Spatial Analysis of GHG Balances and Climate Change Mitigation in Rural Areas: The Case of Emilia–Romagna Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mapping Approach
- Assessment and mapping of GHG emissions.
- Assessment and mapping of GHG absorption.
2.2. Step 1: Assessment and Mapping of GHG Emissions
- Fertilizer Crops;
- Crops without fertilizers;
- Enteric fermentation;
- Wastewater management with reference to organic compounds;
- Wastewater management related to nitrogen compounds;
- Particulate emissions from livestock farms.
- NOx: nitrogen oxides—indirect greenhouse gas;
- PTS: total suspended dust;
- PM10: dust with a diameter of less than 10 mm;
- PM2.5: dust with a diameter of less than 2.5 mm;
- NH3: ammonia;
- VOCs: volatile organic compounds—indirect greenhouse gases;
- N2O: nitrous oxide—greenhouse gas;
- CH4: methane—greenhouse gas.
- X = value considered;
- Xmin = minimum value of the class of the specific layer;
- Xmax = maximum value of the class of the specific layer.
2.3. Step 2: Assessment and Mapping of GHG Absorption
- -
- BIO: Habitat for soil organisms;
- -
- BUF: Protective capacity;
- -
- CST: Carbon stock (potential);
- -
- PRO: Biomass production;
- -
- WAR: Deep water infiltration;
- -
- WAS: Water reserve.
- Xii = agricultural crops and their potential carbon sequestration;
- Xiii = agronomic practices;
- Xiv = presence of hedges and rows;
- Xv = potential carbon sequestration (ES-CST).
3. Results
- GHG = GHG balance;
- E = GHG emissions;
- A = GHG absorption.
4. Discussion
- with regard to the datasets used, a limited availability of some uniform layers for the whole regional area (e.g., the Potential Carbon Sequestration, which does not cover the whole area);
- the lack of dynamism of some layers with respect to the real evolution of the territory (e.g., the INEMAR emission data date back to 2017, although the updating of the regional inventory of atmospheric emissions should be carried out at least every three years);
- the techniques used with respect to agronomic practices depend on the willingness of the farmer, who could also implement these actions on a voluntary basis;
- the inevitable approximation of reality, resulting from the use of a limited set of layers.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. CO2 Sequestered for Type of Crop
Type of Crop | CO2 Sequestered | Dependent on Soil Working Techniques |
ACHILLEA | Low | Yes |
GARLIC | Low | Yes |
AGRETTO | Low | Yes |
ALTEA | Low | Yes |
AMARANT | High | Yes |
ANETO | Low | Yes |
COMMON ANISE | Low | Yes |
ARACHID | Low | Yes |
OAT | Medium | Yes |
BARBABIETOLA | High | Yes |
BASIL | Low | Yes |
WHITSPIN | High | Yes |
BIETOLA | Medium | Yes |
BORAGE | Medium | Yes |
HEMP | High | Yes |
MISCANTHUS SINENSIS | High | Yes |
SUGAR CANE | High | Yes |
CARROT | Low | Yes |
CAULIFLOWER | Low | Yes |
CABBAGE RAPA | Low | Yes |
CHICKPEA | Low | Yes |
CETRIOL | Low | Yes |
CHENOPODIUM QUINOA | Low | Yes |
CHICKBERRY | Low | Yes |
CYCLAMIN | Low | Yes |
CHICORY | Low | Yes |
COLZA | Medium | Yes |
CORIANDOL | Medium | Yes |
CRESCION | Low | Yes |
CUMIN | Low | Yes |
CHIVE | Low | Yes |
MEDIUM HERB | High | Yes |
HERBS | High | Yes |
FACELIA | High | Yes |
BEANS | Medium | Yes |
FARRO | Medium | Yes |
STRAWBERRY | Low | Yes |
NUTS | High | Yes |
IRIS | Low | Yes |
SUNFLOWER | High | Yes |
WHEAT DURUM/TENERO | Medium | Yes |
