Decoupling of the Municipal Thermal Environment Using a Spatial Autoregressive Model
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Scale
2.1.1. Spatial Scale
2.1.2. Spatial Scale
2.2. Urban Land Surface Characteristics
2.2.1. Land Surface Temperature (LST)
2.2.2. Normalized Differential Vegetation Index (NDVI)
2.2.3. Vegetation Classification (VC)
2.2.4. Modified Normalized Difference Water Index (MNDWI)
2.2.5. Impervious Surfaces Index (ISI)
2.2.6. Building Silhouette Index (BS)
2.3. Social Economic Index
2.3.1. Population Density Index (PD)
2.3.2. NPP-VIIRS (NPP)g Silhouette Index (BS)
2.4. Data Extraction
3. Methods
4. Experiment and Results
4.1. Global Spatial Autocorrelation Test
4.2. Local Spatial Correlation Test
4.3. Classical Spatial Regression Model
4.4. Spatial Regression Model Selection
4.5. SAC Analysis and Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Urbanization Prospects—Population Division—United Nations. Available online: https://population.un.org/wup/ (accessed on 1 December 2022).
- Wu, Z.; Qiao, R.; Zhao, S.; Liu, X.; Gao, S.; Liu, Z.; Ao, X.; Zhou, S.; Wang, Z.; Jiang, Q. Nonlinear Forces in Urban Thermal Environment Using Bayesian Optimization-Based Ensemble Learning. Sci. Total Environ. 2022, 838, 156348. [Google Scholar] [CrossRef]
- Shen, X.; Chen, M.; Ge, M.; Padua, M.G. Examining the Conceptual Model of Potential Urban Development Patch (PUDP), VOCs, and Food Culture in Urban Ecology: A Case in Chengdu, China. Atmosphere 2022, 13, 1369. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, G.; Yao, J.; Wang, X.; Calautit, J.K.; Zhao, C.; An, N.; Peng, X. Accelerated Environmental Performance-Driven Urban Design with Generative Adversarial Network. Build. Environ. 2022, 224, 109575. [Google Scholar] [CrossRef]
- Yu, Z.; Yao, Y.; Yang, G.; Wang, X.; Vejre, H. Spatiotemporal Patterns and Characteristics of Remotely Sensed Region Heat Islands during the Rapid Urbanization (1995–2015) of Southern China. Sci. Total Environ. 2019, 674, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhang, B. Using Social Media Data in Understanding Site-Scale Landscape Architecture Design: Taking Seattle Freeway Park as an Example. Landsc. Res. 2020, 45, 627–648. [Google Scholar] [CrossRef]
- Akbari, H.; Kolokotsa, D. Three Decades of Urban Heat Islands and Mitigation Technologies Research. Energy Build. 2016, 133, 834–842. [Google Scholar] [CrossRef]
- The Paris Agreement|UNFCCC. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 31 October 2022).
- UN Climate Action Summit 2019|United Nations Development Programme. Available online: https://www.undp.org/ukraine/news/un-climate-action-summit-2019?utm_source=EN&utm_medium=GSR&utm_content=US_UNDP_PaidSearch_Brand_English&utm_campaign=CENTRAL&c_src=CENTRAL&c_src2=GSR&gclid=Cj0KCQjwwfiaBhC7ARIsAGvcPe6uWw0qrDrhpP_cmxVjQWJt5K6h_M1IISCc8TXQwiA3lYUUaW3evgoaArLcEALw_wcB (accessed on 31 October 2022).
