The New PWV Conversion Models Based on GNSS and Meteorological Elements in the China Region
Abstract
:1. Introduction
2. Data Sources and Methods
2.1. Data Sources
2.2. Correlation and Collinearity Analysis
2.3. Methods
3. Results and Discussions
3.1. PWV Conversion Models
- (1)
- Three-factor model
- (2)
- Two-factor model
- (3)
- One-factor model
3.2. Internal Coincidence Accuracy
3.3. External Coincidence Accuracy
4. Conclusions
- (1)
- There are extremely strong and moderate linear correlations between GNSS-PWV and GNSS-ZTD, temperature, and pressure. The correlation coefficient between PWV and GNSS-ZTD is 0.99; the correlation coefficient between PWV and temperature is 0.80; the correlation coefficient between PWV and pressure is −0.55. There is no collinearity between any two independent variables.
- (2)
- The mean deviation of the one-factor predicted PWV based on GNSS-ZTD is 12.16 mm, and its RMS is 14.30 mm. The mean deviation of the two-factor predicted PWV after adding temperature reduced to 9.07 mm, and its RMS reduced to 11.15 mm. The mean deviation of the two-factor predicted PWV based on ZTD and pressure is 0.31 mm, and its RMS is 0.39 mm. The mean deviation of the three-factor predicted PWV based on GNSS-ZTD, pressure, and temperature is 0.33 mm, and its RMS is 0.38 mm.
- (3)
- In terms of external coincidence accuracy, the RMS of the two-factor and three-factor predicted PWV based on the ZTD and pressure is better than 0.33 mm, and the mean deviation is better than 0.16 mm. Obviously, these two new PWV conversion models are good enough to be widely used in the China region.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, S.R.; Jiang, P.; Liu, Y.Y. A new numerical integration method for tomographic water vapor distribution in ground-based GPS network. Chin. J. Surv. Mapp. 2013, 42, 654–660. [Google Scholar]
- Suparta, W.; Rahman, R. Spatial interpolation of GPS PWV and meteorological variables over the west coast of Peninsular Malaysia during 2013 Kiang Valley Flash Flood. Atmos. Res. 2016, 168, 205–219. [Google Scholar] [CrossRef]
- Hoseini, M. On the Remote Sensing of the Atmosphere and Ocean Using Direct and Reflected GNSS Signals; Norwegian University of Science and Technology: Trondheim, Norway, 2022. [Google Scholar]
- Moore, A.W.; Small, I.J.; Gutman, S.I.; Bock, Y.; Dumas, J.L.; Fang, P.; Haase, J.S.; Jackson, M.E.; Laber, J.L. National Weather Service Forecasters Use GPS Precipitable Water Vapor for Enhanced Situational Awareness during the Southern California Summer Monsoon. Bull. Am. Meteorol. Soc. 2015, 96, 1867–1877. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Wu, S.; Zhang, K.; Chen, X.; Qiu, C.; Zhang, S.; Zhang, J.; Xie, M.; Li, L. Development of an Improved Model for Prediction of Short-Term Heavy Precipitation Based on GNSS-Derived PWV. Remote Sens. 2020, 12, 4101. [Google Scholar] [CrossRef]
- Duan, W.L.; He, B.; Takara, K.; Luo, P.P.; Nover, D.; Yamashiki, Y.; Huang, W.R. Anomalous atmospheric events leading to Kyushu’s flash floods, July 11–14, 2012. Nat. Hazards 2014, 73, 1255–1267. [Google Scholar] [CrossRef]
