Harmonic Analysis of the Relationship between GNSS Precipitable Water Vapor and Heavy Rainfall over the Northwest Equatorial Coast, Andes, and Amazon Regions
Abstract
:1. Introduction
2. Geographical Location of the Measurement Network and Methods
2.1. GNSS-ZTD Data
2.2. Meteorological Data
2.3. Calculating ZTD from GNSS Data
2.4. Quality Control and Data Synchronization
2.5. Estimation of the PWV from the ZTD
2.6. Conditioning of the Resulting PWV and Rain Data for Harmonic Analysis
2.7. Harmonic Analysis by Descriptive Statistics and Wavelets
2.7.1. Continuous Wavelet Analysis: Transform, Coherence, and Cross-Spectrum
Continuous Wavelet Transform
Bivariate Analysis with the Continuous Wavelet Transform
2.7.2. Simple Statistical Correlation as a Reference Parameter
2.7.3. Selection of Events of Interest by Their Statistical Significance Boundary
2.7.4. MRA Lead–Lag Analysis for the Events of Interest
2.8. Convection Analysis Using Satellite Images
2.9. Meteorological Anomalies of the Event’s Precipitation Threshold
3. Results
3.1. Meteorological Description of the Stations’ Location
3.2. Continuous and Discrete Wavelet Lead-Lag Analysis
3.2.1. Cross-Spectrum Wavelet XWT and Wavelet Coherence WTC Results
3.2.2. Lead–Lag Discrete Wavelet and Convection Analysis for the Events of Interest
3.3. Analysis of Convective Clouds Using Satellite Images
3.4. Analysis of Meteorological Anomalies
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Businger, S.; Chiswell, S.R.; Bevis, M.; Duan, J.; Anthes, R.A.; Rocken, C.; Ware, R.H.; Exner, M.; VanHove, T.; Solheim, F.S. The Promise of GPS in Atmospheric Monitoring. Bull. Am. Meteorol. Soc. 1996, 77, 5–18. [Google Scholar] [CrossRef]
- Bonafoni, S.; Biondi, R.; Brenot, H.; Anthes, R. Radio Occultation and Ground-Based GNSS Products for Observing, Understanding and Predicting Extreme Events: A Review. Atmos. Res. 2019, 230, 104624. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System. J. Geophys. Res. 1992, 97, 787–801. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water. J. Appl. Meteorol. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Yeh, T.K.; Hong, J.S.; Wang, C.S.; Chen, C.H.; Chen, K.H.; Fong, C.T. Determining the Precipitable Water Vapor with Ground-Based GPS and Comparing Its Yearly Variation to Rainfall over Taiwan. Adv. Space Res. 2016, 57, 2496–2507. [Google Scholar] [CrossRef]
- Sguerso, D.; Labbouz, L.; Walpersdorf, A. 14 Years of GPS Tropospheric Delays in the French–Italian Border Region: Comparisons and First Application in a Case Study. Appl. Geomat. 2016, 8, 13–25. [Google Scholar] [CrossRef]
- Walpersdorf, A.; Bouin, M.; Bock, O.; Doerflinger, E. Assessment of GPS Data for Meteorological Applications over Africa: Study of Error Sources and Analysis of Positioning Accuracy. J. Atmos. Sol. Terr. Phys. 2007, 69, 1312–1330. [Google Scholar] [CrossRef]
- Brenot, H.; Walpersdorf, A.; Reverdy, M.; van Baelen, J.; Ducrocq, V.; Champollion, C.; Masson, F.; van Baelen, J.; Doerflinger, E.; Collard, P.; et al. A GPS Network for Tropospheric Tomography in the Framework of the Mediterranean Hydrometeorological Observatory Cévennes-Vivarais (Southeastern France). Atmos. Meas. Tech. 2014, 7, 553–578. [Google Scholar] [CrossRef] [Green Version]