- Silveira, I.H.; Oliveira, B.F.A.; Cortes, T.R.; Junger, W.L. The Effect of Ambient Temperature on Cardiovascular Mortality in 27 Brazilian Cities. Sci. Total Environ. 2019, 691, 996–1004. [Google Scholar] [CrossRef]
- Kodera, S.; Nishimura, T.; Rashed, E.A.; Hasegawa, K.; Takeuchi, I.; Egawa, R.; Hirata, A. Estimation of Heat-Related Morbidity from Weather Data: A Computational Study in Three Prefectures of Japan over 2013–2018. Environ. Int. 2019, 130, 104907. [Google Scholar] [CrossRef]
- Chen, K.; Bi, J.; Chen, J.; Chen, X.; Huang, L.; Zhou, L. Influence of Heat Wave Definitions to the Added Effect of Heat Waves on Daily Mortality in Nanjing, China. Sci. Total Environ. 2015, 506–507, 18–25. [Google Scholar] [CrossRef]
- Vicedo-Cabrera, A.M.; Sera, F.; Guo, Y.; Chung, Y.; Arbuthnott, K.; Tong, S.; Tobias, A.; Lavigne, E.; de Sousa Zanotti Stagliorio Coelho, M.; Hilario Nascimento Saldiva, P.; et al. A Multi-Country Analysis on Potential Adaptive Mechanisms to Cold and Heat in a Changing Climate. Environ. Int. 2018, 111, 239–246. [Google Scholar] [CrossRef]
- Waters, N. Tobler’s First Law of Geography. In International Encyclopedia of Geography: People, the Earth, Environment and Technology; Richardson, D., Castree, N., Goodchild, M.F., Kobayashi, A., Liu, W., Marston, R.A., Eds.; John Wiley & Sons, Ltd.: Oxford, UK, 2017; pp. 1–13. ISBN 978-0-470-65963-2. [Google Scholar]
- Luo, Z.; Sun, C.; Dong, Q.; Qi, X. Key Control Variables Affecting Interior Visual Comfort for Automated Louver Control in Open-Plan Office—A Study Using Machine Learning. Build. Environ. 2022, 207, 108565. [Google Scholar] [CrossRef]
- Chun, B.; Guldmann, J.-M. Impact of Greening on the Urban Heat Island: Seasonal Variations and Mitigation Strategies. Comput. Environ. Urban Syst. 2018, 71, 165–176. [Google Scholar] [CrossRef]
- Qiao, Z.; Tian, G.; Xiao, L. Diurnal and Seasonal Impacts of Urbanization on the Urban Thermal Environment: A Case Study of Beijing Using MODIS Data. ISPRS J. Photogramm. Remote Sens. 2013, 85, 93–101. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, X.; Manlike, A.; Jin, Y.; Zheng, F.; Guo, J.; Shen, G.; Zhang, Y.; Xu, B. Comparative Study of Remote Sensing Estimation Methods for Grassland Fractional Vegetation Coverage—A Grassland Case Study Performed in Ili Prefecture, Xinjiang, China. Int. J. Remote Sens. 2019, 40, 2243–2258. [Google Scholar] [CrossRef]
- Xu, H. A New Index for Delineating Built-up Land Features in Satellite Imagery. Int. J. Remote Sens. 2008, 29, 4269–4276. [Google Scholar] [CrossRef]
- Correia Filho, W.L.F.; de Barros Santiago, D.; de Oliveira-Júnior, J.F.; da Silva Junior, C.A. Impact of Urban Decadal Advance on Land Use and Land Cover and Surface Temperature in the City of Maceió, Brazil. Land Use Policy 2019, 87, 104026. [Google Scholar] [CrossRef]
- Guha, S.; Govil, H.; Dey, A.; Gill, N. Analytical Study of Land Surface Temperature with NDVI and NDBI Using Landsat 8 OLI and TIRS Data in Florence and Naples City, Italy. Eur. J. Remote Sens. 2018, 51, 667–678. [Google Scholar] [CrossRef] [Green Version]