- Li, H.; Choy, S.; Wang, X.; Zhang, K.; Jiang, C.; Li, L.; Liu, X.; Hu, A.; Wu, S.; Zhu, D. Estimation of diurnal-provided potential evapotranspiration using GNSS and meteorological products. Atmos. Res. 2022, 280, 106424. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Q.; Yao, W.; Ma, X.; Yao, Y.; Liu, L. Short-term rainfall forecast model based on the improved BP-NN algorithm. Sci. Rep. 2019, 9, 19751. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhang, S.; Kong, J. Research Progress and Prospect of GNSS Space Environment Science. Acta Geod. Et Cartogr. Sin. 2017, 46, 1408–1420. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water. J. Appl. Meteorol. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Choy, S.; Wu, S.; Jiang, C.; Zhang, J.; Qiu, C.; Li, L.; Zhang, K. A New Cumulative Anomaly-Based Model for the Detection of Heavy Precipitation Using GNSS-derived Tropospheric Products. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4105718. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, X.; Yao, Y. Preliminary result of capturing the signature of heavy rainfall events using the 2-d-/4-d water vapour information derived from GNSS measurement in Hong Kong. Adv. Space Res. 2020, 66, 1537–1550. [Google Scholar] [CrossRef]
- Chung, E.-S.; Soden, B.; Sohn, B.; Shi, L. Upper-tropospheric moistening in response to anthropogenic warming. Proc. Natl. Acad. Sci. USA 2014, 111, 11636–11641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Q.; Shen, Z.; Wan, M.; Li, L. Precipitable Water Vapor Converted from GNSS-ZTD and ERA5 Datasets for the Monitoring of Tropical Cyclones. IEEE Access 2020, 8, 87275–87290. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Y.; Ma, X.; Yao, W.; Yao, Y.; Li, X. An Improved Rainfall Forecasting Model Based on GNSS Observations. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4891–4900. [Google Scholar] [CrossRef]
- Bock, O.; Bosser, P.; Bourcy, T.; David, L.; Goutail, F.; Hoareau, C.; Keckhut, P.; Legain, D.; Pazmino, A.; Pelon, J. Accuracy assessment of water vapour measurements from in situ and remote sensing techniques during the DEMEVAP 2011 campaign at OHP. Atmos. Meas. Tech. 2013, 6, 2777–2802. [Google Scholar] [CrossRef] [Green Version]
- Guerova, G.; Jones, J.; Douša, J.; Dick, G.; de Haan, S.; Pottiaux, E.; Bock, O.; Pacione, R.; Elgered, G.; Vedel, H.; et al. Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmos. Meas. Tech. 2016, 9, 5385–5406. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.; Guerova, G.; Douša, J.; Dick, G.; Haan, S.d.; Pottiaux, E.; Bock, O.; Pacione, R.; Malderen, R.v. Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Yeh, T.-K.; Hong, J.-S.; Wang, C.-S.; Chen, C.-H.; Chen, K.-H.; Fong, C.-T. Determining the precipitable water vapor with ground-based GPS and comparing its yearly variation to rainfall over Taiwan. Adv. Space Res. 2016, 57, 2496–2507. [Google Scholar] [CrossRef]
- Yu, K.; Rizos, C.; Burrage, D.; Dempster, A.; Zhang, K.; Markgraf, M. An Overview of GNSS Remote Sensing. EURASIP J. Adv. Signal Process. 2014, 2014, 134. [Google Scholar] [CrossRef] [Green Version]
