Effects of Mixed Cropping of Garden Plants with Brassica parachinensis on Remediation of Cr-Polluted Soil in Community Garden
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Soil
2.2. Test Plants
2.3. Pot Experiments
2.4. Sample Collection
2.5. Indicator Determination
2.5.1. Soil Sample Analysis Method
2.5.2. Plant Physiological Indexes and Cr Content Determination
2.6. Statistical Analysis
3. Results and Analysis
3.1. Effects of Different Mixed Cropping on Growth Characteristics of B. Parachinensis
3.2. Effects of Mixed Cropping on Plant Physiological Indexes
3.3. Effects of Mixed Cropping on Cr Content in Aboveground and Underground Parts of Plants
3.4. Effects of Mixed Cropping on Cr Enrichment Characteristics and TF of Plants
3.5. Effects of Mixed Cropping on Soil Cr Content
4. Discussion
4.1. Effects of Mixed Cropping Patterns on Plant Growth and Physiological Response to Cr Stress
4.2. Effects of Mixed Cropping Patterns on Plant Absorption of Cr and Soil Remediation Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, X. Attention should be paid to acute health risk assessment and adaptation research of air pollution and climate change. Chin. J. Epidemiol. 2017, 38, 280–282. [Google Scholar]
- Shen, X.; Ge, M.; Wang, Q.; Padua, M.; Chen, D. Restoring, Remaking and Greening Freshwater Ecosystems: A Review of Projects in China. Ecol. Restor. 2022, 40, 172–178. [Google Scholar] [CrossRef]
- Lan, X.; Dawn, T.; Wang, X.; Lan, S. Ecological, Productive, Participatory-A Review of Domestic and Foreign Studies on Urban Productive Landscape. Shandong For. Sci. Technol. 2022, 52, 87–95. [Google Scholar]
- Meiting, S. Ecological, Productive, Participatory—A Review of Domestic and Foreign Studies on Urban Productive Landscape. Master’s Thesis, Northern Polytechnic University, Grande Prairie, AB, Canada, 2021. [Google Scholar]
- Peng, Z.; Xiao, B. Research progress on removal of heavy metal pollution in soil by electrokinetic remediation technology. Earth Environ. 2022, 50, 11. [Google Scholar]
- Mark, A.S.L.; Dileepa, H.A.; Suzie, M.R.; Mark, P.T.; Andrew, S.B. Assessment of soil metal concentrations in residential and community vegetable gardens in Melbourne, Australia. Chemosphere Oxf. 2018, 199, 303–311. [Google Scholar]
- Chen, B.; Tan, S.; Dong, F.; Yang, Y. Toxicity of heavy metals to plants and detoxification mechanism of plants. Jiangsu Agric. Sci. 2019, 47, 34–38. [Google Scholar]
- Adnan, M.; Xiao, B.; Xiao, P.; Zhao, P.; Bibi, S. Heavy Metal, Waste, COVID-19, and Rapid Industrialization in This Modern Era—Fit for Sustainable Future. Sustainability 2022, 14, 4746. [Google Scholar] [CrossRef]
- Ling, T. Absorption Characteristics of Cd, Pb and Cr Heavy Metals by Low Cd Accumulation Varieties of Cabbage. Master’s Thesis, Jinan University, Jinan, China, 2014. [Google Scholar]
- Zou, S.; Du, R.; Wen, D.; Wang, F.; Zhang, W.; Guan, Y. Study on pollution assessment and enrichment characteristics of heavy metals in different vegetables. J. Ecol. Environ. 2017, 26, 714–720. [Google Scholar]
- Zhao, Q.; Shi, L.; He, H.; Li, T.; Li, Y.; Zhang, L.; Yang, G. Effect of Intercropping Different Green Manure Plant Combinations on Tea Garden Soil Improvement. J. Fujian J. Agric. Sci. 2021, 36, 602–609. [Google Scholar]