- Padullés, R.; Kuo, Y.-H.; Neelin, J.D.; Turk, F.J.; Ao, C.O.; De la Torre Juárez, M. Global Tropical Precipitation Relationships to Free Tropospheric Water Vapor Using Radio Occultations. J. Atmos. Sci. 2022, 79, 1585–1600. [Google Scholar] [CrossRef]
- Bonafoni, S.; Biondi, R. The Usefulness of the Global Navigation Satellite Systems (GNSS) in the Analysis of Precipitation Events. Atmos. Res. 2016, 167, 15–23. [Google Scholar] [CrossRef]
- Shoji, Y.; Kunii, M.; Saito, K. Assimilation of Nationwide and Global GPS PWV Data for a Heavy Rain Event on 28 July 2008 in Hokuriku and Kinki, Japan. Sola 2009, 5, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Risanto, C.B.; Castro, C.L.; Arellano, A.F., Jr.; Moker, J.M., Jr.; Adams, D.K. The Impact of Assimilating GPS Precipitable Water Vapor in Convective-Permitting WRF-ARW on North American Monsoon Precipitation Forecasts over Northwest Mexico. Mon. Weather Rev. 2021, 149, 3013–3035. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Wu, S.; Zhang, K.; Chen, X.; Qiu, C.; Zhang, S.; Zhang, J.; Xie, M.; Li, L. Development of an Improved Model for Prediction of Short-Term Heavy Precipitation Based on Gnss-Derived Pwv. Remote Sens. 2020, 12, 4101. [Google Scholar] [CrossRef]
- Li, L.; Zhang, K.; Wu, S.; Li, H.; Wang, X.; Hu, A.; Li, W.; Fu, E.; Zhang, M.; Shen, Z. An Improved Method for Rainfall Forecast Based on GNSS-PWV. Remote Sens. 2022, 14, 4280. [Google Scholar] [CrossRef]
- Labbouz, L.; van Baelen, J.; Duroure, C. Investigation of the Links between Water Vapor Field Evolution and Rain Rate Based on 5 Years of Measurements at a Midlatitude Site. Geophys. Res. Lett. 2015, 42, 9538–9545. [Google Scholar] [CrossRef]
- Pendergrass, A.G. What Precipitation Is Extreme? Science 2018, 360, 1072–1073. [Google Scholar] [CrossRef]
- Yao, Y.; Shan, L.; Zhao, Q. Establishing a Method of Short-Term Rainfall Forecasting Based on GNSS-Derived PWV and Its Application. Sci. Rep. 2017, 7, 12465. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Ma, X.; Yao, Y. Preliminary Result of Capturing the Signature of Heavy Rainfall Events Using the 2-d-/4-d Water Vapour Information Derived from GNSS Measurement in Hong Kong. Adv. Space Res. 2020, 66, 1537–1550. [Google Scholar] [CrossRef]
- Benevides, P.; Catalao, J.; Miranda, P.M.A. On the Inclusion of GPS Precipitable Water Vapour in the Nowcasting of Rainfall. Nat. Hazards Earth Syst. Sci. Discuss. 2015, 3, 3861–3895. [Google Scholar] [CrossRef] [Green Version]
- Benevides, P.; Catalao, J.; Nico, G. Neural Network Approach to Forecast Hourly Intense Rainfall Using GNSS Precipitable Water Vapor and Meteorological Sensors. Remote Sens. 2019, 11, 917. [Google Scholar] [CrossRef]
- Sapucci, L.F.; Machado, L.A.T.; de Souza, E.M.; Campos, T.B. Global Positioning System Precipitable Water Vapour (GPS-PWV) Jumps before Intense Rain Events: A Potential Application to Nowcasting. Meteorol. Appl. 2019, 26, 49–63. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.K.; Gutman, S.I.; Holub, K.L.; Pereira, D.S. GNSS Observations of Deep Convective Time Scales in the Amazon. Geophys. Res. Lett. 2013, 40, 2818–2823. [Google Scholar] [CrossRef]
