Evaluating the Impact of Urban Microclimate on Buildings’ Heating and Cooling Energy Demand Using a Co-Simulation Approach
Abstract
:1. Introduction
2. Case Study Areas
3. Materials and Methods
3.1. Onsite Monitoring Campaign
3.2. Long-Term Climatic Data for the Definition of the Representative Days and the Selection of the Typical Meteorological Months
3.3. Set-Up of the ENVI-Met Microclimate Simulations
3.4. Extraction of Microclimate Data and Generation of the USWDs
3.5. Configuration of the Dynamic Energy Performance Simulations
4. Results
4.1. Evaluation of the ENVI-Met Microclimate Model
4.2. Comparison of the Generated Annual Weather Datasets for the 1st Floor Building Units
4.3. Comparison of the Generated Annual Weather Datasets for the 3rd Floor Building Units
4.4. Dynamic Energy Performance Simulation Results
5. Conclusions and Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Representative Day | WS at 10 m (m/s) | WD | Soil Temp. Upper Layer (K) | Soil Temp. Middle Layer (K) | Soil Temp. Deep Layer (K) | |
---|---|---|---|---|---|---|
Spring period | 28 March 2016 | 2.75 | WSW | 284.3 | 285 | 293 |
21 April 2016 | 5.40 | WNW | 289 | 289.6 | 293 | |
16 May 2016 | 3.90 | WSW | 295 | 295.5 | 293 | |
Summer period | 1 June 2016 | 1.23 | SW | 306 | 304.8 | 293 |
22 July 2016 | 1.15 | SW | 305.5 | 304.5 | 293 | |
10 August 2016 | 1.20 | SW | 305 | 304 | 293 | |
Autumn period | 24 September 2015 | 1.73 | SW | 299 | 300 | 293 |
1 October 2015 | 2.30 | SW | 292 | 293 | 293 | |
26 November 2015 | 1.28 | SW | 286 | 287 | 293 | |
Winter period | 20 December 2015 | 1.15 | SW | 281.5 | 282.5 | 290 |
4 January 2016 | 1.30 | SW | 280.3 | 282 | 290 | |
8 February 2016 | 1.90 | WSW | 279.5 | 281.5 | 290 |
References
- Crawley, D.B. Which weather data should you use for energy simulations of commercial buildings? ASHRAE Trans. 1998, 104, 498. [Google Scholar]
- Seo, D.; Huang, Y.J.; Krarti, M. Impact of Typical Weather Year Selection Approaches on Energy Analysis of Buildings. ASHRAE Trans. 2010, 116, 416–427. [Google Scholar]
- Gobakis, K.; Kolokotsa, D. Coupling building energy simulation software with microclimatic simulation for the evaluation of the impact of urban outdoor conditions on the energy consumption and indoor environmental quality. Energy Build. 2017, 157, 101–115. [Google Scholar] [CrossRef]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar]
- Taha, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Akbari, H.; Cartalis, C.; Kolokotsa, D.; Muscio, A.; Pisello, A.L.; Rossi, F.; Santamouris, M.; Synnefa, A.; Wong, N.H.; Zinzi, M. Local climate change and urban heat island mitigation techniques–the state of the art. J. Civ. Eng. Manag. 2016, 22, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Santamouris, M. Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renew. Sustain. Energy Rev. 2013, 26, 224–240. [Google Scholar] [CrossRef]
- Santamouris, M. Regulating the damaged thermostat of the cities—Status, impacts and mitigation challenges. Energy Build. 2015, 91, 43–56. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Oke, T.R. Street design and urban canopy layer climate. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Ohashi, Y.; Genchi, Y.; Kondo, H.; Kikegawa, Y.; Yoshikado, H.; Hirano, Y. Influence of air-conditioning waste heat on air temperature in Tokyo during summer: Numerical experiments using an urban canopy model coupled with a building energy model. J. Appl. Meteorol. Climatol. 2007, 46, 66–81. [Google Scholar] [CrossRef]