- Li, J.; Yue, X.L.; Cheng, Y.H.; Bao, L.Y.; Yu, Y.Y.; Ren, X.M. Research progress on heavy metal pollution in soil and the effect on heavy metal residues in vegetables. J. Food Saf. Qual. 2019, 16, 7. [Google Scholar]
- Silvio, C.; Heather, R.; Martin, S. “I like to get my hands stuck in the soil”: A pilot study in the acceptance of soil-less methods of cultivation in community gardens. J. Clean. Prod. 2020, 258, 120585. [Google Scholar]
- Zhang, X.; Luo, Y.; Huang, H.; Liu, J.; Zhu, Y.; Zeng, Q. Leersia hexandra Swartz, a newly discovered hygrophytic hyperaccumulator of chromium. J. Ecol. 2006, 26, 4. [Google Scholar]
- Zhou, X. Research progress on phytoremediation technology for heavy metal enrichment. Anhui Agric. Sci. 2010, 38, 1408–1410. [Google Scholar]
- Wu, Q.; Gao, Y.; Li, D.; Li, S.; Wang, M. Remediation of Festuca arundinacea on the pollution of compound heavy metals in river sediment. J. Soil Water Conserv. 2012, 26, 219–223. [Google Scholar]
- Wang, D.; Tian, Y.; Zhang, H.; Zhang, Q.; Chen, K.; Li, Z. Effect of fresh amine ester on germination characteristics of white clover seeds under chromium stress. Pratacultural Sci. 2021, 38, 1986–1997. [Google Scholar]
- Zheng, S.; Wei, Y.; Guo, H.; Zhu, J.; Li, X.; Jiang, Z. Study on the characteristics of heavy metal content and selection of tolerant plants in chromium polluted areas. For. Sci. Res. 2011, 24, 205–211. [Google Scholar]
- Dong, Y.; Zheng, W.; Zhou, J. Background Values of Soil Geochemistry in Zhejiang Province; Geological Publishing House: Zhejiang, China, 2007; ISBN 9787116053083. [Google Scholar]
- GB15618-2018; Soil Environmental Quality Standard for Risk Management and Control of Agricultural Land Soil Pollution (Trial). China Environmental Science Press: Beijing, China, 2018.
- Tu, R.; Zhu, J.; Cao, H.; Gu, X.; Gao, H.; Zhang, Z. Practice and exploration of designing experimental teaching project of soil agrochemical analysis. Anhui Agric. Bull. 2017, 23, 153–154. [Google Scholar]
- Soil and Sediment. Determination of Copper, Zinc, Lead, Nickel and Chromium. Flame Atomic Absorption Spectrophotometry; Ministry of Ecological Environment of the People’s Republic of China: Beijing, China, 2019; Volume HJ 491-2019.
- Feng, C.; Xie, Q.; Hou, X.; Zhu, Y. Determination of Heavy Metals by Atomic Absorption Spectrophotometer. Mod. Food 2016, 8, 101–102. [Google Scholar]
- Huo, W.; Zhao, Z.; Wang, L.; Zhou, R.; Fan, H. Effects of different super enrichment plant maize intercropping models on cadmium uptake and transport in maize. Geosci. Front. 2019, 26, 10. [Google Scholar]
- Xiong, G.; Gao, J.; Wang, H.; Pan, Y.; Jiao, P. Effects of chelating agents on heavy metal absorption by Solanum nigrum and Daye Wellhead Grass under intercropping conditions. J. Agric. Environ. Sci. 2011, 30, 666–676. [Google Scholar]
- Getachew, A.; Amare, G.; Woldeyesus, S. Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian highlands. Eur. J. Agron. 2006, 25, 202–207. [Google Scholar]
- Neng, F.; Wu, L.; Liu, H.; Ren, J.; Liu, W.; Luo, Y. Effects of intercropping Sedum plumbizincicola and Apium graceolens on the soil chemical and microbiological properties under the contamination of zinc and cadmium from sewage sludge application. J. Appl. Ecol. 2013, 24, 1428–1434. [Google Scholar]
