Biogeochem. Cycles 2020, 34, e2020GB006587. [Google Scholar] [CrossRef]
- Smith, A.J.; Kirwan, M.L. Sea level/10.1029/2020GBigration results in rapid net loss of carbon. Geophys. Res. Lett. 2021, 48, e2021GL092420. [Google Scholar] [CrossRef]
- Vaughn, D.R.; Bianchi, T.S.; Shields, M.R.; Kenney, W.F.; Osborne, T.Z. Increased organic carbon burial in northern Florida mangrove-salt marsh transition zones. Glob. Biogeochem. Cycles 2020, 34, e2019GB006334. [Google Scholar] [CrossRef]
- Volta, C.; Ho, D.T.; Maher, D.T.; Wanninkhof, R.; Friederich, G.; Del Castillo, C.; Dulai, H. Seasonal variations in dissolved carbon inventory and fluxes in a mangrove-dominated estuary. Glob. Biogeochem. Cycles 2020, 34, e2019GB006515. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Jiang, M.; Lu, X. Marshland loss warms local land surface temperature in China. Geophys. Res. Lett. 2020, 47, e2020GL087648. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Jiang, B.; Wang, M.; Li, H.; Alatalo, J.M.; Huang, S. New ecological redline policy (ERP) to secure ecosystem services in China. Land Use Policy 2016, 55, 348–351. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Pan, Y.; Chen, F.; Lou, Y.; Tang, Z. Effects of water level and nitrogen concentration on growth and biomass allocation of Scirpusnipponicus seedlings. Chin. J. Ecol. 2019, 38, 2302–2309. (In Chinese) [Google Scholar] [CrossRef]
- Bai, J.; Chen, F.; Tang, H.; Lou, Y. Effects of simulated water depth and nitrogen addition on functional traits of wetland plants in the Sanjiang Plain. Chin. J. Appl. Environ. Biol. 2021, 27, 38–45. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.; Shen, X.; Wang, Y.; Zhang, J.; Ma, R.; Lu, X.; Jiang, M. Spatiotemporal variation in aboveground biomass and its response to climate change in the marsh of Sanjiang Plain. Front. Plant Sci. 2022, 13, 1973. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Wang, W.J.; Bao, G. NDVI, temperature and precipitation changes and their relationships with different vegetation types during 1998–2007 in Inner Mongolia, China. Int. J. Climatol. 2013, 33, 1696–1706. [Google Scholar] [CrossRef]
- Shen, X.; Liu, Y.; Zhang, J.; Wang, Y.; Ma, R.; Liu, B.; Lu, X.; Jiang, M. Asymmetric impacts of diurnal warming on vegetation carbon sequestration of marshes in the Qinghai Tibet Plateau. Glob. Biogeochem. Cycles 2022, 36, e2022GB007396. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, X.; Jiang, M.; Tong, S.; Lu, X. Daytime and nighttime temperatures exert different effects on vegetation net primary productivity of marshes in the western Songnen Plain. Ecol. Indic. 2022, 137, 108789. [Google Scholar] [CrossRef]
- Song, K.; Wang, Z.; Du, J.; Liu, L.; Zeng, L.; Ren, C. Wetland degradation: Its driving forces and environmental impacts in the Sanjiang Plain, China. Environ. Manag. 2014, 54, 255–271. [Google Scholar] [CrossRef]
- Wang, Z.; Song, K.; Ma, W.; Ren, C.; Zhang, B.; Liu, D.; Chen, J.; Song, C. Loss and fragmentation of marshes in the Sanjiang Plain, Northeast China, 1954–2005. Wetlands 2011, 31, 945–954. [Google Scholar] [CrossRef]
- Li, H.; Qu, Y.; Zeng, X.; Zhang, H.; Cui, L.; Luo, C. Dynamic response of the vegetation carbon storage in the Sanjiang Plain to changes in land use/cover and climate. Herit. Sci. 2021, 9, 134. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Wang, X.; Zhang, M.; Chen, W.; Chen, B. Ecological risk assessment of wetland vegetation under projected climate scenarios in the Sanjiang Plain, China. J. Environ. Manag. 2020, 273, 111108. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, K.B.; Bianchette, T.A.; Wang, G. The mid-Holocene decline of the East Asian summer monsoon indicated by a lake-to-wetland transition in the Sanjiang Plain, Northeast China. Holocene 2018, 28, 246–253. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Du, B.; Li, L.; Tian, Y.; Jia, M.; Zeng, Y.; Song, K.; Jiang, M.; Wang, Y. National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS J. Photogramm. Remote Sens. 2020, 164, 11–25. [Google Scholar] [CrossRef]