- Iwabuchi, T.; Rocken, C.; Lukes, Z.; Mervart, L.; Johnson, J.; Kanzaki, M. PPP and Network True Real-time 30 sec Estimation of ZTD in Dense and Giant Regional GPS Network and the Application of ZTD for Nowcasting of Heavy Rainfall. In Proceedings of the ION GNSS 19th International Technical Meeting of the Satellite Division, Fort Worth, TX, USA, 26–29 September 2006; pp. 1902–1909. [Google Scholar]
- Li, L.; Kuang, C.-L.; Zhu, J.-J.; Chen, W.; Chen, Y.-Q.; Long, S.-C.; Li, H.-Y. Rainstorm nowcasting based on GPS real-time precise point positioning technology. Chin. J. Geophys. 2012, 55, 1129–1136. [Google Scholar]
- Łoś, M.; Smolak, K.; Guerova, G.; Rohm, W. GNSS-Based Machine Learning Storm Nowcasting. Remote Sens. 2020, 12, 2536. [Google Scholar] [CrossRef]
- Männel, B.; Dick, G.; Alshawaf, F.; Schuh, H. GNSS for Climate-Related Studies Sci. J. Civ. Eng. 2017, 6, 23–28. [Google Scholar]
- Kruczyk, M. Long Series of GNSS Integrated Precipitable Water as a Climate Change Indicator. Rep. Geod. Geoinf. 2015, 99, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, C.E.; Mendoza, L.P.O.; Fernández, L.I.; Natali, M.P.; Meza, A.M.; Moirano, J.F. Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies. Ann. Geophys. 2016, 34, 623–639. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Choy, S.; Jiang, C.; Wu, S.; Zhang, J.; Qiu, C.; Zhou, K.; Li, L.; Fu, E.; et al. Detecting heavy rainfall using anomaly-based percentile thresholds of predictors derived from GNSS-PWV. Atmos. Res. 2022, 265, 105912. [Google Scholar] [CrossRef]
- Simeonov, T.; Sidorov, D.; Teferle, F.N.; Milev, G.; Guerova, G. Evaluation of IWV from the numerical weather prediction WRF model with PPP GNSS processing for Bulgaria. Atmos. Meas. Tech. Discuss. [preprint]. 2016. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhao, L.; Bai, X. The Characteristics Investigation of Ground-Based GPS/PWV During the “7.21” Extreme Rainfall Event in Beijing. In China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume II; Lecture Notes in Electrical Engineering; Sun, J., Liu, J., Fan, S., Lu, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 341, pp. 563–574. [Google Scholar]
- Lasota, E.; Slavchev, M.; Guerova, G.; Rohm, W.; Kapłon, J. Combined Space-and Ground-Based GNSS Monitoring of Two Severe Hailstorm Cases in Bulgaria. J. Atmos. Ocean. Technol. 2022, 39, 649–665. [Google Scholar] [CrossRef]
- Guerova, G.; Dimitrova, T.; Georgiev, S. Thunderstorm classification functions based on instability indices and GNSS IWV for the Sofia Plain. Remote Sens. 2019, 11, 2988. [Google Scholar] [CrossRef] [Green Version]
- Guerova, G.; Douša, J.; Dimitrova, T.; Stoycheva, A.; Václavovic, P.; Penov, N. GNSS storm nowcasting demonstrator for Bulgaria. Remote Sens. 2022, 14, 3746. [Google Scholar] [CrossRef]