- Zhao, J.; Sun, J.; Chen, L. Effects of Intercropping Three Leguminous Crops with Maize on Maize Productivity and Interspecific Competition. J. Grass Ind. 2020, 29, 86–94. [Google Scholar]
- Jing, M.; Liu, B.; Wang, K.; Zhang, G.; Qian, W.; Wan, F. Response of light energy utilization and chlorophyll synthesis of Mikania micrantha under different light intensities. Chin. Agric. Sci. 2022, 55, 2347–2359. [Google Scholar]
- Hao, L.; Hui, Y.; Qian, L.; Lingfang, M.; Liang, Z.; Xiaohua, D. Effects of Grain Amaranth Tobacco Intercropping on the Content and Quality of Some Mineral Elements in Tobacco Leaves. Agric. Sci. Res. 2019, 40, 6–12. [Google Scholar]
- Song, Z.; Ma, X.; Sun, G.; Yi, J.; Zhang, C.; You, Y.; Wang, D.; Li, K. Effects of Cadmium Stress on the Growth, Physiology and Biochemistry of Different Ploids of Populus ussuriensis. Plant Res. 2020, 40, 728–734. [Google Scholar]
- Zhang, Y.; Tang, Y.; Xu, H.; Jin, Q.; Chen, T.; Xu, Z. Effects of Intercropping Blue Thistle with Sunflower on Physiological Characteristics of Some Enzymes. Mol. Plant Breed. 2019, 17, 4840–4843. [Google Scholar]
- Wang, J.; Li, Y.; Zu, Y.; Zhan, F.; Qin, L.; He, Y. Effects of the Intercropping System of Arabidopsis parviflora and Maize on Plant Physiology under Lead Stress. Environ. Sci. Technol. 2017, 40, 54–59. [Google Scholar]
- Yao, C.; Bi, D.; Wang, Q.; Liu, Y. A Method for Remediation of Lead and Cadmium Contaminated Soil by Corn Straw and Intercropping Energy Plants with Sedum; Nanjing Civil Engineering Environmental Remediation Technology Co., Ltd.: Suzhou, China, 2020. [Google Scholar]
- Tan, J.; Chen, X.; Guo, X.; Li, Y.; Zu, Y. Distribution Characteristics of Pb and Cd in Different Parts of Sonchus asper and Zea mays in An Intercropping System. Eco. Environ. Sci. 2015, 4, 700–707. [Google Scholar]
- Zou, J.; Niu, Y.; Song, F.; Xing, X.; Chen, G.; Zhuge, Y. Effect of potassium fertilizer on phytoremediation of cadmium and zinc contaminated soil. J. Agric. Environ. Sci. 2022, 41, 304–312. [Google Scholar]
- Liu, H.; Zhao, C.; Liu, Y.; Guo, W. Effects of cadmium stress on physiology and accumulation of marigold seedlings. J. Fu Jian Agric. 2019, 34, 1221–1227. [Google Scholar]
- Wang, A.; Zhong, G.; Xu, G.; Liu, Z.; Shen, X. Effects of chromium stress on the growth and chromium accumulation of three herbaceous plants. Environ. Sci. 2012, 33, 2028–2037. [Google Scholar]
- Liu, S.; Sun, Z.; Cao, R. Pilot experiment on remediation of chromium contaminated soil with waste and tall fescue. J. Henan Univ. Eng. Nat. Sci. Ed. 2018, 30, 7. [Google Scholar]
- Shi, S.; Mo, L.; Wei, C.; Wang, H.; Liu, Y.; Wei, L.; Fan, Z. Efficiency and risk assessment of heavy metal enrichment in crops under different intercropping patterns. Soil Fertil. China 2021, 5, 223–231. [Google Scholar]
- Wang, X.; Li, L.; Yan, X.; Tian, Y. Progress in remediation technology of chromium contaminated sites. Environ. Eng. 2020, 6, 9. [Google Scholar]
- Zhang, H.; Chen, Y.; Xie, B.; An, Q.; Yang, D. Air Pollution and Climate Change; Meteorological Publishing House: Beijing, China, 2022; ISBN 9787502976644. [Google Scholar]
- Shen, X.; Handel, S.N.; Kirkwood, N.G.; Huang, Y.; Padua, M.G. Locating the Responsive Plants for Landscape Recovery: A Toolkit for Designers and Planners. Ecol. Restoration 2022, 01, 33–35. [Google Scholar] [CrossRef]
Soil Type | Cr (mg·kg−1) | AN/(mg·kg−1) | AP/(mg·kg−1) | AK/(mg·kg−1) | pH | OM/(g∙kg−1) | SBD/ (g·cm−3) |