SANDWHEAT | Medium | Yes |
GRANTURCO | High | Yes |
HYPERICO | Medium | Yes |
HYSSOP | Medium | Yes |
RASPBERRY | Medium | Yes |
LAVENDER | Low | Yes |
GRAIN LEGUMES | Medium | Yes |
LENTILS | Medium | Yes |
LINEN | Medium | Yes |
LOIETTO | High | Yes |
LUPINELLA | Medium | Yes |
ALMOND | High | Yes |
MINT | Low | Yes |
PEPPERMINT | Low | Yes |
LEMON | Medium | Yes |
BLUEBERRY | High | Yes |
NITROGEN-FIXING MIX | Medium | Yes |
WALNUT | High | Yes |
OLIVE | High | Yes |
BARLEY | Medium | Yes |
PANICO | Medium | Yes |
PEAK | Medium | Yes |
RAFFIN | High | Yes |
RAVIZZONE | Medium | Yes |
RICE | Medium | Yes |
CELERY | Low | Yes |
SEGALA | Medium | Yes |
SEEDSAL | Medium | Yes |
SENAPE | Medium | Yes |
SOYA | Medium | Yes |
SORB | Medium | Yes |
SORGUM | Medium | Yes |
TOPINAMBUR | Medium | Yes |
TRITICAL | Medium | Yes |
TRITORDEUM | Medium | Yes |
VECCE | Medium | Yes |
VERBENA OFFICINALE | Low | Yes |
VINE | High | Yes |
SAFFRON | Low | Yes |
PUMPKIN | Medium | Yes |
ZUCCHINO | Low | Yes |
Source: interviews conducted with local agronomists and farmers and agronomic manuals. |
References
- Lucertini, G.; Di Giustino, G. Urban and Peri-Urban Agriculture as a Tool for Food Security and Climate Change Mitigation and Adaptation: The Case of Mestre. Sustainability 2021, 13, 5999. [Google Scholar] [CrossRef]
- Tripathi, A.; Tripathi, D.K.; Chauhan, D.K.; Kumar, N.; Singh, G.S. Paradigms of climate change impacts on some major food sources of the world: A review on current knowledge and future prospects. Agric. Ecosyst. Environ. 2016, 216, 356–373. [Google Scholar] [CrossRef]
- Di Giustino, G.; Bonora, A.; Federico, K.; Reho, M.; Lucertini, G. Spatial Analysis of the Vulnerability to Flooding in the Rural Context: The Case of the Emilia Romagna Region. Atmosphere 2022, 13, 1181. [Google Scholar] [CrossRef]
- European Union. Delivering the European Green Deal: The Decisive Decade; European Commission: Brussels, Belgium, 2021. [Google Scholar] [CrossRef]
- Erbach, G. Effort Sharing Regulation, 2021–2030: Limiting Member States’ Carbon Emissions; EPRS: European Parliamentary Research Service: Bruxelles, Belgium, 2018. [Google Scholar]
- Lugato, E.; Cescatti, A.; Jones, A.; Ceccherini, G.; Duveiller, G. Maximising climate mitigation potential by carbon and radiative agricultural land management with cover crops. Environ. Res. Lett. 2020, 15, 094075. [Google Scholar] [CrossRef]
- Pahar, S.P.P.; Nursaputra, M. Mapping of carbon absorption based on land use in upstream of Jeneberang watershed. IOP Conf. Ser. Earth Environ. Sci. 2020, 575, 012237. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Phipps, S.J.; Pitman, A.J.; Hirsch, A.L.; Davin, E.L.; Donat, M.G.; Kravitz, B. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 2018, 11, 88–96. [Google Scholar] [CrossRef]
- Chapman, M.; Walker, W.S.; Cook-Patton, S.C.; Ellis, P.W.; Farina, M.; Griscom, B.W.; Baccini, A. Large climate mitigation potential from adding trees to agricultural lands. Glob. Chang. Biol. 2020, 26, 4357–4365. [Google Scholar] [CrossRef]
- Costantini Scala, A.; Asdrubali, F.; Presciutti, A. Rete Rurale Nazionale. Sfide ed Opportunità dello Sviluppo Rurale per la Mitigazione e L’adattamento ai Cambiamenti Climatici. Piano Strategico dello Sviluppo Rurale. L’agricoltura a Beneficio di Tutti; Ministero delle Politiche Agricole Alimentari e Forestali: Rome, Italy, 2012; ISBN 9788896095119.