- Calori, A.; Santos, J.R.; Blanco, M.; Pessano, H.; Llamedo, P.; Alexander, P.; de la Torre, A. Ground-Based GNSS Network and Integrated Water Vapor Mapping during the Development of Severe Storms at the Cuyo Region (Argentina). Atmos. Res. 2016, 176, 267–275. [Google Scholar] [CrossRef]
- Ayala, M.F.; Carrera-Villacrés, D.; Tierra, A. Relación Espacio-Temporal Entre Estaciones Utilizadas Para El Relleno de Datos de Precipitación En Chone, Ecuador. Rev. Geográfica Venez. 2018, 59, 298–313. [Google Scholar]
- Romero, R.; Pilapanta, C.; Porras, L.; Tierra, A. Prediction of Precipitable Water Vapor With a Neural Network From the Ecuadorian Gnss and Meteorological Data. Rev. Geoespacial 2019, 15, 1. [Google Scholar] [CrossRef]
- Herring, T.A.; King, R.W.; McClusky, S.C. Introduction to GAMIT/GLOBK; Massachusetts Institute of Technology: Cambridge, MA, USA, 2018; pp. 1–16. [Google Scholar]
- Wagnon, P.; Lafaysse, M.; Lejeune, Y.; Maisincho, L.; Rojas, M.; Chazarin, J.P. Understanding and Modeling the Physical Processes That Govern the Melting of Snow Cover in a Tropical Mountain Environment in Ecuador. J. Geophys. Res. Atmos. 2009, 114, 1–14. [Google Scholar] [CrossRef]
- Brenot, H.; Ducrocq, V.; Walpersdorf, A.; Champollion, C.; Caumont, O. GPS Zenith Delay Sensitivity Evaluated from High-Resolution Numerical Weather Prediction Simulations of the 8-9 September 2002 Flash Flood over Southeastern France. J. Geophys. Res. 2006, 111, 15105. [Google Scholar] [CrossRef] [Green Version]
- Climate World. Programme Guidelines on the Quality Control of Surface Climatological Data; World Meteorological Organization: Geneva, Switzerland, 1986. [Google Scholar]
- Lanzante, J.R. Resistant, Robust and Non-Parametric Techniques for the Analysis of Climate Data: Theory and Examples, Including Applications to Historical Radiosonde Station Data. Int. J. Climatol. 1996, 16, 1197–1226. [Google Scholar] [CrossRef]
- Cho, H.-K.; Bowman, K.P.; North, G.R. A Comparison of Gamma and Lognormal Distributions for Characterizing Satellite Rain Rates from the Tropical Rainfall Measuring Mission. J. Appl. Meteorol. 2004, 43, 1586–1597. [Google Scholar] [CrossRef]
- Serrano-Vincenti, S.; Condom, T.; Campozano, L.; Guamán, J.; Villacís, M. An Empirical Model for Rainfall Maximums Conditioned to Tropospheric Water Vapor Over the Eastern Pacific Ocean. Front. Earth Sci. 2020, 8, 198. [Google Scholar] [CrossRef]
- Lewis, E.; Quinn, N.; Blenkinsop, S.; Fowler, H.J.; Freer, J.; Tanguy, M.; Hitt, O.; Coxon, G.; Bates, P.; Woods, R. A Rule Based Quality Control Method for Hourly Rainfall Data and a 1 km Resolution Gridded Hourly Rainfall Dataset for Great Britain: CEH-GEAR1hr. J. Hydrol. 2018, 564, 930–943. [Google Scholar] [CrossRef]