- Ghaedrahmati, S.; Alian, M. Health Risk Assessment of Relationship between Air Pollutants’ Density and Population Density in Tehran, Iran. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1853–1869. [Google Scholar] [CrossRef]
- Godin, F.; Degrave, J.; Dambre, J.; De Neve, W. Dual Rectified Linear Units (DReLUs): A Replacement for Tanh Activation Functions in Quasi-Recurrent Neural Networks. Pattern Recognit. Lett. 2018, 116, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Gao, N.; Li, F.; Zeng, H.; van Bilsen, D.; De Jong, M. Can More Accurate Night-Time Remote Sensing Data Simulate a More Detailed Population Distribution? Sustainability 2019, 11, 4488. [Google Scholar] [CrossRef]
- Li, K.; Fang, L.; He, L. How Urbanization Affects China’s Energy Efficiency: A Spatial Econometric Analysis. J. Clean. Prod. 2018, 200, 1130–1141. [Google Scholar] [CrossRef]
- Salisu, A.; Olofin, S.; Kouassi, E. Testing for Cross-Sectional Dependence in a RandomEffects Model. Open J. Stat. 2012, 02, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Bristow, K.L. On Solving the Surface Energy Balance Equation for Surface Temperature. Agric. For. Meteorol. 1987, 39, 49–54. [Google Scholar] [CrossRef]
- Chang, C.-R.; Li, M.-H.; Chang, S.-D. A Preliminary Study on the Local Cool-Island Intensity of Taipei City Parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Spronken-Smith, R.A.; Oke, T.R.; Lowry, W.P. Advection and the Surface Energy Balance across an Irrigated Urban Park. Int. J. Climatol. 2000, 20, 1033–1047. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Dons, K.; Meilby, H. Efficiency of Parks in Mitigating Urban Heat Island Effect: An Example from Addis Ababa. Landsc. Urban Plan. 2014, 123, 87–95. [Google Scholar] [CrossRef]
Variable | Definition | Sample Size | Reference | |
---|---|---|---|---|
Dependent variable | LST | LST is the specific value of remote sensing inversion land surface temperature. | 16,312 × 4 | Meiyan Zhao [24] |
Independent variables | NDVI | NDVI is the specific value of the vegetation index. | 16,312 × 4 | Bumseok Chun [14] |
Independent variables | VC | VC distinguishes the vegetation classification based on VFC. It is divided into 4 types: no vegetation, grassland, shrubs, and trees, which are represented by 1, 2, 3, and 4, respectively. | 16,312 × 4 | Wenbo Zhang [16] |
Independent variables | MWI | MWI distinguishes the water classification based on MNDWI. It is divided into 2 types: no vegetation, and water, which are represented by 0 and 1, respectively. | 16,312 × 4 | Hanqiu Xu [25] |
Independent variables | ISI | ISI distinguishes the impervious surfaces classification based on NDISI. It is divided into 2 types: no impervious surfaces, and impervious surfaces, which are represented by 0 and 1, respectively. | 16,312 × 4 | Hanqiu Xu [25] |