- Chen, S.H.; Zhao, Z.; Haase, J.S.; Chen, A.D.; Vandenberghe, F. A study of the characteristics and assimilation of retrieved MODIS total precipitable water data in severe weather simulations. Mon. Weather Rev. 2008, 136, 3608–3628. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Liu, Z.; Chen, D.; Yan, P.; Zhang, Y.; Hu, H.; Liang, H.; Liang, X. GPS-ZTD data assimilation and its impact on wintertime haze prediction over North China Plain using WRF 3DVAR and CMAQ modeling system. Env. Sci. Pollut. Res. Int. 2021, 28, 68523–68538. [Google Scholar] [CrossRef]
- Khaniani, A.S.; Azadi, M.; Zakeri, Z. Impact of Iranian permanent GPS network precipitable water estimates on numerical weather prediction. Earth Obs. Geomat. Eng. 2017, 1, 100–111. [Google Scholar] [CrossRef]
- Sharifi, M.A.; Azadi, M.; Khaniani, A.S. Numerical simulation of rainfall with assimilation of conventional and GPS observations over north of Iran. Ann. Geophys. 2016, 59, 10. [Google Scholar] [CrossRef]
- Zhao, Q.Z.; Yao, Y.B.; Yao, W.Q. GPS-based PWV for precipitation forecasting and its application to a typhoon event. J. Atmos. Sol.-Terr. Phys. 2018, 167, 124–133. [Google Scholar] [CrossRef]
- He, Q.; Zhang, K.; Wu, S.; Zhao, Q.; Wang, X.; Shen, Z.; Li, L.; Wan, M.; Liu, X. Real-Time GNSS-Derived PWV for Typhoon Characterizations: A Case Study for Super Typhoon Mangkhut in Hong Kong. Remote Sens. 2020, 12, 104. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhao, Q.Z.; Yao, W.Q. Rainfall prediction research based on GNSS PWV and meteorological data based on multi-hidden layer neural network. Bull. Surv. Mapp. 2019, 36–40. [Google Scholar]
- Benevides, P.; Catalao, J.; Miranda, P.M.A. On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall. Nat. Hazards Earth Syst. Sci. 2015, 15, 2605–2616. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Ye, S.; Chen, D.; Liu, Y.; Xia, P. Retrieving Precipitable Water Vapor Data Using GPS Zenith Delays and Global Reanalysis Data in China. Remote Sens. 2016, 8, 389. [Google Scholar] [CrossRef] [Green Version]
- Manning, T.; Zhang, K.; Rohm, W.; Choy, S.; Hurter, F. Detecting Severe Weather using GPS Tomography: An Australian Case Study. J. Glob. Position. Syst. 2012, 11, 58–70. [Google Scholar] [CrossRef]
- Song, D.-S.; Grejner-Brzezinska, D.A. Remote sensing of atmospheric water vapor variation from GPS measurements during a severe weather event. Earth Planets Space 2009, 61, 1117–1125. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; He, J.; Wei, M.; Zhang, Z. Synthesis Analysis of One Severe Convection Precipitation Event in Jiangsu Using Ground-Based GPS Technology. Atmosphere 2015, 6, 908–927. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Manning, T.; SuqinWu; Rohm, W.; Silcock, D.; Choy, S. Capturing the Signature of Severe Weather Events in Australia Using GPS Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1839–1847. [Google Scholar] [CrossRef]
- Li, L.; Wu, S.; Zhang, K.; Wang, X.; Li, W.; Shen, Z.; Zhu, D.; He, Q.; Wan, M. A new zenith hydrostatic delay model for real-time retrievals of GNSS-PWV. Atmos. Meas. Tech. 2021, 14, 6379–6394. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Wu, S.; Fan, S.; Cheng, Y. Water vapor-weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend. J. Geophys. Res. Atmos. 2016, 121, 833–852. [Google Scholar] [CrossRef]
