Long−Term Fertilization Increased Nitrous Oxide Emissions from Croplands Reclaimed from Desert
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Properties
2.2. Experimental Design and Agronomic Management
2.3. N2O Gas Sampling and Analysis
2.4. Soil Sampling and Analysis
2.5. Plant Sample Collection and Analysis
2.6. Data Analysis
3. Results
3.1. Weather Conditions
3.2. Daily N2O Fluxes
3.3. Seasonal and Crop Year N2O Emissions and Emission Factors
3.4. Soil Inorganic N Concentrations
3.5. Relationship of N2O Flux with Environmental Factors and Nitrate Intensity
3.6. Crop Yield and Yield−Based Emission Intensity
4. Discussion
4.1. Annual N2O Emissions
4.2. Effects of Reclamation on N2O Emissions
4.3. Effects of Soil Mineral N and Moisture on N2O Emissions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stehfest, E.; Bouwman, L. N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutr. Cycl. Agroecosyst. 2006, 74, 207–228. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Klein, C.A.; Eckard, R.J.; van der Weerden, T.J. Nitrous oxide emissions from the nitrogen cycle in livestock agriculture: Estimation and mitigation. In Nitrous Oxide and Climate Change; Smith, K., Ed.; Earthscan Ltd.: London, UK, 2010; pp. 107–144. [Google Scholar]
- Kirschbaum, M.U.; Saggar, S.; Tate, K.R.; Giltrap, D.L.; Ausseil AG, E.; Greenhalgh, S.; Whitehead, D. Comprehensive evaluation of the climate-change implications of shifting land use between forest and grassland: New Zealand as a case study Agric. Ecosyst. Environ. 2012, 150, 123–138. [Google Scholar] [CrossRef]
- Aliyu, G.; Sanz-Cobena, A.; Müller, C.; Zaman, M.; Luo, J.; Liu, D.; Yuan, J.; Chen, Z.; Niu, Y.; Arowolo, A.; et al. A meta-analysis of soil background N2O emissions from croplands in China shows variation among climatic zones. Agric. Ecosyst. Environ. 2018, 267, 63–73. [Google Scholar] [CrossRef]
- Sahrawat, K.L. Factors affecting nitrification in soils. Commun. Soil Sci. Plant. 2008, 39, 1436–1446. [Google Scholar] [CrossRef] [Green Version]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Pokharel, P.; Liu, G.; Chen, J. Reclamation of desert land to different land-use types changes soil bacterial community composition in a desert-oasis ecotone. Land Degrad. Dev. 2021, 32, 1389–1399. [Google Scholar] [CrossRef]
- Guilbault, M.R.; Matthias, A.D. Emissions of N2O from Sonoran Desert and effluent-irrigated grass ecosystems. J. Arid Environ. 1998, 38, 87–98. [Google Scholar] [CrossRef]
- Chen, D.; Li, Y.; Wang, C.; Liu, X.; Wang, Y.; Shen, J.; Qin, J.; Wu, J. Dynamics and underlying mechanisms of N2O and NO emissions in response to a transient land-use conversion of Masson pine forest to tea field. Sci. Total Environ. 2019, 693, 133549. [Google Scholar] [CrossRef]
- Van Lent, J.; Hergoualc’h, K.; Verchot, L.V. Reviews and syntheses: Soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: A meta-analysis. Biogeosciences 2015, 12, 7299–7313. [Google Scholar] [CrossRef]
- Yang, X.; Chen, H.; Gong, Y.; Zheng, X.; Fan, M.; Kuzyakov, Y. Nitrous oxide emissions from an agro-pastoral ecotone of northern China depending on land uses. Agric. Ecosyst. Environ. 2015, 213, 241–251. [Google Scholar] [CrossRef]