Independent variables | BS | BS is based on the building data of the map provider. It is divided into 2 types: no building, and building, which are represented by 0 and 1, respectively. | 16,312 × 4 | |
Independent variables | PD | PD is based on the geospatial data of the map provider. The data type is a specific value. | 16,312 × 4 | |
Independent variables | NPP | NPP is the night light index from NOAA. The data type is a specific value. | 16,312 × 4 | Nannan Gao [24] |
Test | DF | Value | Prob | |
---|---|---|---|---|
31 January 2017 | LM (lag) | 1 | 12,702.248 | 0.00000 |
LM (error) | 1 | 12,226.630 | 0.00000 | |
Robust LM (lag) | 1 | 491.976 | 0.00000 | |
Robust LM (error) | 1 | 16.358 | 0.00000 | |
7 May 2017 | LM (lag) | 1 | 12,031.816 | 0.00005 |
LM (error) | 1 | 8981.336 | 0.00000 | |
Robust LM (lag) | 1 | 3729.714 | 0.00000 | |
Robust LM (error) | 1 | 679.234 | 0.00000 | |
10 July 2017 | LM (lag) | 1 | 13,404.085 | 0.00000 |
LM (error) | 1 | 12,304.683 | 0.00000 | |
Robust LM (lag) | 1 | 3321.107 | 0.00000 | |
Robust LM (error) | 1 | 2221.705 | 0.00000 | |
28 September 2017 | LM (lag) | 1 | 17,828.008 | 0.00000 |
LM (error) | 1 | 13,760.561 | 0.00000 | |
Robust LM (lag) | 1 | 4624.560 | 0.00000 | |
Robust LM (error) | 1 | 557.113 | 0.00000 |
Test | OLS | SLM | SEM | SAC | |
---|---|---|---|---|---|
31 January 2017 | R-squared | 0.074 | 0.540 | 0.591 | 0.691 |
Log likelihood (LL) | −42,237.900 | −37,706.600 | −36,905.640 | −34,491.360 | |
Akaike info criterion (AIC) | 84,491.800 | 75,431.200 | 73,827.300 | 69,000.700 | |
Schwarz criterion (SC) | 84,553.400 | 75,500.500 | 73,888.900 | 69,070.000 | |
7 May 2017 | R-squared | 0.593 | 0.803 | 0.800 | 0.819 |
Log likelihood (LL) | −35,328.600 | −30,127.500 | −30,840.120 | −28,988.690 | |
Akaike info criterion (AIC) | 70,673.100 | 60,273.000 | 61,696.200 | 57,995.400 | |
Schwarz criterion (SC) | 70,734.700 | 60,342.300 | 61,757.800 | 58,064.700 | |
10 July 2017 | R-squared | 0.702 | 0.868 | 0.876 | 0.872 |
Log likelihood (LL) | −37,754.300 | −31,801.300 | −32,113.650 | −30,942.850 | |
Akaike info criterion (AIC) | 75,524.500 | 63,620.600 | 64,243.300 | 61,903.700 | |
Schwarz criterion (SC) | 75,586.100 | 63,689.900 | 64,304.900 | 61,973.000 | |
28 September 2017 | R-squared | 0.509 | 0.830 | 0.828 | 0.860 |
Log likelihood (LL) | −38,889.600 | −31,306.300 | −31,929.120 | −29,282.220 | |
Akaike info criterion (AIC) | 77,795.200 | 62,630.500 | 63,874.200 | 58,582.400 | |
Schwarz criterion (SC) | 77,856.800 | 62,699.800 | 63,935.800 | 58,651.700 |
SAC | Coefficient | St. Error | Standard Coefficient | z-Value | Probability | |
---|---|---|---|---|---|---|
31 January 2017 | CONSTANT | −1.4689 | 0.0378 | −0.0299 | −38.8248 | 0.0000 |
WLST | 1.1011 | 0.0036 | 0.0021 | 306.6590 | 0.0000 | |
NDVI | 1.7996 | 0.2628 | 0.2541 | 6.8479 | 0.0000 | |
VC | 0.3370 | 0.0249 | 0.0045 | 13.5376 | 0.0000 | |
MWI | 0.3664 | 0.0934 | 0.0184 | 3.9240 | 0.0001 | |
