Impact of Assimilating FORMOSAT-7/COSMIC-2 Radio Occultation Data on Typhoon Prediction Using a Regional Model
Abstract
:1. Introduction
2. Experiment Settings
2.1. CWBWRF Model Configuration and DA Strategy
2.2. FS7 RO Data
- In the gross error check, the data is rejected when the absolute value of innovation, i.e., the difference between the observed value (O) and the model background value (B), is greater than five times of the observation error. The factor of five is the value suggested by the National Center for Atmospheric Research. This method is generally used in DA systems to avoid assimilations of observations with large biases from the model background;
- Percent error control is a similar threshold to the innovation relationship. In percent error control, the data is rejected when the ratio of innovation (O-B) to the average between observation and model background is larger than a specific threshold, then. The thresholds are 0.05% below 7 km, 0.04% between 7 and 25 km, and 0.10% above 25 km [45];
- The vertical gradient of refractivity was further checked. When the derivative of either observational or model refractivity with respect to height is less than −50 km−1 or the second derivative of refractivity with respect to height is greater than 100 km−2 then the data is rejected [49]. The first and second derivatives of refractivity represent the gradient and curvature of the ray path, respectively. Large vertical refractive gradients or curvatures occur when rays with tangent points inside the layer are trapped in the duct. This condition is known as SR, or ducting. Assimilating the GPS RO data with SR layers causes an ill-conditioned problem; thus, the observations need to be rejected in the assimilation algorithms [50];
- The NCEP-GSI regional innovation check is the last step. Here, the data is rejected when the absolute value of innovation (O-B) is greater than or equal to the product of the standard deviation and the cutoff value. This QC criterion was modified from the NCEP GSI global DA in Cucurull et al. (2010) [51] for regional DA. The thresholds consider the data location (latitude), geometric height, and temperature of the RO profile at the same time.
2.3. Experiment Period
3. Results
3.1. QC Rejection Rate
3.2. Innovation Statistics
3.3. Assimilation Impact of the RO Observations
3.4. Synoptic Verifications
4. Impact of FS7 RO Data on Typhoon Prediction
4.1. Typhoon Track and Intensity
4.2. Typhoon Structure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anthes, R.A.; Rocken, C.; Kuo, Y.-H. Applications of COSMIC to Meteorology and Climate. Terr. Atmospheric Ocean. Sci. 2000, 11, 115–156. [Google Scholar] [CrossRef] [Green Version]
- Kursinski, E.R.; Hajj, G.A.; Schofield, J.T.; Linfield, R.P.; Hardy, K.R. Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res. Atmos. 1997, 102, 23429–23465. [Google Scholar] [CrossRef]
- Kursinski, E.R.; Hajj, G.A.; Leroy, S.S.; Herman, B. The GPS Radio Occultation Technique. Terr. Atmos. Ocean. Sci. 2000, 11, 053. [Google Scholar] [CrossRef] [Green Version]
- Wickert, J.; Reigber, C.; Beyerle, G.; König, R.; Marquardt, C.; Schmidt, T.; Grunwaldt, L.; Galas, R.; Meehan, T.K.; Melbourne, W.G.; et al. Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett. 2001, 28, 3263–3266. [Google Scholar] [CrossRef] [Green Version]
- Healy, S.B.; Thépaut, J.-N. Assimilation experiments with CHAMP GPS radio occultation measurements. Q. J. R. Meteorol. Soc. 2006, 132, 605–623. [Google Scholar] [CrossRef]
- Hajj, G.A.; Ao, C.O.; Iijima, B.A.; Kuang, D.; Kursinski, E.R.; Mannucci, A.J.; Meehan, T.K.; Romans, L.J.; de la Torre Juarez, M.; Yunck, T.P. CHAMP and SAC-C atmospheric occultation results and intercomparisons. J. Geophys. Res. Atmos. 2004, 109, D06109. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE Measurements of Mass Variability in the Earth System. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [Green Version]