---|---|---|---|---|---|---|---|
Red loam | 200 | 221 | 96 | 35.22 | 6.00 | 4.16 | 1.39 |
Soil | Planting Pattern | Treatment | Treatment Code |
---|---|---|---|
Cr-contaminated soil | Monoculture Mixed cropping | B. parachinensisT. repensF. arundinacea A. conyzoidesB. parachinensis-F. arundinacea B. parachinensis-A. conyzoides B. parachinensis-T. repens | T B G J TG TJ TB |
Plant Name | Treatment Number | Individual Biomass/g | Aerial Biomass/g | Ground Biomass/g | Plant Height/cm | Root Length/cm |
---|---|---|---|---|---|---|
B. parachinensis | TB | 6.19 ± 0.20a | 4.33 ± 0.11a | 1.86 ± 0.15a | 26.41 ± 0.68a | 8.18 ± 0.45a |
TG | 2.11 ± 0.04c | 1.37 ± 0.05d | 0.74 ± 0.01c | 9.25 ± 0.72d | 3.22 ± 0.17c | |
TJ | 4.55 ± 0.34b | 3.11 ± 0.33b | 1.44 ± 0.05b | 18.00 ± 0.83b | 5.71 ± 0.35b | |
T | 4.16 ± 0.15b | 2.72 ± 0.07c | 1.44 ± 0.13b | 16.04 ± 0.55c | 5.53 ± 0.33b |
Plant name | Treatment Number | Individual Biomass/g | Aerial Biomass/g | Ground Biomass/g | Plant Height/cm | Root Length/cm |
---|---|---|---|---|---|---|
T. repens F. arundinacea A. conyzoides | TB | 4.83 ± 0.54a | 2.69 ± 0.35b | 2.14 ± 0.23a | 19.49 ± 0.15b | 10.85 ± 0.45a |
B | 4.76 ± 0.38a | 3.09 ± 0.29ab | 1.66 ± 0.44b | 17.10 ± 2.22bc | 11.06 ± 0.49a | |
TG | 2.78 ± 0.57b | 2.15 ± 0.31c | 0.63 ± 0.27cd | 52.12 ± 3.37a | 11.64 ± 2.96a | |
G | 4.32 ± 0.28a | 3.47 ± 0.25a | 0.86 ± 0.03c | 54.65 ± 0.23a | 10.87 ± 0.35a | |
TJ | 2.66 ± 0.28b | 1.38 ± 0.14cd | 1.29 ± 0.16c | 19.08 ± 1.37b | 9.89 ± 0.82a | |
J | 1.49 ± 0.25c | 1.04 ± 0.21d | 0.46 ± 0.11d | 15.51 ± 0.12c | 10.72 ± 0.90a |
Plant Name | Treatment | BCF | TF (Aboveground-Underground) | |
---|---|---|---|---|
Aboveground | Underground | |||
B. parachinensis | TB | 0.002b | 0.004c | 0.417ab |
TG | 0.002b | 0.005c | 0.472a | |
TJ | 0.003a | 0.010a | 0.266c | |
T | 0.003a | 0.007b | 0.360b |
Plant Name | Treatment | BCF | TF (Aboveground-Underground) | |
---|---|---|---|---|
Aboveground | Underground | |||
T. repens F. arundinacea A. conyzoides | TB | 0.157a | 0.335a | 0.470a |
B | 0106b | 0.302b | 0.440b | |
TG | 0.067c | 0.226d | 0.298c | |
G | 0.060d | 0.296b | 0.203e | |
TJ | 0.059d | 0.228d | 0.257d | |
J | 0.070c | 0.245c | 0.284cd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, S.; Liu, W.; Jin, H.; Yi, Q.; Wang, Y.; Liu, D. Effects of Mixed Cropping of Garden Plants with Brassica parachinensis on Remediation of Cr-Polluted Soil in Community Garden. Atmosphere 2022, 13, 1991. https://doi.org/10.3390/atmos13121991
Cui S, Liu W, Jin H, Yi Q, Wang Y, Liu D. Effects of Mixed Cropping of Garden Plants with Brassica parachinensis on Remediation of Cr-Polluted Soil in Community Garden. Atmosphere. 2022; 13(12):1991. https://doi.org/10.3390/atmos13121991
Chicago/Turabian StyleCui, Shiyu, Wenbin Liu, Hexian Jin, Qiao Yi, Ying Wang, and Dan Liu. 2022. "Effects of Mixed Cropping of Garden Plants with Brassica parachinensis on Remediation of Cr-Polluted Soil in Community Garden" Atmosphere 13, no. 12: 1991. https://doi.org/10.3390/atmos13121991
APA StyleCui, S., Liu, W., Jin, H., Yi, Q., Wang, Y., & Liu, D. (2022). Effects of Mixed Cropping of Garden Plants with Brassica parachinensis on Remediation of Cr-Polluted Soil in Community Garden. Atmosphere, 13(12), 1991. https://doi.org/10.3390/atmos13121991