- Garratt, R.J. The Atmospheric Boundary Layer; Press, C., Ed.; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Fernández, L.I.; Meza, A.M.; Natali, M.P. Determinación Del Contenido de Vapor de Agua Precipitable (PWV) a Partir de Mediciones GPS: Primeros Resultados En Argentina. Geoacta 2009, 34, 35–57. [Google Scholar]
- Emardson, T.; Derks, H. On the Relation Between the Wet Delay and the Integrated Precipitable Water Vapour in the European Atmosphere. Meteorol. Appl. 1992, 7, 61–68. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Yang, M.; Yao, T.; Gou, X.; Wang, H.; Neumann, T. Wavelet Analysis Reveals Periodic Oscillations in a 1700 Year Ice-Core Record from Guliya. Ann. Glaciol. 2006, 43, 132–136. [Google Scholar] [CrossRef] [Green Version]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Mallat, S. A Wavelet Tour of Signal Processing; Elsevier: Amsterdam, The Netherlands, 1999; ISBN 9780080520834. [Google Scholar]
- Daubechies, I. Ten Lectures on Wavelets; SIAM: Philadelphia, PA, USA, 1992; ISBN 978-1-61197-010-4. [Google Scholar]
- Chui, C.K. An Introduction to Wavelets; Academic Press: New York, NY, USA, 1992; ISBN 9781483282862. [Google Scholar]
- Mathworks Choose a Wavelet 2021 Homepage. Available online: https://la.mathworks.com/help/wavelet/gs/choose-a-wavelet.html (accessed on 20 July 2022).
- Grinsted, A. Wavelet Coherence 2014. Available online: http://www.glaciology.net/wavelet-coherence (accessed on 10 June 2022).
- Benedetto, J. Harmonic Analysis and Applications; CRC Press. Inc.: Boca Raton, FL, USA, 1997; ISBN 9781003068839. [Google Scholar]
- Heisenberg, W. Über Den Anschaulichen Inhalt Der Quantentheoretischen Kinematik Und Mechanik. Z. Fur Phys. 1927, 11, 561–566. [Google Scholar]
- Rösch, A.; Schmidbauer, H. WaveletComp: Computational Wavelet Analysis. R Package; Version 1.1.; R Core Team: Vienna, Austria, 2018; pp. 1–38. [Google Scholar]
- Park, K.I. Fundamentals of Probability and Stochastic Processes with Applications to Communications; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Percival, D.B.; Walden, A.T. Wavelet Methods for Time Series Analysis; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Cohen, E. A Statistical Study of Wavelet Coherence for Stationary and Nonstationary Processes; Imperial College: London, UK, 2011. [Google Scholar]
- Stoica, P.; Moses, R. Spectral Analysis of Signals [Book Review]; Prentice Hall, Inc.: Hoboken, NJ, USA, 2005; Volume 24, ISBN 0131139568. [Google Scholar]
- Guevara Díaz, J.M. Uso Correcto de La Correlación Cruzada En Climatología: El Caso de La Presión Atmosférica Entre Taití y Darwin. Terra 2014, 30, 79–102. [Google Scholar]
- Torrence, C. Interdecadal Changes in the ENSO-Monsoon System. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef]
- Ge, Z. Significance Tests for the Wavelet Cross Spectrum and Wavelet Linear Coherence. Ann. Geophys. 2008, 26, 3819–3829. [Google Scholar] [CrossRef]
- Meyer, Y. Wavelets and Operators. In The Mathematical Gazette; The Mathematical Association: Leicester, UK, 1995; ISBN 9780521420006. [Google Scholar]
- DSA Centre of Wether Forecast and Climate Studies. Available online: http://satelite.cptec.inpe.br/acervo/goes.formulario.logic (accessed on 21 March 2022).
