Multi-Level Circulation Pattern Classification Based on the Transfer Learning CNN Network
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Methodology
2.2.1. Residual Neural Network
2.2.2. Steps of Model Establishing
3. Results
3.1. Typical Modes of the Heavy Rainfall
3.2. Establishing of the CNN for Multi-Level Circulation Pattern Classification
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Z.; Tan, G.; Zhao, Z. ANN prediction of summer rainfall patterns of east China. J. Nanjing Inst. Meteor. 1998, 21, 49–52. (In Chinese) [Google Scholar]
- Sun, Z.; Tan, G.; Zhao, Z.; Lu, M. Ensemble prediction of summer rainfall patterns over eastern China based on artificial neural networks. Trans. Atmos. Sci. 2013, 36, 1–6. (In Chinese) [Google Scholar]
- Jin, L.; Chen, N.; Lin, Z. Study and comparison of ensemble forecasting based on artificial neural network. Acta Meteorol. Sin. 1999, 57, 71–80. (In Chinese) [Google Scholar]
- Shi, D.P. An application of artificial neural network (ANN) to rainfall mid-range forecasting. Meteor. Mon. 2001, 6, 40–46. (In Chinese) [Google Scholar]
- Xu, X. From Physical Model to Intelligent Analysis: A New Exploration to Reduce the Uncertainty of Weather Forecast. Meteor. Mon. 2018, 44, 341–350. (In Chinese) [Google Scholar]
- Jin, R.H.; Dai, K.; Zhao, R.X.; Cao, Y.; Xue, F.; Liu, C.H. Progress and Challenge of Seamless Fine Gridded Weather Forecasting Technology in China. Meteor. Mon. 2019, 45, 445–457. (In Chinese) [Google Scholar]
- Cervone, G.; Clemente-Harding, L.; Alessandrini, S.; Monache, L.D. Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble. Renew. Energy 2017, 108, 274–286. [Google Scholar] [CrossRef] [Green Version]
- Alessandrini, S.; Sperati, S.; Delle Monache, L. Improving the Analog Ensemble Wind Speed Forecasts for Rare Events. Mon. Weather Rev. 2019, 147, 2677–2692. [Google Scholar] [CrossRef]
- Boukabara, S.-A.; Krasnopolsky, V.; Penny, S.G.; Stewart, J.Q.; McGovern, A.; Hall, D.; Hoeve, J.E.T.; Hickey, J.; Huang, H.-L.A.; Williams, J.K.; et al. Outlook for Exploiting Artificial Intelligence in the Earth and Environmental Sciences. Bull. Am. Meteor. Soc. 2021, 102, E1016–E1032. [Google Scholar] [CrossRef]
- Liu, Y.; Racah, E.; Correa, J.; Khosrowshahi, A.; Lavers, D.; Kunkel, K.; Wehner, M.; Collins, W. Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv 2016, arXiv:1605.01156. [Google Scholar]
- Ham, Y.G.; Kim, J.H.; Luo, J.J. Deep learning for Multi-year ENSO Forecasts. Nature 2019, 573, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Franch, G.; Nerini, D.; Pendesini, M.; Coviello, L.; Jurman, G.; Furlanello, C. Precipitation Nowcasting with Orographic Enhanced Stacked Generalization: Improving Deep Learning Predictions on Extreme Events. Atmosphere 2020, 11, 267. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, A.; Nabizadeh, E.; Hassanzadeh, P. Analog Forecasting of Extreme-Causing Weather Patterns Using Deep Learning. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, M.W.; Dorling, S.R. Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- Marzban, C.; Stumpf, G.J. A Neural Network for Damaging Wind Prediction. Weather 1998, 13, 151–163. [Google Scholar] [CrossRef]
- Marzban, C. Neural networks for postprocessing model output: ARPS. Mon. Weather Rev. 2003, 131, 1103–1111. [Google Scholar] [CrossRef]
- Yuan, H.; Gao, X.; Mullen, S.L.; Sorooshian, S.; Du, J.; Juang, H.M.H. Calibration of probabilistic quantitative precipitation forecasts with an artificial neural network. Weather 2007, 22, 1287–1303. [Google Scholar] [CrossRef]
- McGovern, A.; Lagerquist, R.A.; Gagne, D.; Jergensen, G.E.; Elmore, K.L.; Homeyer, C.R.; Smith, T. Using machine learning and model interpretation and visualization techniques to gain physical insights in atmospheric science. In AI for Earth Sciences Workshop; ICLR: Addis Ababa, Ethiopa, 2020. [Google Scholar]