- Yi, Z.H.; Wang, S.M.; Wang, Y.; Wei. GNSS Tropospheric Delay Estimation of Precipitation Research on the seasonal transition model of water volume. Geod. Geodyn. 2017, 37, 830–834. [Google Scholar]
- Fan, D.; Li, L.; Liu, Y.; Wei. Study on the direct conversion model of GNSS precipitable water in the Yangtze River Delta region. Geod. Geodyn. 2021, 12, 628–632. [Google Scholar]
- Liu, Y.; Li, L.; Wei, Y.; Wei. Research on multi-factor and seasonal precipitable precipitation model based on CORS station. Sci. Surv. Mapp. 2021, 46, 31–37. [Google Scholar]
- Huang, L.K.; Mo, Z.X.; Liu, L.; Xie, S. An empirical model for the vertical correction of precipitable water vapor considering the time-varying lapse rate for Mainland China. Acta Geod. Et Cartogr. Sin. 2021, 50, 1320–1330. [Google Scholar] [CrossRef]
- Yu, J.S.; Tan, K.; Zhang, C.H.; Zhao, B.; Wang, D.; Li, Q. Present-day crustal movement of the Chinese mainland based on Global Navigation Satellite System data from 1998 to 2018. Adv. Space Res. 2019, 63, 840–856. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.P.; Liu, L.T.; Wei. Research on the direct estimation of precipitable precipitable amount from the tropospheric delay of regional GPS network. Chin. J. Trop. Meteorol. 2007, 23, 510–514. [Google Scholar] [CrossRef]
- Wei, H.Y. Diagnosis and Treatment of Multicollinearity in Regression Analysis. Zhou Kou J. Teach. Coll. 2019, 36, 11–15. [Google Scholar]
Station | Code | Longitude (°) | Latitude (°) | Elevation (m) | Station | Code | Longitude (°) | Latitude (°) | Elevation (m) |
---|---|---|---|---|---|---|---|---|---|
Tuotuohe | QHTT | 92.44 | 34.22 | 4499.10 | Karamay | XJKL | 84.91 | 45.61 | 321.00 |
Gar | XZGE | 80.11 | 32.52 | 4427.40 | Yanji | JLYJ | 129.50 | 42.88 | 284.60 |
Shigatse | XZRK | 88.86 | 29.25 | 3854.80 | Hegang | HLHG | 130.24 | 47.35 | 210.70 |
Baima | QHBM | 100.74 | 32.93 | 3486.70 | Qiongzhong | QION | 109.84 | 19.03 | 207.60 |
Zayu | XZCY | 97.47 | 28.66 | 3306.80 | Zigui | HBZG | 110.97 | 30.84 | 164.70 |
Delingha | DLHA | 97.38 | 37.38 | 2955.80 | Beijing | BJSH | 116.22 | 40.25 | 155.40 |
Haiyuan | NXHY | 105.65 | 36.55 | 1822.30 | Xiamen | XIAM | 118.08 | 24.45 | 106.10 |
Khotan | XJHT | 79.05 | 37.16 | 1572.70 | Nanning | GXNN | 108.15 | 22.57 | 97.80 |
Jingdong | YNJD | 100.88 | 24.44 | 1244.60 | Jiande | ZJJJ | 119.27 | 29.48 | 97.20 |
Guiyang | GZGY | 106.67 | 26.47 | 1093.90 | Gian | JXJA | 115.06 | 26.75 | 89.50 |
Dunhuang | GSDH | 94.68 | 40.14 | 1080.10 | Mayang | HNMY | 109.80 | 27.88 | 89.00 |
Baotou | NMBT | 110.02 | 40.60 | 1053.90 | Queshan | HAQS | 114.03 | 32.85 | 72.10 |
Ujimqin | NMDW | 116.96 | 45.51 | 834.20 | Shenyang | LNSY | 123.58 | 41.83 | 69.80 |
Charkhlik | XJRQ | 88.17 | 39.02 | 830.70 | Qingdao | SDQD | 120.30 | 36.08 | 58.10 |
Tianquan | SCTQ | 102.76 | 30.07 | 773.70 | Bengbu | AHBB | 117.30 | 32.90 | 54.10 |
Mianxian | SNMX | 106.69 | 33.13 | 594.00 | Guangzhou | GUAN | 113.34 | 23.19 | 30.90 |
Linfen | SXLF | 111.37 | 36.08 | 558.90 | Longyao | HELY | 114.71 | 37.40 | 30.30 |