- Gonzalez-Sanchez, E.J.; Veroz-Gonzalez, O.; Conway, G.; Moreno-Garcia, M.; Kassam, A.; Mkomwa, S.; Carbonell-Bojollo, R. Meta-analysis on carbon sequestration through Conservation Agriculture in Africa. Soil Tillage Res. 2019, 190, 22–30. [Google Scholar] [CrossRef]
- Marino, D.; Palmieri, M.; Marucci, A.; Pili, S. Long-term land cover changes and ecosystem services variation: Have the anthropogenic transformations degraded human well-being in Italy? Ital. Rev. Agric. Econ. 2022, 77, 7–23. [Google Scholar] [CrossRef]
- Naumann, S.; Davis, M. Biodiversity and Nature-Based Solutions: Analysis of EU Funded Projects; Independent Expert Report; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M.; et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B 2020, 375, 20190120. [Google Scholar] [CrossRef] [Green Version]
- Seddon, N.; Daniels, E.; Davis, R.; Chausson, A.; Harris, R.; Hou-Jones, X.; Wicander, S. Global recognition of the importance of nature-based solutions to the impacts of climate change. Glob. Sustain. 2020, 3, E15. [Google Scholar] [CrossRef]
- Yating, Z.; Bilal, M.A. Chapter 2—Temperature extremes in a changing climate. In Climate Change and Extreme Events; Elsevier: Amsterdam, The Netherlands, 2021; pp. 9–23. [Google Scholar] [CrossRef]
- Allwood, J.M.; Bosetti, V.; Dubash, N.K.; Gómez-Echeverri, L.; Stechow, C.V.; D’Agosto, M.; Zwickel, T. Glossary, Acronyms and Chemical Symbols [Annex I]. In Climate Change 2014: Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 1247–1279. [Google Scholar]
- Miralles-Wilhelm, F. Nature-Based Solutions in Agriculture: Sustainable Management and Conservation of Land, Water and Biodiversity; Food and Agriculture Organization: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Bellamy, R.; Osaka, S. Unnatural climate solutions? Nat. Clim. Chang. 2020, 10, 98–99. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, A.M. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef] [Green Version]
- Litt, G.; Ferraioli, E.; Magni, F.; Lucertini, G.; Musco, F. Inter-Municipal Methodology for Climate Transition Strategies: The First Case in Italy. Sustainability 2022, 14, 2529. [Google Scholar] [CrossRef]
- Klein, R.J. Identifying countries that are particularly vulnerable to the adverse effects of climate change: An academic or political challenge. Carbon Clim. Law Rev. 2009, 3, 284. [Google Scholar] [CrossRef]
- Muccione, V.; Allen, S.K.; Huggel, C.; Birkmann, J. Differentiating regions for adaptation financing: The role of global vulnerability and risk distributions. Wiley Interdiscip. Rev. Clim. Chang. 2017, 8, e447. [Google Scholar] [CrossRef]
- Maragno, D.; Dall’omo, C.F.; Pozzer, G.; Musco, F. Multi-Risk Climate Mapping for the Adaptation of the Venice Metro-politan Area. Sustainability 2021, 13, 1334. [Google Scholar] [CrossRef]
- Bonari, E.; Ceccon, P. Verso un Approccio Integrato allo Studio dei Sistemi Colturali; FrancoAngeli: Milan, Italy, 2002; Volume 202, ISBN 9788846440709. [Google Scholar]
- Avagnina, S.; Del Vecchio, A.; Gaudino, S.; Goia, I.; Sacco, D.; Grignani, C.; Bourlot, G. Programma di Sviluppo Rurale. Monitoraggio Intensivo Mediante una Rete di Casi Studio Sulle Tecniche Agronomiche e sui Terreni Agrari; Progetto MITA NET: Milan, Italy, 2012. [Google Scholar]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Tellatin, S.; Myers, R.L. Cover crop impacts on US cropland carbon sequestration. J. Soil Water Conserv. Sept. 2018, 73, 117A–121A. [Google Scholar] [CrossRef]
- Jones, R.J.A.; Hiederer, R.; Rusco, E.; Loveland, P.J.; Montanarella, L. The Map of Organic Carbon in Topsoils in Europe, Version 1.2, September 2003: Explanation of Special Publication Ispra 2004 No. 72 (S.P.I.04.72); European Soil Bureau Research Report, No.17, EUR 21209 EN, 26pp. and 1 Map in ISO B1 Format; Office for Official Publications of the European Communities: Luxembourg, 2004. [Google Scholar]
- Lugato, E.; Paustian, K.; Panagos, P.; Jones, A.; Borrelli, P. Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution. Glob. Chang. Biol. 2016, 22, 1976–1984. [Google Scholar] [CrossRef] [Green Version]
- Renzi, G. Carbonio Organico e Uso del Suolo; Università Degli Studi Della Tuscia: Viterbo, Italy, 2016; Available online: http://hdl.handle.net/2067/3018 (accessed on 10 January 2022).