- Luntama, J.-P.; Kirchengast, G.; Borsche, M.; Foelsche, U.; Steiner, A.; Healy, S.; Von Engeln, A.; O’Clerigh, E.; Marquardt, C. Prospects of the EPS GRAS Mission For Operational Atmospheric Applications. Bull. Am. Meteorol. Soc. 2008, 89, 1863–1876. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-R. Overview of KOMPSAT-5 program, mission, and system. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 797–800. [Google Scholar] [CrossRef]
- Hsiao, L.-F.; Chen, D.-S.; Kuo, Y.-H.; Guo, Y.-R.; Yeh, T.-C.; Hong, J.-S.; Fong, C.-T.; Lee, C.-S. Application of WRF 3DVAR to Operational Typhoon Prediction in Taiwan: Impact of Outer Loop and Partial Cycling Approaches. Weather Forecast. 2012, 27, 1249–1263. [Google Scholar] [CrossRef]
- Cucurull, L.; Anthes, R.A.; Tsao, L.-L. Radio Occultation Observations as Anchor Observations in Numerical Weather Prediction Models and Associated Reduction of Bias Corrections in Microwave and Infrared Satellite Observations. J. Atmospheric Ocean. Technol. 2014, 31, 20–32. [Google Scholar] [CrossRef]
- Kuo, Y.-H.; Wee, T.-K.; Sokolovskiy, S.; Rocken, C.; Schreiner, W.; Hunt, D.; Anthes, R. Inversion and Error Estimation of GPS Radio Occultation Data. J. Meteorol. Soc. Jpn. Ser. II 2004, 82, 507–531. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.-P.; Anthes, R.A.; Ao, C.O.; Healy, S.; Horanyi, A.; Hunt, D.; Mannucci, A.J.; Pedatella, N.; Randel, W.J.; Simmons, A.; et al. The COSMIC/FORMOSAT-3 Radio Occultation Mission after 12 Years: Accomplishments, Remaining Challenges, and Potential Impacts of COSMIC-2. Bull. Am. Meteorol. Soc. 2020, 101, E1107–E1136. [Google Scholar] [CrossRef] [Green Version]
- Chien, F.-C.; Hong, J.-S.; Kuo, Y.-H. Estimation of Marine Boundary Layer Heights over the Western North Pacific Using GPS Radio Occultation Profiles. SOLA 2016, 12, 302–306. [Google Scholar] [CrossRef] [Green Version]
- Chien, F.-C.; Hong, J.-S.; Kuo, Y.-H. The Marine Boundary Layer Height over the Western North Pacific Based on GPS Radio Occultation, Island Soundings, and Numerical Models. Sensors 2019, 19, 155. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-Y.; Wee, T.-K.; Kuo, Y.-H.; Bromwich, D.H. An Impact Assessment of GPS Radio Occultation Data on Prediction of a Rapidly Developing Cyclone over the Southern Ocean. Mon. Weather Rev. 2014, 142, 4187–4206. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-Y.; Kuo, Y.-H.; Huang, C.-Y. The Impact of GPS RO Data on the Prediction of Tropical Cyclogenesis Using a Nonlocal Observation Operator: An Initial Assessment. Mon. Weather Rev. 2020, 148, 2701–2717. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Huang, C.-Y.; Kuo, Y.-H.; Guo, Y.-R.; Shiau, S. Assimilation of GPS Refractivity from FORMOSAT-3/COSMIC Using a Nonlocal Operator with WRF 3DVAR and Its Impact on the Prediction of a Typhoon Event. Terr. Atmospheric Ocean. Sci. 2009, 20, 133. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-Y.; Shih, C.-P.; Huang, C.-Y.; Teng, W.-H. An Impact Study of GNSS RO Data on the Prediction of Typhoon Nepartak (2016) Using a Multi-resolution Global Model with 3D-Hybrid Data Assimilation. Weather Forecast. 2021, 36, 957–977. [Google Scholar] [CrossRef]
- Kuo, Y.-H.; Liu, H.; Guo, Y.-R.; Terng, C.-T.; Lin, Y.-T. Impact of FORMOSAT-3/COSMIC Data on Typhoon and Meiyu Prediction. In Recent Progress in Atmospheric Sciences: Impact of FORMOSAT-3/COSMIC Data on Typhoon and Meiyu Prediction: Application to the Asia-Pacific Region; World Scientific: Singapore, 2008; pp. 458–483. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Hsieh, M.-E.; Hsiao, L.-F.; Kuo, Y.-H.; Yang, M.-J.; Huang, C.-Y.; Lee, C.-S. Systematic evaluation of the impacts of GPSRO data on the prediction of typhoons over the northwestern Pacific in 2008–2010. Atmos. Meas. Tech. 2015, 8, 2531–2542. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-Y.; Kuo, Y.-H.; Chen, S.-H.; Vandenberghe, F. Improvements in Typhoon Forecasts with Assimilated GPS Occultation Refractivity. Weather Forecast. 2005, 20, 931–953. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Kuo, Y.-H.; Chen, S.-Y.; Terng, C.-T.; Chien, F.-C.; Lin, P.-L.; Kueh, M.-T.; Yang, M.-J.; Wang, C.-J.; Rao, A.S.K.A.V.P. Impact of GPS radio occultation data assimilation on regional weather predictions. GPS Solut. 2009, 14, 35–49. [Google Scholar] [CrossRef]