- Houze, R.A. Cloud Dynamics; Academic Press: London, UK, 2014; ISBN 9780080921464. [Google Scholar]
- Mapes, B.; Warner, T.; Xu, M. Diurnal Patterns of Rainfall in Northwestern South America. Part II: Model Simulations. Mon. Weather Rev. 2003, 131, 813–829. [Google Scholar] [CrossRef]
- Yepes, J.; Mejía, J.F.; Mapes, B.; Poveda, G. Gravity Waves and Other Mechanisms Modulating the Diurnal Precipitation over One of the Rainiest Spots on Earth: Observations and Simulations in 2016. Mon. Weather Rev. 2020, 148, 3933–3950. [Google Scholar] [CrossRef]
- Ruiz-Hernández, J.C.; Condom, T.; Ribstein, P.; Le Moine, N.; Espinoza, J.C.; Junquas, C.; Villacís, M.; Vera, A.; Muñoz, T.; Maisincho, L.; et al. Spatial Variability of Diurnal to Seasonal Cycles of Precipitation from a High-Altitude Equatorial Andean Valley to the Amazon Basin. J. Hydrol. Reg. Stud. 2021, 38, 100924. [Google Scholar] [CrossRef]
- Segura, H.; Espinoza, J.C.; Junquas, C.; Lebel, T.; Vuille, M.; Garreaud, R. Recent Changes in the Precipitation-Driving Processes over the Southern Tropical Andes/Western Amazon. Clim. Dyn. 2020, 54, 2613–2631. [Google Scholar] [CrossRef]
- Meza, A.; Mendoza, L.; Natali, M.P.; Bianchi, C.; Fernández, L. Diurnal Variation of Precipitable Water Vapor over Central and South America. Geod. Geodyn. 2020, 11, 426–441. [Google Scholar] [CrossRef]
- Torri, G.; Adams, D.K.; Wang, H.; Kuang, Z. On the Diurnal Cycle of GPS-Derived Precipitable Water Vapor over Sumatra. J Atmos. Sci. 2019, 76, 3529–3552. [Google Scholar] [CrossRef]
- Campozano, L.; Célleri, R.; Trachte, K.; Bendix, J.; Samaniego, E. Rainfall and Cloud Dynamics in the Andes: A Southern Ecuador Case Study. Adv. Meteorol. 2016, 2016, 3192765. [Google Scholar] [CrossRef] [Green Version]
- Vargas, D.; Pucha-Cofrep, D.; Serrano-Vincenti, S.; Burneo, A.; Carlosama, L.; Herrera, M.; Cerna, M.; Molnár, M.; Jull, A.J.T.; Temovski, M.; et al. ITCZ Precipitation and Cloud Cover Excursions Control Cedrela Nebulosa Tree-Ring Oxygen and Carbon Isotopes in the Northwestern Amazon. Glob. Planet. Chang. 2022, 211, 103791. [Google Scholar] [CrossRef]
Weather Station (Code) | Region | LON (°) | LAT (°) | Altitude m.a.s.l | Variables | Time Resolution (Time Span) | GPS Distance with the Meteorological Stations (km) |
---|---|---|---|---|---|---|---|
Antisana (ORE) | High Mountain | −78.2112 | −0.5092 | 4059 | Rain (mm/h) Temperature (°C) Rel. Humidity (%) Wind speed (m/s) | 30 min (2005–2018) | ASEC (4.75) |