Chongqing | CQCS | 107.23 | 29.91 | 361.40 | Shanghai | SHAO | 121.20 | 31.10 | 22.00 |
Shanshan | XJSS | 90.26 | 42.89 | 348.60 | Binhai | TJBH | 117.69 | 39.08 | 1.10 |
Station | Code | Longitude (°) | Latitude (°) | Elevation (m) |
---|---|---|---|---|
Zhongba | XZZB | 84.10 | 29.60 | 4570.05 |
Ritu | XZRT | 79.70 | 33.30 | 4256.64 |
Golmud | QHGE | 94.70 | 36.10 | 3090.00 |
Minqin | GSMQ | 103.00 | 38.60 | 1320.05 |
Dongchuan | YNDC | 103.10 | 26.10 | 1297.62 |
Kuche | XJKC | 83.00 | 41.80 | 1028.84 |
Erenhot | NMEL | 111.90 | 43.60 | 946.18 |
Altay | XJAL | 88.10 | 47.80 | 874.87 |
Wudalianchi | HLWD | 126.10 | 48.60 | 313.97 |
Changchun | CHUN | 125.40 | 43.70 | 268.35 |
Hebi | HAHB | 114.50 | 35.60 | 46.55 |
Yancheng | JSYC | 120.02 | 33.38 | 12.70 |
Dependent Variable | Independent Variable | Correlation Coefficient (R) | Independent Variable | Independent Variable | Correlation Coefficient (R) | VIF |
---|---|---|---|---|---|---|
PWV | ZTD | 0.99 | ZTD | Pressure | −0.47 | 1.42 |
PWV | Pressure | −0.55 | Pressure | Temperature | −0.68 | 1.25 |
PWV | Temperature | 0.80 | Temperature | ZTD | 0.74 | 2.70 |
Models | RMS | Bias | ||||
---|---|---|---|---|---|---|
2017 | 2018 | Mean | 2017 | 2018 | Mean | |
One-factor (ZTD) | 14.39 | 14.21 | 14.30 | 12.19 | 12.13 | 12.16 |
Two-factor (ZTD, T) | 11.30 | 10.99 | 11.15 | 9.17 | 8.97 | 9.07 |
Two-factor (ZTD, P) | 0.40 | 0.38 | 0.39 | 0.32 | 0.31 | 0.31 |
Three-factor (ZTD, P, T) | 0.39 | 0.37 | 0.38 | 0.31 | 0.30 | 0.33 |
Stations | Elevation (m) | Two-Factor (ZTD, P) | Three-Factor (ZTD, P, T) | ||
---|---|---|---|---|---|
RMS | Bias | RMS | Bias | ||
XZZB | 4570.05 | 0.26 | 0.19 | 0.28 | 0.22 |
XZRT | 4256.64 | 0.20 | 0.15 | 0.24 | 0.18 |
QHGE | 3090.00 | 0.19 | 0.13 | 0.23 | 0.18 |
GSMQ | 1320.05 | 0.23 | 0.12 | 0.19 | 0.11 |
YNDC | 1297.62 | 0.36 | 0.11 | 0.39 | 0.10 |
XJKC | 1028.84 | 0.31 | 0.14 | 0.24 | 0.10 |
NMEL | 946.18 | 0.35 | 0.14 | 0.39 | 0.15 |
XJAL | 874.87 | 0.39 | 0.14 | 0.41 | 0.12 |
HLWD | 313.97 | 0.44 | 0.16 | 0.56 | 0.21 |
CHUN | 268.35 | 0.29 | 0.16 | 0.36 | 0.16 |
HAHB | 46.55 | 0.36 | 0.28 | 0.33 | 0.25 |
JSYC | 12.70 | 0.38 | 0.11 | 0.35 | 0.09 |
Mean | 0.31 | 0.15 | 0.33 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Wang, X.; Wei, Y.; Wang, H. The New PWV Conversion Models Based on GNSS and Meteorological Elements in the China Region. Atmosphere 2022, 13, 1810. https://doi.org/10.3390/atmos13111810
Li L, Wang X, Wei Y, Wang H. The New PWV Conversion Models Based on GNSS and Meteorological Elements in the China Region. Atmosphere. 2022; 13(11):1810. https://doi.org/10.3390/atmos13111810
Chicago/Turabian StyleLi, Li, Xun Wang, Yun Wei, and Hao Wang. 2022. "The New PWV Conversion Models Based on GNSS and Meteorological Elements in the China Region" Atmosphere 13, no. 11: 1810. https://doi.org/10.3390/atmos13111810
APA StyleLi, L., Wang, X., Wei, Y., & Wang, H. (2022). The New PWV Conversion Models Based on GNSS and Meteorological Elements in the China Region. Atmosphere, 13(11), 1810. https://doi.org/10.3390/atmos13111810