- Yang, S.-C.; Chen, S.-H.; Huang, C.-Y.; Chen, C.-S. Evaluating the Impact of the COSMIC RO Bending Angle Data on Predicting the Heavy Precipitation Episode on 16 June 2008 during SoWMEX-IOP8. Mon. Weather Rev. 2014, 142, 4139–4163. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-Y.; Chen, S.-Y.; Anisetty, S.K.A.V.P.R.; Yang, S.-C.; Hsiao, L.-F. An Impact Study of GPS Radio Occultation Observations on Frontal Rainfall Prediction with a Local Bending Angle Operator. Weather Forecast. 2016, 31, 129–150. [Google Scholar] [CrossRef]
- Tu, C.-C.; Chen, Y.-L.; Chen, S.-Y.; Kuo, Y.-H.; Lin, P.-L. Impacts of Including Rain-Evaporative Cooling in the Initial Conditions on the Prediction of a Coastal Heavy Rainfall Event during TiMREX. Mon. Weather Rev. 2017, 145, 253–277. [Google Scholar] [CrossRef] [Green Version]
- Schreiner, W.S.; Weiss, J.P.; Anthes, R.A.; Braun, J.; Chu, V.; Fong, J.; Hunt, D.; Kuo, Y.-H.; Meehan, T.; Serafino, W.; et al. COSMIC-2 Radio Occultation Constellation: First Results. Geophys. Res. Lett. 2020, 47, e2019GL086841. [Google Scholar] [CrossRef]
- Ruston, B.; Healy, S. Forecast Impact of FORMOSAT -7/ COSMIC -2 GNSS Radio Occultation Measurements. Atmospheric Sci. Lett. 2020, 22, e1019. [Google Scholar] [CrossRef]
- Lien, G.-Y.; Lin, C.-H.; Huang, Z.-M.; Teng, W.-H.; Chen, J.-H.; Lin, C.-C.; Ho, H.-H.; Huang, J.-Y.; Hong, J.-S.; Cheng, C.-P.; et al. Assimilation Impact of Early FORMOSAT-7/COSMIC-2 GNSS Radio Occultation Data with Taiwan’s CWB Global Forecast System. Mon. Weather Rev. 2021, 149, 2171–2191. [Google Scholar] [CrossRef]
- Ho, S.-P.; Zhou, X.; Shao, X.; Zhang, B.; Adhikari, L.; Kireev, S.; He, Y.; Yoe, J.; Xia-Serafino, W.; Lynch, E. Initial Assessment of the COSMIC-2/FORMOSAT-7 Neutral Atmosphere Data Quality in NESDIS/STAR Using In Situ and Satellite Data. Remote Sens. 2020, 12, 4099. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Liu, C.-Y.; Huang, C.-Y.; Hsu, S.-C.; Li, H.-W.; Lin, P.-H.; Cheng, J.-P.; Huang, C.-Y. An Analysis Study of FORMOSAT-7/COSMIC-2 Radio Occultation Data in the Troposphere. Remote Sens. 2021, 13, 717. [Google Scholar] [CrossRef]
- Healy, S. ECMWF starts assimilating COSMIC-2 data. ECMWF Newsl. 2020, 163, 5–6. Available online: https://www.ecmwf.int/sites/default/files/elibrary/2020/19508-newsletter-no-163-spring-2020.pdf (accessed on 4 May 2022).
- Shao, H.; Bathmann, K.; Zhang, H.; Huang, Z.-M.; Cucurull, L.; Vandenberghe, F.; Treadon, R.; Kleist, D.; Yoe, J.G. COS-MIC-2 NWP Assessment and Implementation at JCSDA and NCEP. In Proceedings of the 5th International Conference on GPS Radio and Occultation, Taipei, Taiwan, 27–29 May 2020. [Google Scholar]
- Anthes, R.; Sjoberg, J.; Rieckh, T.; Wee, T.-K.; Zeng, Z. COSMIC-2 radio occultation temperature, specific humidity, and precipitable water in Hurricane Dorian (2019). Terr. Atmos. Ocean. Sci. 2021, 32, 925–938. [Google Scholar] [CrossRef]
- Singh, R.; Ojha, S.P.; Anthes, R.; Hunt, D. Evaluation and Assimilation of the COSMIC-2 Radio Occultation Constellation Observed Atmospheric Refractivity in the WRF Data Assimilation System. J. Geophys. Res. Atmos. 2021, 126, e2021JD034935. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Tsai, C.-C.; Wu, Y.-C.; Wang, A.-H.; Wang, C.-J.; Lin, H.-H.; Chen, D.-R.; Yu, Y.-C. Evaluation of Operational Monsoon Moisture Surveillance and Severe Weather Prediction Utilizing COSMIC-2/FORMOSAT-7 Radio Occultation Observations. Remote Sens. 2021, 13, 2979. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Nguyen, T.-C.; Huang, C.-Y. Impact of Radio Occultation Data on the Prediction of Typhoon Haishen (2020) with WRFDA Hybrid Assimilation. Atmosphere 2021, 12, 1397. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, S.-C. Impact of assimilating Formosat-7/COSMIC-II GNSS radio occultation data on heavy rainfall prediction in Taiwan. Terr. Atmos. Ocean. Sci. 2022, 33, 7. [Google Scholar] [CrossRef]