- Rodler, A.; Lauzet, N.; Musy, M.; Azam, M.H.; Guernouti, S.; Mauree, D.; Colinart, T. Urban microclimate and building energy simulation coupling techniques. In Urban Microclimate Modelling for Comfort and Energy Studies; Springer: Cham, Switzerland, 2021; pp. 317–337. [Google Scholar]
- Yang, X.; Zhao, L.; Bruse, M.; Meng, Q. An integrated simulation method for building energy performance assessment in urban environments. Energy Build. 2012, 54, 243–251. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Dahanayake, K.K.C.; Adegun, O.B.; Balogun, A.A. Modelling the effect of tree-shading on summer indoor and outdoor thermal condition of two similar buildings in a Nigerian university. Energy Build. 2016, 130, 721–732. [Google Scholar] [CrossRef]
- Santamouris, M.; Haddad, S.; Saliari, M.; Vasilakopoulou, K.; Synnefa, A.; Paolini, R.; Ulpiani, G.; Garshasbi, S.; Fiorito, F. On the energy impact of urban heat island in Sydney: Climate and energy potential of mitigation technologies. Energy Build. 2018, 166, 154–164. [Google Scholar] [CrossRef]
- Tsoka, S.; Leduc, T.; Rodler, A. Assessing the effects of urban street trees on building cooling energy needs: The role of foliage density and planting pattern. Sustain. Cities Soc. 2021, 65, 102633. [Google Scholar] [CrossRef]
- Costanzo, V.; Evola, G.; Infantone, M.; Marletta, L. Updated typical weather years for the energy simulation of buildings in mediterranean climate. A case study for sicily. Energies 2020, 13, 4115. [Google Scholar] [CrossRef]
- Oxizidis, S.; Dudek, A.V.; Papadopoulos, A.M. A computational method to assess the impact of urban climate on buildings using modeled climatic data. Energy Build. 2008, 40, 215–223. [Google Scholar] [CrossRef]
- Tsoka, S.; Tolika, K.; Theodosiou, T.; Tsikaloudaki, K.; Bikas, D. A method to account for the urban microclimate on the creation of ‘typical weather year’ datasets for building energy simulation, using stochastically generated data. Energy Build. 2018, 165, 270–283. [Google Scholar] [CrossRef]
- Tsoka, S. Urban Microclimate Analysis and Its Effect on the Buildings’ Energy Performance. Ph.D. Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2019. [Google Scholar]
- Huttner, S. Further Development and Application of the 3D Microclimate Simulation ENVI-met. Ph.D. Thesis, Mainz University, Mainz, Germany, 2012. [Google Scholar]
- Simon, H. Modeling urban microclimate: Development, Implementation and Evaluation of New and Improved Calculation Methods for the Urban Microclimate Model ENVI-met. Ph.D. Thesis, Mainz University, Mainz, Germany, 2016. [Google Scholar]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications—A review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- ISO 10456:2007; Building Materials and Products-Hygrothermal Properties-Tabulated Design Values and Procedures for Determining Declared and Design Thermal Values. International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO 13370:2007; Thermal Performance of Buildings-Heat Transfer via the Ground-Calculation Methods. International Organization for Standardization: Geneva, Switzerland,, 2007.