- Gütlein, A.; Gerschlauer, F.; Kikoti, I.; Kiese, R. Impacts of climate and land use on N2O and CH4 fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania. Glob. Chang. Biol. 2018, 24, 1239–1255. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, M.D.; Saha, D.; Dumont, M.G.; Hernández, M.; Adams, M.A. The effect of land-use change on soil CH4 and N2O fluxes: A global meta-analysis. Ecosystems 2019, 22, 1424–1443. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, Y.; Li, F.; Ma, Q.; Zhang, P.; Yin, P. Changes in soil organic carbon, nutrients and aggregation after conversion of native desert soil into irrigated arable land. Soil Till. Res. 2009, 104, 263–269. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Z.; Zhang, Z.; Song, N.; Zhou, H.; Li, Y.; Wang, Y.; Li, C.; Hale, L. Alteration of desert soil microbial community structure in response to agricultural reclamation and abandonment. Catena 2021, 207, 105678. [Google Scholar] [CrossRef]
- Sun, J.; Liu, T. The age of the Taklimakan Desert. Science 2006, 312, 1621. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Kuang, W.; Gao, X.; Tenuta, M.; Ma, Z.; Gui, D.; Zeng, F. Soil property and cotton productivity changes with nutrient input intensity in the Taklimakan desert of China. Arid Land Res. Manag. 2018, 32, 421–437. [Google Scholar] [CrossRef]
- Tian, H.; Yang, J.; Xu, R.; Lu, C.; Canadell, J.G.; Davidson, E.A.; Jackson, R.B.; Arneth, A.; Chang, J.; Ciais, P.; et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Glob. Chang. Biol. 2019, 25, 640–659. [Google Scholar] [CrossRef] [Green Version]
- Xia, F.; Mei, K.; Xu, Y.; Zhang, C.; Dahlgren, R.A.; Zhang, M. Response of N2O emission to manure application in field trials of agricultural soils across the globe. Sci. Total Environ. 2020, 733, 139390. [Google Scholar] [CrossRef]
- Zhu, S.; Vivanco, J.M.; Manter, D.K. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Appl. Soil Ecol. 2016, 107, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Spehn, E.M.; Joshi, J.; Schmid, B.; Alphei, J.; Körner, C. Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant. Soil. 2000, 224, 217–230. [Google Scholar] [CrossRef]
- Kuang, W.; Gao, X.; Tenuta, M.; Zeng, F. A global meta-analysis of nitrous oxide emission from drip-irrigated cropping system. Glob. Chang. Biol. 2021, 27, 3244–3256. [Google Scholar] [CrossRef] [PubMed]
- Scheer, C.; Wassmann, R.; Kienzler, K.; Ibragimov, N.; Eschanov, R. Nitrous oxide emissions from fertilized, irrigated cotton (Gossypium hirsutum L.) in the Aral Sea Basin, Uzbekistan: Influence of nitrogen applications and irrigation practices. Soil Biol. Biochem. 2008, 40, 290–301. [Google Scholar] [CrossRef]
- Ma, Z.; Gao, X.; Tenuta, M.; Kuang, W.; Gui, D.; Zeng, F. Urea fertigation sources affect nitrous oxide emission from a drip-fertigated cotton field in northwestern China. Agric. Ecosyst. Environ. 2018, 265, 22–30. [Google Scholar] [CrossRef]
- Kuang, W.; Gao, X.; Gui, D.; Tenuta, M.; Flaten, D.N.; Yin, M.; Zeng, F. Effects of fertilizer and irrigation management on nitrous oxide emission from cotton fields in an extremely arid region of northwestern China. Field Crops Res. 2018, 229, 17–26. [Google Scholar] [CrossRef]
- Li, Y.; Gao, X.; Tenuta, M.; Gui, D.; Li, X.; Xue, W.; Zeng, F. Enhanced efficiency nitrogen fertilizers were not effective in reducing N2O emissions from a drip-irrigated cotton field in arid region of Northwestern China. Sci. Total Environ. 2020, 748, 141543. [Google Scholar] [CrossRef]
- Lv, J.; Liu, X.; Liu, H.; Wang, X.; Li, K.; Tian, C.; Christie, P. Greenhouse gas intensity and net annual global warming potential of cotton cropping systems in an extremely arid region. Nutr. Cycl. Agroecosyst. 2014, 98, 15–26. [Google Scholar] [CrossRef]