- Liou, C.; Chen, J.; Terng, C.; Wang, F.; Fong, C.; Rosmond, T.E.; Kuo, H.; Shiao, C.; Cheng, M. The Second–Generation Global Forecast System at the Central Weather Bureau in Taiwan. Weather Forecast. 1997, 12, 653–663. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gil, D.A.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. Description of the Advanced Research WRF Version 3; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.-K.; Wu, D.; Lang, S.; Chern, J.-D.; Peters-Lidard, C.; Fridlind, A.; Matsui, T. High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. J. Geophys. Res. Atmos. 2016, 121, 1278–1305. [Google Scholar] [CrossRef] [Green Version]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Tewari Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. 2004: Implementation and Verification of the Unified Noah Land Surface Model in the WRF Model. In Proceedings of the Joint between the Symposium on Forecasting the Weather and Climate of the Atmosphere and Ocean and the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–15 January 2004; Available online: https://ams.confex.com/ams/pdfpapers/69061.pdf (accessed on 7 July 2022).
- Cucurull, L.; Derber, J.C.; Treadon, R.; Purser, R.J. Assimilation of Global Positioning System Radio Occultation Observations into NCEP’s Global Data Assimilation System. Mon. Weather Rev. 2007, 135, 3174–3193. [Google Scholar] [CrossRef] [Green Version]
- Cucurull, L.; Derber, J.C.; Purser, R.J. A bending angle forward operator for global positioning system radio occultation measurements. J. Geophys. Res. Atmos. 2013, 118, 14–28. [Google Scholar] [CrossRef]
- Cucurull, L.; Atlas, R.; Li, R.; Mueller, M.J.; Hoffman, R.N. An Observing System Simulation Experiment with a Constellation of Radio Occultation Satellites. Mon. Weather Rev. 2018, 146, 4247–4259. [Google Scholar] [CrossRef]
- Poli, P.; Healy, S.B.; Dee, D.P. Assimilation of Global Positioning System radio occultation data in the ECMWF ERA-Interim reanalysis. Q. J. R. Meteorol. Soc. 2010, 136, 1972–1990. [Google Scholar] [CrossRef]
- Poli, P.; Moll, P.; Puech, D.; Rabier, F.; Healy, S.B. Quality Control, Error Analysis, and Impact Assessment of FORMOSAT-3/COSMIC in Numerical Weather Prediction. Terr. Atmos. Ocean. Sci. 2009, 20, 101. [Google Scholar] [CrossRef] [Green Version]
- Cucurull, L. Implementation of a quality control for radio occultation observations in the presence of large gradients of atmospheric refractivity. Atmos. Meas. Tech. 2015, 8, 1275–1285. [Google Scholar] [CrossRef] [Green Version]
- Cucurull, L. Improvement in the Use of an Operational Constellation of GPS Radio Occultation Receivers in Weather Forecasting. Weather Forecast. 2010, 25, 749–767. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-J.; Hong, J.-S.; Chen, W.-J. Impact of Assimilating FORMOSAT-7/COSMIC-2 Radio Occultation Data on Typhoon Prediction Using a Regional Model. Atmosphere 2022, 13, 1879. https://doi.org/10.3390/atmos13111879
Chen Y-J, Hong J-S, Chen W-J. Impact of Assimilating FORMOSAT-7/COSMIC-2 Radio Occultation Data on Typhoon Prediction Using a Regional Model. Atmosphere. 2022; 13(11):1879. https://doi.org/10.3390/atmos13111879
Chicago/Turabian StyleChen, Ying-Jhen, Jing-Shan Hong, and Wen-Jou Chen. 2022. "Impact of Assimilating FORMOSAT-7/COSMIC-2 Radio Occultation Data on Typhoon Prediction Using a Regional Model" Atmosphere 13, no. 11: 1879. https://doi.org/10.3390/atmos13111879
APA StyleChen, Y. -J., Hong, J. -S., & Chen, W. -J. (2022). Impact of Assimilating FORMOSAT-7/COSMIC-2 Radio Occultation Data on Typhoon Prediction Using a Regional Model. Atmosphere, 13(11), 1879. https://doi.org/10.3390/atmos13111879