- Kasim, M.F.; Watson-Parris, D.; Deaconu, L.; Oliver, S.; Hatfield, P.; Froula, D.H.; Gregori, G.; Jarvis, M.; Khatiwala, S.; Korenaga, J.; et al. Building high accuracy emulators for scientific simulations with deep neural architecture search. Mach. Learn. Sci. Technol. 2021, 3, 015013. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a Deep Convolutional Network for Image Super-Resolution. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 184–199. [Google Scholar]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks; Springer: Munich, Germany, 2018. [Google Scholar]
- Singh, A.; Albert, A.; White, B. Downscaling Numerical Weather Models with GANs. In Proceedings of the Climate Change AI Workshop at the 33rd Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 13 December 2019. [Google Scholar]
- Baño-Medina, J.; Manzanas, R.; Gutierrez, J.M. Configuration and intercomparison of deep learning neural models for statistical downscaling. Geosci. Model Dev. 2020, 13, 2109–2124. [Google Scholar] [CrossRef]
- Bremnes, J.B. Ensemble Postprocessing Using Quantile Function Regression Based on Neural Networks and Bernstein Polynomials. Mon. Weather Rev. 2020, 148, 403–414. [Google Scholar] [CrossRef]
- Candido, S.; Singh, A.; Delle Monache, L. Improving Wind Forecasts in the Lower Stratosphere by Distilling an Analog Ensemble into a Deep Neural Network. Geophys. Res. Lett. 2020, 47, e2020GL089098. [Google Scholar] [CrossRef]
- Manepalli, A. Generalization Properties of Machine Learning Based Weather Model Downscaling. In Proceedings of the International Conference on Learning Representations, Online, 26–30 April 2020. [Google Scholar]
- Kumar, B.; Chattopadhyay, R.; Singh, M.; Chaudhari, N.; Kodari, K.; Barve, A. Deep learning–based downscaling of summer monsoon rainfall data over Indian region. Theor. Appl. Climatol. 2021, 143, 1145–1156. [Google Scholar] [CrossRef]
- Vannitsem, S.; Bremnes, J.B.; Demaeyer, J.; Evans, G.R.; Flowerdew, J.; Hemri, S.; Lerch, S.; Roberts, N.; Theis, S.; Atencia, A.; et al. Statistical Postprocessing for Weather Forecasts: Review, Challenges, and Avenues in a Big Data World. Bull. Am. Meteor. Soc. 2021, 102, E681–E699. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. arXiv 2015, arXiv:1506.04214. [Google Scholar]
- Zhang, P.; Zhang, L.; Leung, H.; Wang, J. A Deep-Learning Based Precipitation Forecasting Approach Using Multiple Environmental Factors. In Proceedings of the 2017 IEEE International Congress on Big Data (BigData Congress), Honolulu, HI, USA, 25–30 June 2017. [Google Scholar]
- Hu, W.; Cervone, G.; Young, G.; Monache, L.D. Weather Analogs with a Machine Learning Similarity Metric for Renewable Resource Forecasting. arXiv 2021, arXiv:2103.04530. [Google Scholar]
- Guastavino, S.; Piana, M.; Tizzi, M.; Cassola, F.; Iengo, A.; Sacchetti, D.; Solazzo, E.; Benvenuto, F. Prediction of severe thunderstorm events with ensemble deep learning and radar data. arXiv 2021, arXiv:2109.09791. [Google Scholar]
- Ravuri, S.; Lenc, K.; Willson, M.; Kangin, D.; Lam, R.; Mirowski, P.; Fitzsimons, M.; Athanassiadou, M.; Kashem, S.; Madge, S.; et al. Skilful precipitation nowcasting using deep generative models of radar. Nature 2021, 597, 672–677. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 7–9 May 2015; pp. 3431–3440. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Dupuy, F. ARPEGE Cloud Cover Forecast Post-Processing with Convolutional Neural Network. arXiv 2020, arXiv:2006.16678. [Google Scholar]