- Afreh, D.; Zhang, J.; Guan, D.; Liu, K.; Song, Z.; Zheng, C.; Deng, A.; Feng, X.; Zhang, X.; Wu, Y.; et al. Long-term fertilization on nitrogen use efficiency and greenhouse gas emissions in a double maize cropping system in subtropical China. Soil Till. Res. 2018, 180, 259–267. [Google Scholar] [CrossRef]
- Liu, W.; Hussain, S.; Wu, L.; Qin, Z.; Li, X.; Lu, J.; Klan, F.; Cao, W.; Geng, M. Greenhouse gas emissions, soil quality, and crop productivity from a mono-rice cultivation system as influenced by fallow season straw management. Environ. Sci. Pollut. Res. 2016, 23, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Abdalla, M.; Kuhnert, M.; Albanito, F.; Zhou, F.; Xia, L.; Smith, P. Measurement of N2O emissions over the whole year is necessary for estimating reliable emission factors. Environ. Pollut. 2020, 259, 113864. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Gao, D.; Song, L.; Sheng, H.; Cai, T.; Liang, H. Contribution of the nongrowing season to annual N2O emissions from the permafrost wetland in Northeast China. Environ. Sci. Pollut. Res. 2022, 29, 61470–61487. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yang, S.; Zhang, A.; Jing, X.; Song, W.; Mi, Z.; Zhang, Q.; Wang, W.; Yang, Z. Nitrous oxide emissions following seasonal freeze-thaw events from arable soils in Northeast China. J. Integr. Agric. 2018, 17, 231–246. [Google Scholar] [CrossRef]
- Yin, M.; Gao, X.; Tenuta, M.; Gui, D.; Zeng, F. Presence of spring-thaw N2O emissions are not linked to functional gene abundance in a drip-fertigated cropped soil in arid northwestern China. Sci. Total Environ. 2019, 695, 133670. [Google Scholar] [CrossRef] [PubMed]
- Gale, E.S.; Sullivan, D.M.; Cogger, C.G.; Bary, A.I.; Hemphill, D.D.; Myhre, E.A. Estimating plant-available nitrogen release from manures, composts, and specialty products. J. Environ. Qual. 2006, 35, 2321–2332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulton, P.; Johnston, J.; Macdonald, A.; White, R.; Powlson, D. Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, United Kingdom. Glob. Chang. Biol. 2018, 24, 2563–2584. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, A.R. HMR: Flux Estimation with Static Chamber data. R Package Version 0.3.1. 2011. Available online: https://cran.r-project.org/web/packages/HMR/index.html (accessed on 3 May 2021).
- Maharjan, B.; Venterea, R.T. Nitrite intensity explains N management effects on N2O emissions in maize. Soil Biol. Biochem. 2013, 66, 229–238. [Google Scholar] [CrossRef]
- Yue, P.; Cui, X.; Wu, W.; Gong, Y.; Li, K.; Misselbrook, T.; Liu, X. Are annual nitrous oxide fluxes sensitive to warming and increasing precipitation in the Gurbantunggut Desert? Land Degrad. Dev. 2021, 32, 1213–1223. [Google Scholar] [CrossRef]
- Dalal, R.C.; Allen, D.E. Greenhouse gas fluxes from natural ecosystems. Aust. J. Bot. 2008, 56, 369–407. [Google Scholar] [CrossRef]
- Wolf, B.; Zheng, X.; Brüggemann, N.; Chen, W.; Dannenmann, M.; Han, X.; Sutton, M.; Wu, H.; Yao, Z.; Butterbach-Bahl, K. Grazing-induced reduction of natural nitrous oxide release from continental steppe. Nature 2010, 464, 881–884. [Google Scholar] [CrossRef]
- Huang, C.; Zeng, F.; Lei, J. Cultivation effects on the carbon and nitrogen dynamics at depth in oasis farmlands of the Southern Tarim Basin, China. Soil Sci. Plant Nutr. 2015, 61, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Qiu, W.; Liu, J.; Li, B.; Wang, Z. N2O and CO2 emissions from a dryland wheat cropping system with long-term N fertilization and their relationships with soil C, N, and bacterial community. Environ. Sci. Pollut. Res. 2020, 27, 8673–8683. [Google Scholar] [CrossRef] [PubMed]