- Conselvan, G.B. Suoli Sottoposti a Tecniche di Agricoltura Conservativa: Studio dei Parametri Chimico-Biologici; Università degli Studi di Padova, Dipartimento Agronomia Animali Alimenti Risorse Naturali e Ambiente: Padua, Italy, 2013. [Google Scholar]
- Fracasso, R. L’applicazione dell’agricoltura conservativa per garantire la funzionalità del suolo quale bene pubblico nella riforma della Politica Agricola Comunitaria (PAC). Aestimum 2015, 43, 165–176. [Google Scholar] [CrossRef]
- Pérez-Soba, M.; Paracchini, M.L.; Barredo, J.; Caudullo, G.; Cormont, A.; van Doorn, A.; van Eupen, M.; Guiomar, N.; Hendriks, K.; Miguel Ayala, L.; et al. Deliverable 2.2: Database and Classification System of Different Types of PG/ESS in Relation to Farming/Forestry Systems; PEGASUS: Public Ecosystem Goods and Services from Land Management—Unlocking the Synergies; European Commission: Luxembourg, 2016. [Google Scholar]
- Füssel, H.M. Climate Change, Impacts and Vulnerability in Europe 2012 (EEA Report No 12/2012)-Version of 20.06. 2013; European Environment Agency (EEA): Copenhagen, Denmark, 2012. [Google Scholar]
- Regione Emilia-Romagna Statistica. Available online: https://statistica.regione.emilia-romagna.it/ (accessed on 16 April 2022).
- Centro Meteo. Il Clima Della Regione Emilia-Romagna. Available online: http://www.centrometeo.com/articoli-reportage-approfondimenti/climatologia (accessed on 11 January 2022).
- Regione Emilia-Romagna Geoportale. Coperture Vettoriali Uso Del Suolo Di Dettaglio–Edizione 2020. Available online: https://geoportale.regione.emilia-romagna.it/catalogo/dati-cartografici/pianificazione-e-catasto/uso-del-suolo/layer-9 (accessed on 16 June 2022).
- Sistema Nazionale Per La Protezione dell’Ambiente. Consumo Di Suolo, Dinamiche Territoriali E Servizi Ecosistemici. Edizione 2021. Available online: https://www.snpambiente.it/2021/07/14/consumo-di-suolo-dinamiche-territoriali-e-servizi-ecosistemici-edizione-2021/ (accessed on 20 February 2022).
- IPCC. Climate Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Passioura, J.B. Soil conditions and plant growth. Plant Cell Environ. 2002, 25, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, M.; Shalini, S.; Pathak, H. Emission of carbon dioxide from soil. Curr. Sci. 2002, 82, 510–516. Available online: http://www.jstor.org/stable/24105957 (accessed on 13 April 2022).
- Scaramuzzi, F.; Alpi, A.; Crescimanno, F.G.; Sansavini, S. Arboricoltura generale. Arboric. Gen. 2013, 10, 191–210. [Google Scholar] [CrossRef]
- Tassinari, G.; Calzecchi-Onesti, A. Manuale Dell’agronomo, Il Nuovo Tassinari, 6th ed.; Reda: Dammam, Saudi Arabia, 2020. [Google Scholar]
- Ceccon, P.; Fagnano, M.; Grignani, C.; Monti, M.; Orlandini, S. Agronomia; Edises: Napoli, Italy, 2017. [Google Scholar]
- Zomer, R.J.; Bossio, D.A.; Sommer, R.; Verchot, L.V. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Sci. Rep. 2021, 11, 18720. [Google Scholar] [CrossRef]
- Pavelka, M.; Acosta, M.; Kiese, R.; Altimir, N.; Brümmer, C.; Crill, P.; Kutsch, W. Standardisation of chamber technique for CO2, N2O and CH4 fluxes measurements from terrestrial ecosystems. Int. Agrophysics 2018, 32, 569–587. [Google Scholar] [CrossRef]
- S.O.S. 4 LIFE. Save Our Soil for LIFE. Available online: https://www.sos4life.it/progetto/ (accessed on 3 January 2022).