Tena (M1219) | Amazon | −77.8190 | −0.9168 | 553 | Rain (mm/h) Temperature (°C) Rel. Humidity (%) Wind speed (m/s) Pressure (hPa) | Hourly (2014–2020) | TEN1 (8.18) |
Esmeraldas (M1249) | Coast | −78.7316 | 1.30583 | 45 | Hourly (2014–2018) | SNLR (12.97) | |
Quito (BELI) | Andes valley 1 | −78.49 | −0.18 | 2835 | Hourly (2013–2020) | BELI (6.42) | |
Ibarra (M1240) | Andes valley 2 | −78.1397 | 0.33388 | 2247 | Hourly (2014–2020) | IBEC (3.4) |
IRD-INAMHI Antisana (High Mountain) | ||
---|---|---|
Parameter | Sensor Type | Accuracy |
Precipitation (kg m−2) | Geonor T-200B, Davis rain collector II | ±0.1 × 10−3 ± 0.2 × 10−3 |
Air temperature (°C) | Vaisala HPM45C, ventilated | ±0.2 |
Relative humidity (%) | Vaisala HPM45C, ventilated | ±2 on [0–90]; ±3 on [90–100] |
Wind speed (m/s) | Young 05103 | ±0.3 |
INAMHI: ESMERALDAS (Coast), TENA (Amazon), IBARRA (Andes valley 2) | ||
Rain (mm/h) | TR525M Texas | ±0.1 (mm) |
Air temperature (°C) | HPM155D Vaisala | ±(0.055 + 0.0057 × T) °C |
Relative humidity (%) | HPM155D Vaisala | ±1% RH on [40–95%] |
Wind speed (m/s) | WMT 702D Vaisala | ±0.8 (m/s) |
Atmospheric Pressure (hPa) | Vaisala PTB110 | ±0.3 (hPa) |
REMMAQ: BELISARIO-QUITO (Andes valley 1) | ||
Rain (mm/h) | AQMR25–Vaisala | ±5% |
Air temperature (°C) | AQMR25–Vaisala | ±0.3 °C |
Relative humidity (%) | AQMR25–Vaisala | ±3% RH |
Wind speed (m/s) | AQMR25–Vaisala | ±0.3 m/s |
Atmospheric Pressure (hPa) | AQMR25–Vaisala | ±0.5 hPa |
IG-GNSS-EPN | ||
GNSS | Trimble NetRS, NetR8 and NetR9 | 15 and 1 seg (volcanoes) 30, 1 and 0.2 seg (tectonic structures) |
Variable | Coast (Esmeraldas) 45 m.a.s.l. | NA% * | Andes Valley 1 (Quito) 2835 m.a.s.l. | NA% | Andes Valley 2 (Ibarra) 2247 m.a.s.l. | NA% * | High Mountain (Antisana) 4059 m.a.s.l. | NA% | Amazon (Tena *) 553 m.a.s.l. | NA% * |
---|---|---|---|---|---|---|---|---|---|---|
Accum. rain (mm/year) | 2640 | 5.6 | 1224.5 | 9.4 | 1098.76 | 5.6 | 415.7 | 0 | 3700 | 33.5 |
Mean PWV ± SD (mm) | 58.2 ± 3.9 | 4.3 | 17.6 ± 1.7 | 5.9 | 24.07 ± 3.8 | 4.3 | 21.52 ± 2.2 | 4.5 | 46.3 ± 4.5 | 7.7 |
Mean hourly Temperature ± SD (°C) | 25.3 ± 1.6 | 5.6 | 11.9 ± 3.3 | 9.4 | 16.32 ± 3.8 | 5.6 | 1.02 ± 1.68 | 5.8 | 23.1 ± 3.2 | 31.8 |
Mean Relative Humidity ± SD (%) | 94.3 ± 3.8 | 6 | 78.1 ± 14.4 | 12.6 | 74.9 ± 17.4 | 6.1 | 81.9 ± 12.9 | 5.8 | 89.3 ± 11.4 | 31.8 |
Mean atmospheric pressure (hPa) | 1001.4 ± 1.7 | 5.6 | 708.1 ± 0.56 | 9.4 | 780.6 ± 1.4 | 5.6 | 552 ± 1.24 | 9.4 | 951.5 ± 2.5 | 48.6 |
Mean wind speed ± SD (m/s) | 1.5 ± 1 | 6.1 | 2.46 ± 0.63 | 17.3 | 1.6 ± 1.25 | 6.1 | 4.56 ± 4.15 | 9 | 0.8 ± 0.6 | 48.9 |