- Geng, F.; Li, K.; Liu, X.; Gong, Y.; Yue, P.; Li, Y.; Han, W. Long-term effects of N deposition on N2O emission in an alpine grassland of Central Asia. Catena 2019, 182, 104100. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Shcherbak, I.; Millar, N.; Robertson, G.P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, E.A.; Vitousek, P.M.; Matson, P.A.; Riley, R.; García-Méndez, G.; Maass, J.M. Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico. J. Geophys. Res.-Atmos. 1991, 96, 15439–15445. [Google Scholar] [CrossRef]
- Li, F.; Liu, J.; Ren, W.; Liu, L. Land-use change alters patterns of soil biodiversity in arid lands of northwestern China. Plant Soil. 2018, 428, 371–388. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Zhao, L.; Zhang, W.; Liu, L. Change of soil microbial community under long-term fertilization in a reclaimed sandy agricultural ecosystem. PeerJ 2019, 7, e6497. [Google Scholar] [CrossRef]
- Zhao, S.; Li, K.; Zhou, W.; Qiu, S.; Huang, S.; He, P. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric. Ecosyst. Environ. 2016, 216, 82–88. [Google Scholar] [CrossRef]
- Liu, S.; Wang, M.; Yin, M.; Chu, G.; Xu, C.; Zhang, X.; Aliz, B.; Tang, C.; Wang, D.; Chen, S. Fifteen years of crop rotation combined with straw management alters the nitrogen supply capacity of upland-paddy soil. Soil Till. Res. 2022, 215, 105219. [Google Scholar] [CrossRef]
- Meng, L.; Ding, W.; Cai, Z. Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil. Soil Biol. Biochem. 2005, 37, 2037–2045. [Google Scholar] [CrossRef]
- Su, Y.; Yang, R.; Liu, W.; Wang, X. Evolution of soil structure and fertility after conversion of native sandy desert soil to irrigated cropland in arid region, China. Soil Sci. 2010, 175, 246–254. [Google Scholar] [CrossRef]
- Yao, Z.; Zhou, Z.; Zheng, X.; Xie, B.; Mei, B.; Wang, R.; Butterbach-Bahl, K.; Zhu, J. Effects of organic matter incorporation on nitrous oxide emissions from rice-wheat rotation ecosystems in China. Plant Soil 2010, 327, 315–330. [Google Scholar] [CrossRef]
- Lebender, U.; Senbayram, M.; Lammel, J.; Kuhlmann, H. Impact of mineral N fertilizer application rates on N2O emissions from arable soils under winter wheat. Nutr. Cycl Agroecosyst. 2014, 100, 111–120. [Google Scholar] [CrossRef]
- Lin, X.; Wang, S.; Ma, X.; Xu, G.; Luo, C.; Li, Y.; Jiang, G.; Xie, Z. Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan plateau during summer grazing periods. Soil Biol. Biochem. 2009, 41, 718–725. [Google Scholar] [CrossRef]
- Schaufler, G.; Kitzler, B.; Schindlbacher, A.; Skiba, U.; Sutton, M.A.; Zechmeister-Boltenstern, S. Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. Eur. J. Soil Sci. 2010, 61, 683–696. [Google Scholar] [CrossRef]
- Yan, R.; Tang, H.; Xin, X.; Chen, B.; Murray, P.J.; Yan, Y.; Wang, X.; Yang, G. Grazing intensity and driving factors affect soil nitrous oxide fluxes during the growing seasons in the Hulunber meadow steppe of China. Environ. Res. Lett. 2016, 11, 054004. [Google Scholar] [CrossRef]
Total N (g N kg−1 ) | NO3−−N (mg N kg−1) | NH4+−N (mg N kg−1) | Soil Organic Carbon (g C kg−1) | Available P (mg P kg−1) | Available K (mg K kg−1) | pH (H2O) | Electrical Conductivity (mS cm−1) | Bulk Density (g cm3) | |
---|---|---|---|---|---|---|---|---|---|
Desert | 0.1 ± 0.0 c | 17.3 ± 0.2 a | 1.7 ± 0.1 c | 1.3 ± 0.0 c | 1.0 ± 0.0 b | 206.2 ± 4.2 a | 7.6 ± 0.0 a | 0.8 ± 0.2 a | 1.6 ± 0.1 a |