- Wang, Z.; Mao, D.; Li, L.; Jia, M.; Dong, Z.; Miao, Z.; Ren, C.; Song, C. Quantifying changes in multiple ecosystem services during 1992–2012 in the Sanjiang Plain of China. Sci. Total Environ. 2015, 514, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; He, X.; Wang, Z.; Tian, Y.; Xiang, H.; Yu, H.; Man, W.; Jia, M.; Ren, C.; Zheng, H. Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. J. Clean. Prod. 2019, 240, 117961. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Li, G.; Wu, Z.; Jin, Y.; Yu, P.; Zhou, D. Spatiotemporal change of diurnal temperature range and its relationship with sunshine duration and precipitation in China. J. Geophys. Res. Atmos. 2014, 119, 13163–13179. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Lu, X. Weak cooling of cold extremes versus continued warming of hot extremes in China during the recent global surface warming hiatus. J. Geophys. Res. Atmos. 2018, 123, 4073–4087. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Jiang, M.; Wang, Y.; Wang, L.; Zhang, J.; Lu, X. Spatiotemporal change of marsh vegetation and its response to climate change in China from 2000 to 2019. J. Geophys. Res. Biogeosciences 2021, 126, e2020JG006154. [Google Scholar] [CrossRef]
- Sun, L.; Song, C. Evapotranspiration from a freshwater marsh in the Sanjiang Plain, Northeast China. J. Hydrol. 2008, 352, 202–210. [Google Scholar] [CrossRef]
- Song, C.; Xu, X.; Tian, H.; Wang, Y. Ecosystem–atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Glob. Chang. Biol. 2009, 15, 692–705. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measures; Charles Griffin: London, UK, 1975. [Google Scholar]
- Ma, R.; Shen, X.; Zhang, J.; Xia, C.; Liu, Y.; Wu, L.; Wang, Y.; Jiang, M.; Lu, X. Variation of vegetation autumn phenology and its climatic drivers in temperate grasslands of China. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103064. [Google Scholar] [CrossRef]
- Du, J.; Fang, S.; Sheng, Z.; Wu, J.; Quan, Z.; Fu, Q. Variations in vegetation dynamics and its cause in national key ecological function zones in China. Environ. Sci. Pollut. Res. 2020, 27, 30145–30161. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, B.; Ma, B.; Cao, B.; Liang, J.; Ma, S. Spatial-temporal variation of NDVI in the Sanjiang Plain and its response to climate change. J. Desert Res. 2019, 39, 206–213. (In Chinese) [Google Scholar] [CrossRef]
- O’Sullivan, M.; Smith, W.K.; Sitch, S.; Friedlingstein, P.; Arora, V.K.; Haverd, V.; Jain, A.K.; Kato, E.; Kautz, M.; Lombardozzi, D.; et al. Climate-driven variability and trends in plant productivity over recent decades based on three global products. Glob. Biogeochem. Cycles 2020, 34, e2020GB006613. [Google Scholar] [CrossRef]
- Regier, P.; Larsen, L.; Cawley, K.; Jaffé, R. Linking hydrology and dissolved organic matter characteristics in a subtropical wetland: A long-term study of the Florida Everglades. Glob. Biogeochem. Cycles 2020, 34, e2020GB006648. [Google Scholar] [CrossRef]
- Pasut, C.; Tang, F.H.; Hamilton, D.; Riley, W.J.; Maggi, F. Spatiotemporal assessment of GHG emissions and nutrient sequestration linked to agronutrient runoff in global wetlands. Glob. Biogeochem. Cycles 2021, 35, e2020GB006816. [Google Scholar] [CrossRef]
- Zhu, X.; Song, C.; Guo, Y.; Sun, X.; Zhang, X.; Miao, Y. Methane emissions from temperate herbaceous peatland in the Sanjiang Plain of Northeast China. Atmos. Environ. 2014, 92, 478–483. [Google Scholar] [CrossRef]