ISI | 0.2702 | 0.0406 | 0.0059 | 6.6529 | 0.0000 | |
BS | −0.2932 | 0.0576 | −0.0091 | −5.0924 | 0.0000 | |
PD | 0.0469 | 0.0106 | 0.0003 | 4.3917 | 0.0000 | |
NPP | 0.0052 | 0.0014 | 0.0000 | 3.7856 | 0.0002 | |
Wε | −0.9768 | 0.0135 | −0.0071 | −72.6171 | 0.0000 | |
7 May 2017 | CONSTANT | 7.4132 | 0.1462 | 0.7701 | 50.6929 | 0.0000 |
WLST | 0.8188 | 0.0043 | 0.0025 | 190.0250 | 0.0000 | |
NDVI | −4.3804 | 0.1617 | −0.5030 | −27.0980 | 0.0000 | |
VC | 0.1058 | 0.0309 | 0.0023 | 3.4282 | 0.0006 | |
MWI | −8.6979 | 0.1301 | −0.8036 | −66.8722 | 0.0000 | |
ISI | −0.3029 | 0.0397 | −0.0086 | −7.6224 | 0.0000 | |
BS | −0.2602 | 0.0463 | −0.0086 | −5.6211 | 0.0000 | |
PD | 0.0085 | 0.0097 | 0.0001 | 0.8745 | 0.3818 | |
NPP | −0.0161 | 0.0015 | 0.0000 | −10.4426 | 0.0000 | |
Wε | −0.4481 | 0.0146 | −0.0046 | −30.7198 | 0.0000 | |
10 July 2017 | CONSTANT | 10.7143 | 0.1764 | 1.1792 | 60.7504 | 0.0000 |
WLST | 0.7546 | 0.0042 | 0.0020 | 181.7900 | 0.0000 | |
NDVI | −5.1329 | 0.1918 | −0.6143 | −26.7624 | 0.0000 | |
VC | 0.2188 | 0.0436 | 0.0060 | 5.0216 | 0.0000 | |
MWI | −5.4404 | 0.1503 | −0.5103 | −36.1968 | 0.0000 | |
ISI | 1.0346 | 0.0600 | 0.0387 | 17.2477 | 0.0000 | |
BS | 1.1800 | 0.0548 | 0.0404 | 21.5207 | 0.0000 | |
PD | 0.0325 | 0.0121 | 0.0002 | 2.6937 | 0.0071 | |
NPP | −0.0053 | 0.0017 | 0.0000 | −3.0318 | 0.0024 | |
Wε | −0.2715 | 0.0144 | −0.0024 | −18.8543 | 0.0000 | |
28 September 2017 | CONSTANT | 3.3573 | 0.1081 | 0.2591 | 31.0541 | 0.0000 |
WLST | 0.9214 | 0.0031 | 0.0020 | 301.9430 | 0.0000 | |
NDVI | −4.1958 | 0.1309 | −0.3920 | −32.0533 | 0.0000 | |
VC | 0.2421 | 0.0301 | 0.0052 | 8.0367 | 0.0000 | |
MWI | −2.2338 | 0.0952 | −0.1518 | −23.4673 | 0.0000 | |
ISI | −0.3029 | 0.0500 | −0.0108 | −6.0557 | 0.0000 | |
BS | 0.0410 | 0.0460 | 0.0013 | 0.8903 | 0.3733 | |
PD | 0.0094 | 0.0088 | 0.0001 | 0.0107 | 0.9914 | |
NPP | −0.0119 | 0.0011 | 0.0000 | −10.5865 | 0.0000 | |
Wε | −0.7061 | 0.0143 | −0.0072 | −49.2079 | 0.0000 | |
a. dependent variable: LST | ||||||
b. independent variables: WLST, NDVI, VC, MWI, ISI, BS, PD, NPP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Q.; Liu, X.; Wu, Z.; Wang, Y.; Dong, J. Decoupling of the Municipal Thermal Environment Using a Spatial Autoregressive Model. Atmosphere 2022, 13, 2059. https://doi.org/10.3390/atmos13122059
Jiang Q, Liu X, Wu Z, Wang Y, Dong J. Decoupling of the Municipal Thermal Environment Using a Spatial Autoregressive Model. Atmosphere. 2022; 13(12):2059. https://doi.org/10.3390/atmos13122059
Chicago/Turabian StyleJiang, Qingrui, Xiaochang Liu, Zhiqiang Wu, Yuankai Wang, and Jiahua Dong. 2022. "Decoupling of the Municipal Thermal Environment Using a Spatial Autoregressive Model" Atmosphere 13, no. 12: 2059. https://doi.org/10.3390/atmos13122059
APA StyleJiang, Q., Liu, X., Wu, Z., Wang, Y., & Dong, J. (2022). Decoupling of the Municipal Thermal Environment Using a Spatial Autoregressive Model. Atmosphere, 13(12), 2059. https://doi.org/10.3390/atmos13122059