Variable | Coast * 45 m.a.s.l. | Andes Valley 1 2835 m.a.s.l. | Andes Valley 2 * 2247 m.a.s.l. | High Mountain Antisana 4059 m.a.s.l. | Amazon Region * 553 m.a.s.l. |
---|---|---|---|---|---|
Events with XWT and CWT/Num. selected events | 6/10 = 60% ** | 9/14 = 64.3% | 8/15 = 53% | 7/9 = 77% | 6/9 = 66.7% |
Maximum hourly accumulated rainfall event (mm/h) | 27.5 | 19.8 | 16.8 | 9.5 | 49.1 |
Rain threshold for the selected events (mm/h) | 12.9 | 8.4 | 3.6 | 3.9 | 35.1 |
Percentile of threshold in the rainfall series | 99.4th | 98.4th | 96th | 97.4th | 98.4th |
95th percentile (mm/h) | 4.4 | 5.2 | 3.01 | 3.1 | 18.6 |
50th percentile (mm/h) | 0.2 | 0.4 | 0.1 | 0.5 | 0.5 |
(a) Coast Station Selected Events | |||||||
---|---|---|---|---|---|---|---|
No. | Time | Rain intensity [mm/h] | MaxCorr | Level | Lag [hours] | Control SCC | Convective Rain |
1° | 10/29/2014 3:00 | 27.5 | 0.54 | 444 | −11 | −11 | Y |
2° | 8/12/2014 19:00 | 22 | 0.6 | 444 | −11 | −10 | Y |
3° | 8/21/2014 20:00 * | 17.4 | 0.63 | 444 | −11 | −10 | Y |
4° | 10/5/2014 0:00 | 16.9 | 0.56 | 444 | −11 | −10 | Y |
5° | 8/5/2014 20:00 * | 15.9 | 0.55 | 444 | −11 | −10 | Y |
6° | 10/4/2014 23:00 * | 12.9 | 0.56 | 444 | −11 | −11 | N |
Mean ± St.Dev | −11 | ||||||
(b) Andes Valley 1 Selected Events | |||||||
No. | Time | Rain intensity [mm/h] | MaxCorr | Level | Lag [hours] | Control SCC | Convective Rain |
1° | 1/6/2014 15:00 | 19.8 | 0.38 | 333 | −11 | −10 | Y |
4° | 8/26/2014 17:00 | 14.6 | 0.41 | 333 | −11 | −10 | NA |
5° | 11/17/2014 18:00 | 13.6 | 0.57 | 444 | −12 | −10 | Y |
7° | 2/22/2014 20:00 | 11.5 | 0.57 | 444 | −11 | −10 | N |
8° | 4/26/2014 20:00 | 10.9 | 0.57 | 444 | −12 | −10 | M |
9° | 5/29/2014 20:00 | 10.9 | 0.46 | 444 | −10 | −10 | NA |
12° | 4/19/2014 00:00 * | 9.4 | 0.64 | 444 | −11 | −10 | Y |
13° | 3/12/2014 20:00 * | 9.1 | 0.46 | 333 | −11 | −12 | Y |
14° | 2/19/2014 19:00 * | 8.4 | 0.57 | 444 | −11 | −11 | M |
Mean ± St.Dev | 11.1 ± 0.6 | ||||||
(c) Andes Valley 2 Selected Events | |||||||
No. | Time | Rain intensity [mm/h] | MaxCorr | Level | Lag [hours] | Control SCC | Convective Rain |
1° | 10/10/2014 19:00 | 16.8 | 0.32 | 444 | −11 | −11 | Y |
5° | 10/28/2014 7h00 | 6.9 | 0.4 | 444 | −9 | −10 | M |
6° | 11/9/2014 19:00 | 6.9 | 0.28 | 444 | −10 | −10 | Y |
9° | 11/21/2014 16:00 | 4.7 | 0.409 | 444 | −11 | −13 | Y |
10° | 10/8/2014 14:00 * | 4.2 | 0.15 | 333 | −12 | −10 | N |
11° | 10/19/2014 18:00 | 4.1 | 0.16 | 333 | −11 | −11 | Y |
13° | 9/11/2014 23:00 | 3.6 | 0.53 | 444 | −12 | −10 | N |
Mean ± St.Dev | 10.9 ± 1.1 | ||||||