- Salvucci, M.E.; Crafts-Brandner, S.J. Inhibition of photosynthesis by heat stress: The activation state of Rubisco as a limiting factor in photosynthesis. Physiol. Plant. 2004, 120, 179–186. [Google Scholar] [CrossRef]
- Wan, S.; Xia, J.; Liu, W.; Niu, S. Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology 2009, 90, 2700–2710. [Google Scholar] [CrossRef] [Green Version]
- Belsky, A.J. Does herbivory benefit plants? A review of the evidence. Am. Nat. 1986, 127, 870–892. [Google Scholar] [CrossRef]
- Belsky, A.J.; Carson, W.P.; Jensen, C.L.; Fox, G.A. Overcompensation by plants: Herbivore optimization or red herring? Evol. Ecol. 1993, 7, 109–121. [Google Scholar] [CrossRef]
- Song, C.; Yan, B.; Wang, Y.; Wang, Y.; Lou, Y.; Zhao, Z. Fluxes of carbon dioxide and methane from swamp and impact factors in the Sanjiang Plain, China. Chinese. Sci. Bull. 2003, 48, 2749–2753. [Google Scholar] [CrossRef]
- Birkett, C.; Murtugudde, R.; Allan, T. Indian Ocean climate event brings floods to East Africa’s lakes and the Sudd Marsh. Geophys. Res. Lett. 1999, 26, 1031–1034. [Google Scholar] [CrossRef]
- Kunkel, K.E. North American trends in extreme precipitation. Nat. Hazards. 2003, 29, 291–305. [Google Scholar] [CrossRef]
- Song, C.; Sun, L.; Huang, Y.; Wang, Y.; Wan, Z. Carbon exchange in a freshwater marsh in the Sanjiang Plain, northeastern China. Agric. For. Meteorol. 2011, 151, 1131–1138. [Google Scholar] [CrossRef]
Precipitation | Tmean | Tmax | Tmin | |
---|---|---|---|---|
Growing season | 0.065 | −0.002 | −0.034 | 0.143 |
May | 0.099 | 0.324 | 0.333 | 0.346 |
June | 0.146 | −0.094 | −0.105 | −0.030 |
July | 0.124 | 0.609 ** | 0.456 * | 0.662 ** |
August | −0.434 * | 0.264 | 0.392 * | −0.039 |
September | 0.198 | 0.185 | 0.012 | 0.284 |
Precipitation | Tmean | Tmax | Tmin | |
---|---|---|---|---|
Annual | 0.068 | 0.199 | 0.407 | 0.193 |
January | −0.141 | 0.080 | 0.091 | 0.057 |
February | 0.037 | 0.151 | 0.189 | 0.108 |
March | −0.004 | 0.322 | 0.326 | 0.318 |
April | 0.099 | 0.202 | 0.200 | 0.182 |
May | 0.230 | −0.141 | −0.187 | 0.044 |
June | 0.199 | −0.148 | −0.155 | −0.068 |
July | −0.210 | 0.510 * | 0.584 ** | 0.234 |
August | −0.115 | 0.096 | 0.062 | 0.131 |
September | 0.145 | −0.104 | −0.123 | 0.079 |
October | 0.246 | −0.280 | −0.183 | −0.389 |
November | −0.017 | −0.219 | −0.191 | −0.243 |
December | 0.082 | 0.236 | 0.211 | 0.222 |
Precipitation | Tmean | Tmax | Tmin | |
---|---|---|---|---|
Growing season | 2.811 ** | −0.016 | −0.037 | 0.021 |
May | 2.010 | −0.002 | −0.004 | 0.007 |
June | 4.215 ** | −0.097 | 0.153 * | −0.007 |
July | 0.358 | 0.046 | 0.053 | 0.047 |
August | 4.339 * | −0.020 | −0.038 | 0.018 |
September | 3.131 ** | −0.007 | −0.040 | 0.043 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Shen, X.; Zhang, J.; Wang, Y.; Wu, L.; Ma, R.; Lu, X.; Jiang, M. Temporal and Spatial Variation in Vegetation Coverage and Its Response to Climatic Change in Marshes of Sanjiang Plain, China. Atmosphere 2022, 13, 2077. https://doi.org/10.3390/atmos13122077
Liu Y, Shen X, Zhang J, Wang Y, Wu L, Ma R, Lu X, Jiang M. Temporal and Spatial Variation in Vegetation Coverage and Its Response to Climatic Change in Marshes of Sanjiang Plain, China. Atmosphere. 2022; 13(12):2077. https://doi.org/10.3390/atmos13122077
Chicago/Turabian StyleLiu, Yiwen, Xiangjin Shen, Jiaqi Zhang, Yanji Wang, Liyuan Wu, Rong Ma, Xianguo Lu, and Ming Jiang. 2022. "Temporal and Spatial Variation in Vegetation Coverage and Its Response to Climatic Change in Marshes of Sanjiang Plain, China" Atmosphere 13, no. 12: 2077. https://doi.org/10.3390/atmos13122077
APA StyleLiu, Y., Shen, X., Zhang, J., Wang, Y., Wu, L., Ma, R., Lu, X., & Jiang, M. (2022). Temporal and Spatial Variation in Vegetation Coverage and Its Response to Climatic Change in Marshes of Sanjiang Plain, China. Atmosphere, 13(12), 2077. https://doi.org/10.3390/atmos13122077