- Kontogianni, A. The Impact of Urban Green Structure and Composition on the Climate of the Cities. Ph.D. Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2017. [Google Scholar]
- Salata, F.; Golasi, I.; de Lieto Vollaro, R.; de Lieto Vollaro, A. Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustain. Cities Soc. 2016, 26, 318–343. [Google Scholar] [CrossRef]
- Gillner, S.; Vogt, J.; Tharang, A.; Dettmann, S.; Roloff, A. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites. Landsc. Urban Plan. 2015, 143, 33–42. [Google Scholar] [CrossRef]
- Tan, Z.; Lau, K.K.-L.; Ng, E. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy Build. 2016, 114, 265–274. [Google Scholar] [CrossRef]
- Perini, K.; Chokhachian, A.; Dong, S.; Auer, T. Modeling and simulating urban outdoor comfort: Coupling ENVI-Met and TRNSYS by grasshopper. Energy Build. 2017, 152, 373–384. [Google Scholar] [CrossRef]
- Öztürk, M. Complete intra-annual cycle of Leaf Area Index in a Platanus orientalis L. stand. Plant Biosyst.-Int. J. Deal. Asp. Plant Biol. 2016, 150, 1296–1305. [Google Scholar]
- Srivanit, M.; Hokao, K. Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Build. Environ. 2013, 66, 158–172. [Google Scholar] [CrossRef]
- Georgi, N.; Zafiriadis, K. The impact of park trees on microclimate in urban areas. Urban Ecosyst. 2006, 9, 195–209. [Google Scholar] [CrossRef]
- Technical Chamber of Greece. Technical Guide TOTEE 20701-2; Technical Chamber of Greece: Athens, Greece, 2017. (In Greek) [Google Scholar]
- Guattari, C.; Evangelisti, L.; Balaras, C.A. On the assessment of urban heat island phenomenon and its effects on building energy performance: A case study of Rome (Italy). Energy Build. 2018, 158, 605–615. [Google Scholar] [CrossRef]
- Ciancio, V.; Falasca, S.; Golasi, I.; Curci, G.; Coppi, M.; Salata, F. Influence of input climatic data on simulations of annual energy needs of a building: EnergyPlus and WRF modeling for a case study in Rome (Italy). Energies 2018, 11, 2835. [Google Scholar] [CrossRef] [Green Version]
- ISO 6946:2007; Building Components and Building Elements—Thermal Resistance and Thermal Transmittance—Calculation Method. International Organization for Standardization: Geneva, Switzerland, 2007.
- Simon, H.; Bruse, M.; Cramer, L.; Sinsel, T. Improving building performance simulation boundary conditions. In Proceedings of the 35th International Conference on Passive and Low Energy Architecture, Coruña, Spain, 1–3 September 2020. [Google Scholar]
Typical Month | SR (kWh/m2) | Tair °C | Tdew °C | WS m/s |
---|---|---|---|---|
January 1995 | 44.47 | 5.78 | 4.07 | 2.18 |
February 1997 | 63.78 | 7.63 | 5.39 | 2.04 |
March 2000 | 103.91 | 9.33 | 6.79 | 2.02 |
April 2001 | 115.86 | 14.26 | 11.72 | 1.67 |
May 2002 | 145.48 | 19.60 | 16.12 | 1.57 |
June 2000 | 164.64 | 24.20 | 20.61 | 1.92 |
July 1994 | 165.10 | 26.67 | 23.03 | 1.9 |
August 2001 | 155.60 | 27.60 | 23.57 | 1.69 |
September 2000 | 115.50 | 21.78 | 17.66 | 1.57 |
October 2003 | 78.96 | 17.34 | 15.00 | 1.63 |
November 1997 | 43.02 | 11.80 | 10.10 | 1.30 |
December 2003 | 41.93 | 7.60 | 5.87 | 1.81 |
Selected Representative Day | Deviation | Selected Representative Day | Deviation |