- Ismea, Fondazione Qualivita. XIV Rapporto Annuale sul Settore Food&Wine Italiano dei Prodotti a Qualità Certificata DOP IGP STG. Ministero delle Politiche Agricole, AICIG, Federdoc e Consorzi di Tutela. 2016. Available online: https://www.qualivita.it/news/emilia-romagna-il-food-dop-igp-vale-26-miliardi-2/ (accessed on 6 April 2022).
- Lucertini, G.; Di Giustino, G.; dall’Omo, C.F.; Musco, F. An innovative climate adaptation planning process: iDEAL project. J. Environ. Manag. 2022, 317, 115408. [Google Scholar] [CrossRef]
Main Factors | Layers | Description | Source * |
---|---|---|---|
Emissions | (i) | INEMAR emissions related to the agriculture and livestock sector | Emilia–Romagna Regional Geoportal |
Absorption | (ii) | Agricultural crops and potential carbon sequestration | AGREA, Emilia–Romagna Region |
(iii) | Agronomic practices | Emilia–Romagna Regional Geoportal | |
(iv) | Presence of hedges and rows | AGREA, Emilia–Romagna Region | |
(v) | Potential carbon sequestration (ES-CST) | Emilia–Romagna Regional Geoportal |
SECTOR | NOx | PTS | PM10 | PM2.5 | NH3 | VOC | N2O | CH4 |
---|---|---|---|---|---|---|---|---|
1. Fertiliser Crops | 405.1 | 10,183.4 | 25,666 | 1237.5 | 2715.6 | |||
2. Crops without fertilisers | 1092.9 | 1099.2 | 873.9 | |||||
4. Enteric fermentation | 50,531.2 | |||||||
5. Wastewater management with reference to organic compounds | 58.4 | 19,508.9 | ||||||
9. Wastewater management related to nitrogen compounds | 34,603.8 | 3679.8 | ||||||
10. Particulate emissions from livestock farms | 872.4 | 515.4 | 232.2 |
Class of Vulnerability | Surface (ha) | Percentage of Total GHG Balance |
---|---|---|
Low | 508,619.4 | 23.00% |
Medium–low | 459,984.4 | 20.80% |
Medium | 682,158.3 | 30.84% |
Medium–high | 391,985.2 | 17.72% |
High | 169,316.9 | 7.65% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Federico, K.; Bonora, A.; Di Giustino, G.; Reho, M.; Lucertini, G. Spatial Analysis of GHG Balances and Climate Change Mitigation in Rural Areas: The Case of Emilia–Romagna Region. Atmosphere 2022, 13, 2060. https://doi.org/10.3390/atmos13122060
Federico K, Bonora A, Di Giustino G, Reho M, Lucertini G. Spatial Analysis of GHG Balances and Climate Change Mitigation in Rural Areas: The Case of Emilia–Romagna Region. Atmosphere. 2022; 13(12):2060. https://doi.org/10.3390/atmos13122060
Chicago/Turabian StyleFederico, Katia, Alberto Bonora, Gianmarco Di Giustino, Matelda Reho, and Giulia Lucertini. 2022. "Spatial Analysis of GHG Balances and Climate Change Mitigation in Rural Areas: The Case of Emilia–Romagna Region" Atmosphere 13, no. 12: 2060. https://doi.org/10.3390/atmos13122060
APA StyleFederico, K., Bonora, A., Di Giustino, G., Reho, M., & Lucertini, G. (2022). Spatial Analysis of GHG Balances and Climate Change Mitigation in Rural Areas: The Case of Emilia–Romagna Region. Atmosphere, 13(12), 2060. https://doi.org/10.3390/atmos13122060