- Grönquist, P.; Yao, C.; Ben-Nun, T.; Dryden, N.; Dueben, P.; Li, S.; Hoefler, T. Deep learning for post-processing ensemble weather forecasts. Philos. Trans. A Math Phys. Eng. Sci. 2021, 379, 20200092. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Scher, S.; Messori, G. Predicting weather forecast uncertainty with machine learning. Q. J. R. Meteor. Soc. 2018, 144, 2830–2841. [Google Scholar] [CrossRef]
- Ayzel, G.; Scheffer, T.; Heistermann, M. RainNet v1.0: A convolutional neural network for radar-based precipitation nowcasting. Geosci. Model Dev. 2020, 13, 2631–2644. [Google Scholar] [CrossRef]
- Men, X.L.; Jiao, R.L.; Wang, D.; Zhao, C.G.; Liu, Y.K.; Xia, J.J.; Li, H.C.; Yan, Z.W.; Sun, J.H.; Wang, L.Z. A Temperature Correction Method for Multi-model Ensemble Forecast in North China Based on Machine Learning. Clim. Environ. Res. 2019, 24, 116–124. (In Chinese) [Google Scholar]
- Chen, J.P.; Feng, Y.D.; Meng, W.G. A Correction Method of Hourly Precipitation Forecast Based on Convolutional Neural Network. Meteor. Mon. 2021, 47, 60–70. (In Chinese) [Google Scholar]
- Chen, C. Application of Convolution Neural Network in Weather Nowcasting; South China University of Technology: Guangzhou, China, 2018. [Google Scholar]
- Cai, J.; Tan, G.; Niu, R. Circulation pattern classification of persistent heavy rainfall in Jianghuai Region based on the transfer learning CNN model. J. Appl. Meteor. Sci. 2021, 32, 233–244. [Google Scholar] [CrossRef]
- Luo, Y.; Nie, X.W.; Wang, G.S. An exploration on the applicability of similarity parameter in similarity forecasting. Meteor. Mon. 2011, 37, 1443–1447. (In Chinese) [Google Scholar]
- Tan, G.R.; Fan, Y.Y.; Niu, R.Y. 2018. Pattern classification of heavy rainfall in Jianghuai region and associated circulations. J. Appl. Meteor. Sci. 2018, 29, 396–409. [Google Scholar]
- Niu, R.; Liu, C.; Liu, W.; Zhao, X. Characteristics of temporal and spatial distribution of regional rainstorm processes to the east of 95°E in China during 1981–2015. Acta Meteorol. Sin. 2018, 76, 182–195. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–470. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H.; Wei, J.; Qi, L. The sources and transportation of water vapor in persistent heavy rainfall events in the Yangtze-Huaihe River Valley. Acta Meteorol. Sin. 2016, 74, 542–555. (In Chinese) [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Tan, G.R.; Duan, H.; Ren, H.L. Statistical correction for dynamical prediction of 500hPa height field in mid-high latitudes. J. Appl. Meteor. Sci. 2012, 23, 304–311. (In Chinese) [Google Scholar]
Layer Name | Output Size | 18-Layer |
---|---|---|
conv1 | 112 × 112 | 7 × 7, 64, stride 2 |
conv2_x | 56 × 56 | 3 × 3 max pool, stride 2 |
conv3_x | 28 × 28 | |
conv4_x | 14 × 14 | |
conv5_x | 7 × 7 | |
1 × 1 | average pool, 1000-d fc, softmax | |
FLOPs | 1.8 × 109 |
Methods | Ⅰ | Ⅱ | Ⅲ | |
---|---|---|---|---|
Coefficients of mean fields | Single CNN | 0.771 | 0.986 | 0.913 |
3-levels CNN | 0.810 | 0.970 | 0.916 | |
Mean coefficients of all samples | Single CNN | 0.348 | 0.224 | 0.382 |
3-levels CNN | 0.367 | 0.333 | 0.417 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Cai, J.; Tan, G. Multi-Level Circulation Pattern Classification Based on the Transfer Learning CNN Network. Atmosphere 2022, 13, 1861. https://doi.org/10.3390/atmos13111861
Liu Y, Cai J, Tan G. Multi-Level Circulation Pattern Classification Based on the Transfer Learning CNN Network. Atmosphere. 2022; 13(11):1861. https://doi.org/10.3390/atmos13111861
Chicago/Turabian StyleLiu, Yanzhang, Jinqi Cai, and Guirong Tan. 2022. "Multi-Level Circulation Pattern Classification Based on the Transfer Learning CNN Network" Atmosphere 13, no. 11: 1861. https://doi.org/10.3390/atmos13111861
APA StyleLiu, Y., Cai, J., & Tan, G. (2022). Multi-Level Circulation Pattern Classification Based on the Transfer Learning CNN Network. Atmosphere, 13(11), 1861. https://doi.org/10.3390/atmos13111861