---|---|---|---|
4 January 2016 | 7% | 22 July 2016 | 0.7% |
8 February 2016 | 11% | 10 August 2016 | 5.5% |
28 March 2016 | 2.7% | 24 September 2016 | 0.6% |
21 April 2016 | 1.8% | 1 October 2015 | 1.8% |
16 May 2016 | 2% | 26 November 2015 | 3.3% |
1 June 2016 | 1.1% | 20 December 2015 | 2.7% |
Material | Thickness (m) | Thermal Conductivity (W/mK) | Albedo 1 (%) |
---|---|---|---|
Plaster | 0.02 | 0.87 | 40 |
Brick | 0.19 | 0.51 | - |
Concrete slab | 0.15 | 2.5 | - |
Roof tiles | 0.03 | 1.5 | 30 |
Volumetric Heat Capacity (J/m³K) | Thermal Conductivity (W/mK) | Albedo 1 (%) | |
---|---|---|---|
Asphalt | 2.1 × 106 | 0.70 | 12 |
Concrete tiles | 2.1 × 106 | 1.50 | 30 |
Loamy soil | 3.0 × 106 | 1.45 | 20 |
Title 1 | Acer Negundo | Platanus Orientalis | Hibiscus Syriacus | Robinia Pseudoacacia | Citrus Orientalis |
---|---|---|---|---|---|
Height (m) | 2.0 | 7.0 | 3.5 | 8.0 | 3.5 |
Crown diameter (m) | 8.0 | 5.0 | 2.0 | 4.0 | 3.0 |
RMSE | d | MAE | MBE | ||||||
---|---|---|---|---|---|---|---|---|---|
Tair (°C) | RH (%) | Tair (°C) | RH (%) | Tair (°C) | RH (%) | Tair (°C) | RH (%) | ||
Pittakou study area | Spring | 1.14 | 6.70 | 0.93 | 0.90 | 0.95 | 2.50 | −0.64 | 2.85 |
Summer | 1.02 | 10.24 | 0.94 | 0.97 | 0.82 | 7.70 | −0.24 | −7.60 | |
Autumn | 1.55 | 4.80 | 0.65 | 0.98 | 1.50 | 3.50 | −1.23 | −0.85 | |
Winter | 0.85 | 4.70 | 0.70 | 0.97 | 0.78 | 4.30 | −0.78 | 4.20 | |
Mitoudi study area | Spring | 1.19 | 7.30 | 0.98 | 0.95 | 1.05 | 6.70 | −0.70 | 3.30 |
Summer | 1.35 | 12.0 | 0.97 | 0.65 | 1.19 | 11.0 | −0.74 | 11.5 | |
Autumn | 1.15 | 5.35 | 0.70 | 0.95 | 1.11 | 4.61 | −1.14 | −4.70 | |
Winter | 1.35 | 9.80 | 0.65 | 0.82 | 1.28 | 9.70 | −1.15 | 9.74 | |
Vafopoulou study area | Spring | 1.13 | 5.60 | 0.92 | 0.94 | 1.0 | 4.90 | −0.67 | 7.10 |
Summer | 0.95 | 3.70 | 0.98 | 0.97 | 0.80 | 3.04 | −0.69 | −1.06 | |
Autumn | 1.35 | 3.17 | 0.97 | 0.98 | 1.29 | 2.23 | −1.29 | −1.99 | |
Winter | 1.11 | 5.98 | 0.61 | 0.95 | 1.05 | 5.70 | −1.01 | 5.50 | |
Gavriilidou study area | Spring | 0.95 | 4.35 | 0.92 | 0.89 | 0.90 | 3.40 | −0.90 | −1.5 |
Summer | 0.89 | 10.05 | 0.96 | 0.90 | 0.70 | 8.20 | −0.10 | −7.0 | |
Autumn | 1.27 | 12.0 | 0.92 | 0.70 | 1.15 | 8.50 | −0.20 | −6.0 | |
Winter | 0.91 | 6.80 | 0.77 | 0.95 | 0.80 | 6.50 | −0.70 | 4.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsoka, S. Evaluating the Impact of Urban Microclimate on Buildings’ Heating and Cooling Energy Demand Using a Co-Simulation Approach. Atmosphere 2023, 14, 652. https://doi.org/10.3390/atmos14040652
Tsoka S. Evaluating the Impact of Urban Microclimate on Buildings’ Heating and Cooling Energy Demand Using a Co-Simulation Approach. Atmosphere. 2023; 14(4):652. https://doi.org/10.3390/atmos14040652
Chicago/Turabian StyleTsoka, Stella. 2023. "Evaluating the Impact of Urban Microclimate on Buildings’ Heating and Cooling Energy Demand Using a Co-Simulation Approach" Atmosphere 14, no. 4: 652. https://doi.org/10.3390/atmos14040652
APA StyleTsoka, S. (2023). Evaluating the Impact of Urban Microclimate on Buildings’ Heating and Cooling Energy Demand Using a Co-Simulation Approach. Atmosphere, 14(4), 652. https://doi.org/10.3390/atmos14040652