No fertilizer | 0.2 ± 0.0 b | 2.4 ± 0.1 d | 3.0 ± 0.3 b | 2.3 ± 0.2 b,c | 1.2 ± 0.1 b | 129.5 ± 4.7 c | 7.6 ± 0.1 a | 0.2 ± 0.0 b | 1.5 ± 0.0 a,b |
Low fertilizer | 0.6 ± 0.1 a | 4.8 ± 0.5 c | 3.0 ± 0.1 b | 3.7 ± 0.3 a,b | 40.6 ± 1.4 a | 161.0 ± 6.6 b | 7.5 ± 0.0 a | 0.2 ± 0.0 b | 1.5 ± 0.0 b |
High fertilizer | 0.7± 0.1 a | 8.2 ± 1.2 b | 4.0 ± 0.3 a | 4.8 ± 0.4 a | 47.6 ± 2.7 a | 172.2 ± 8.0 b | 7.8 ± 0.1 a | 0.3 ± 0.0 b | 1.4 ± 0.0 c |
Basal | Topdressing | ||||||||
---|---|---|---|---|---|---|---|---|---|
N (Manure, kg N ha−1) | N (Urea, kg N ha−1)/ N (DAP, kg N ha−1)/ P (DAP, kg P ha−1) | N (Urea, kg N ha−1)/P (KDP, kg P ha−1)/K (KDP, kg K ha−1) | |||||||
2019 | 2 April | 8 April | 27 May | 11 June | 22 June | 16 July | 28 July | 7 August | 14 August |
Low fertilizer | 60 | 35/27/69 | 21/8/5 | 14/4/3 | 23/8/5 | 35/12/8 | 35/23/15 | 28/12/8 | 69/23/8 |
High fertilizer | 90 | 103/54/138 | 35/16/11 | 21/8/5 | 41/12/8 | 69/23/15 | 69/39/26 | 55/23/15 | 104/39/26 |
2020 | 28 April | 10 April | 30 June | 15 June | 22 June | 11 July | − | − | − |
Low fertilizer | 60 | 35/27/69 | 21/8/5 | 13/4/3 | 23/8/5 | 35/12/8 | 0 | 0 | 0 |
High fertilizer | 90 | 103/54/138 | 35/16/11 | 21/8/5 | 41/12/8 | 69/23/15 | 0 | 0 | 0 |
Cumulative N2O Emissions (g N ha−1) | Proportion (%) | Emission Factor (%) | ||||||
---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019–2020 | 2019–2020 | 2019 | 2020 | |||
Treatment | Growing Season | Non−Growing Season | Growing Season | Non−Growing Season | Non−Growing Season | |||
Desert | 125 ± 53 b | 96 ± 69 a | −40 ± 41 c | 67 ± 44 a | 248 ± 117 c | 66 | − | − |
No fertilizer | 296 ± 47 b | 102 ± 63 a | 192 ± 67 c | 81 ± 39 a | 670 ± 125 c | 27 | − | − |
Low fertilizer | 1357 ± 189 a | 27 ± 39 a | 842 ± 103 b | 7 ± 73 a | 2232 ± 222 b | 2 | 0.29 ± 0.06 a | 0.28 ± 0.04 a |
High fertilizer | 1986 ± 171 a | 179 ± 96 a | 1440 ± 130 a | 12 ± 39 a | 3615 ± 244 a | 5 | 0.27 ± 0.03 a | 0.14 ± 0.05 a |
2019 | 2020 | |||||||
---|---|---|---|---|---|---|---|---|
Treatment | Yield (Mg ha−1) | Crop N Uptake (kg N ha−1) | N recovery Efficiency | Emission Intensity (kg N Mg−1) | Yield (Mg ha−1) | Crop N Uptake (kg N ha−1) | N Recovery Efficiency | Emission Intensity (g N Mg−1) |
No fertilizer | 2.4 ± 0.1 b | 64 ± 4 b | − | 166 ± 38 b | 1.9 ± 0.7 b | 23 ± 3 b | − | 184 ± 110 a |
Low fertilizer | 6.8 ± 0.5 a | 173 ± 34 a | 0.17 ± 0.05 a | 210 ± 37 a,b | 5.6 ± 0.6 a | 146 ± 9 a | 0.19 ± 0.01 a | 147 ± 33 a |
High fertilizer | 7.0 ± 0.1 a | 188 ± 19 a | 0.19 ± 0.03 a | 308 ± 45 a | 6.2 ± 0.8 a | 120 ± 4 a | 0.15 ± 0.01 a | 234 ± 17 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Gao, X.; Kuang, W.; Li, X.; Zeng, F. Long−Term Fertilization Increased Nitrous Oxide Emissions from Croplands Reclaimed from Desert. Atmosphere 2022, 13, 1897. https://doi.org/10.3390/atmos13111897
Wu Y, Gao X, Kuang W, Li X, Zeng F. Long−Term Fertilization Increased Nitrous Oxide Emissions from Croplands Reclaimed from Desert. Atmosphere. 2022; 13(11):1897. https://doi.org/10.3390/atmos13111897
Chicago/Turabian StyleWu, Yufeng, Xiaopeng Gao, Wennong Kuang, Xiangyi Li, and Fanjiang Zeng. 2022. "Long−Term Fertilization Increased Nitrous Oxide Emissions from Croplands Reclaimed from Desert" Atmosphere 13, no. 11: 1897. https://doi.org/10.3390/atmos13111897
APA StyleWu, Y., Gao, X., Kuang, W., Li, X., & Zeng, F. (2022). Long−Term Fertilization Increased Nitrous Oxide Emissions from Croplands Reclaimed from Desert. Atmosphere, 13(11), 1897. https://doi.org/10.3390/atmos13111897