(d) High Mountain Station Selected Events | |||||||
No. | Time | Rain intensity [mm/h] | MaxCorr | Level | Lag [hours] | Control SCC | Convective Rain |
1° | 5/10/2014 15:00 | 9.5 | 0.23 | 333 | −9 | −9 | Y |
3° | 5/14/2014 11:00 * | 5.99 | 0.12 | 333 | −9 | −10 | N |
5° | 4/24/2014 12:00 | 4.1 | 0.5 | 444 | −12 | −12 | Y |
6° | 3/18/2014 17:00 | 4.1 | 0.5 | 444 | −13 | −14 | Y |
7° | 12/7/2014 15:00 | 4.9 | 0.51 | 444 | −12 | −12 | Y |
8° | 12/28/2014 12:00 | 3.9 | 0.51 | 444 | −12 | −12 | Y |
Mean ± St.Dev | 11.2 ± 1.7 | ||||||
(e) Amazon Station Selected Events | |||||||
No. | Time | Rain intensity [mm/h] | MaxCorr | Level | Lag [hours] | Control SCC | Convective Rain |
1° | 8/13/2014 12:00 | 49.1 | 0.56 | 444 | −5 | −6 | N |
2° | 10/19/2014 22:00 | 48.6 | 0.412 | 333 | −10 | −10 | Y |
4° | 7/30/2014 12:00 | 47.1 | 0.52 | 444 | −8 | −5 | N |
5° | 8/16/2014 11:00 * | 42.9 | 0.2 | 333 | −3 | −2 | N |
6° | 8/4/2014 7:00 * | 42.2 | 0.6 | 333 | −10 | −11 | N |
8° | 8/9/2014 11:00 * | 35.1 | 0.2 | 333 | −3 | −2 | N |
Mean ± St.Dev | 6.5 ± 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano-Vincenti, S.; Condom, T.; Campozano, L.; Escobar, L.A.; Walpersdorf, A.; Carchipulla-Morales, D.; Villacís, M. Harmonic Analysis of the Relationship between GNSS Precipitable Water Vapor and Heavy Rainfall over the Northwest Equatorial Coast, Andes, and Amazon Regions. Atmosphere 2022, 13, 1809. https://doi.org/10.3390/atmos13111809
Serrano-Vincenti S, Condom T, Campozano L, Escobar LA, Walpersdorf A, Carchipulla-Morales D, Villacís M. Harmonic Analysis of the Relationship between GNSS Precipitable Water Vapor and Heavy Rainfall over the Northwest Equatorial Coast, Andes, and Amazon Regions. Atmosphere. 2022; 13(11):1809. https://doi.org/10.3390/atmos13111809
Chicago/Turabian StyleSerrano-Vincenti, Sheila, Thomas Condom, Lenin Campozano, León A. Escobar, Andrea Walpersdorf, David Carchipulla-Morales, and Marcos Villacís. 2022. "Harmonic Analysis of the Relationship between GNSS Precipitable Water Vapor and Heavy Rainfall over the Northwest Equatorial Coast, Andes, and Amazon Regions" Atmosphere 13, no. 11: 1809. https://doi.org/10.3390/atmos13111809
APA StyleSerrano-Vincenti, S., Condom, T., Campozano, L., Escobar, L. A., Walpersdorf, A., Carchipulla-Morales, D., & Villacís, M. (2022). Harmonic Analysis of the Relationship between GNSS Precipitable Water Vapor and Heavy Rainfall over the Northwest Equatorial Coast, Andes, and Amazon Regions. Atmosphere, 13(11), 1809. https://doi.org/10.3390/atmos13111809