Bioaerosol Release from Concentrated Microbial Suspensions in Bubbling Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Experimental Setup
3. Results and Discussion
3.1. Bubble Size and Airflow
3.2. Effect of the Temperature of Microbial Suspension
3.3. Effect of the Surface Tension on the Bioaerosol Generation Rates
3.4. Contribution of Different Mechanisms to the Bioaerosol Release during Bubbling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grinshpun, S.A. Biological aerosols. In Aerosols—Science and Technology; Agranovski, I., Ed.; Wiley-VCH & Co GmbH: Weinhaim, Germany, 2010; pp. 379–406. [Google Scholar]
- Mirskaya, E.; Agranovski, I.E. Sources and mechanisms of bioaerosol generation in occupational environments. Crit. Rev. Microbiol. 2018, 44, 739–758. [Google Scholar] [CrossRef] [PubMed]
- Alsved, M.; Bourouiba, L.; Duchaine, C.; Löndahl, J.; Marr, L.C.; Parker, S.T.; Prussin, A.J., II; Thomas, R.J. Natural sources and experimental generation of bioaerosols: Challenges and perspectives. Aerosol Sci. Technol. 2019, 54, 547–571. [Google Scholar] [CrossRef]
- Ke, W.-R.; Kuo, Y.-M.; Lin, C.-W.; Huang, S.-H.; Chen, C.-C. Characterization of aerosol emissions from single bubble bursting. J. Aerosol Sci. 2017, 109, 1–12. [Google Scholar] [CrossRef]
- Lee, J.S.; Weon, B.M.; Park, S.J.; Je, J.H.; Fezzaa, K.; Lee, W.-K. Size limits the formation of liquid jets during bubble bursting. Nat. Commun. 2011, 2, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchard, D.C.; Syzdek, L.D. Water-to-Air Transfer and Enrichment of Bacteria in Drops from Bursting Bubbles. Appl. Environ. Microbiol. 1982, 43, 1001–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hariadi, R.F.; Winfree, E.; Yurke, B. Determining hydrodynamic forces in bursting bubbles using DNA nanotube mechanics. Proc. Natl. Acad. Sci. USA 2015, 112, E6086–E6095. [Google Scholar] [CrossRef] [Green Version]
- Walls, P.L.L.; Bird, J.C.; Bourouiba, L. Moving with bubbles: A review of the interactions between bubbles and the microor-ganisms that surround them. Integr. Comp. Biol. 2014, 54, 1014–1025. [Google Scholar] [CrossRef] [Green Version]
- Poulain, S.; Villermaux, E.; Bourouiba, L. Ageing and burst of surface bubbles. J. Fluid Mech. 2018, 851, 636–671. [Google Scholar] [CrossRef] [Green Version]
- Wu, J. Film drops produced by air bubbles bursting at the surface of seawater. J. Geophys. Res. Earth Surf. 1994, 99, 16403–16407. [Google Scholar] [CrossRef]
- Modini, R.L.; Russell, L.M.; Deane, G.B.; Stokes, M.D. Effect of soluble surfactant on bubble persistence and bubble-produced aerosol particles. J. Geophys. Res. Atmos. 2013, 118, 1388–1400. [Google Scholar] [CrossRef]
- Günther, A.; Wälchli, S.; von Rohr, P.R. Droplet production from disintegrating bubbles at water surfaces. Single vs. multiple bubbles. Int. J. Multiph. Flow 2003, 29, 795–811. [Google Scholar] [CrossRef]
- Néel, B.; Erinin, M.A.; Deike, L. Role of Contamination in Optimal Droplet Production by Collective Bubble Bursting. Geophys. Res. Lett. 2021, 49, e2021GL096740. [Google Scholar] [CrossRef]
- Simon, X.; Duquenne, P.; Koehler, V.; Piernot, C.; Coulais, C.; Faure, M. Aerosolisation of Escherichia coli and associated en-dotoxin using an improved bubbling bioaerosol generator. J. Aerosol Sci. 2011, 42, 517–531. [Google Scholar] [CrossRef]
- Ehrlich, R.; Miller, S.; Walker, R.L. Relationship between atmospheric temperature and survival of airborne bacteria. Appl. Microbiol. 1970, 19, 245–249. [Google Scholar] [CrossRef]
- Wang, R.-N.; Li, X.; Yan, C. Seasonal fluctuation of aerosolization ratio of bioaerosols and quantitative microbial risk assessment in a wastewater treatment plant. Environ. Sci. Pollut. Res. 2021, 28, 68615–68632. [Google Scholar] [CrossRef]
- Sun, Q.; Gu, H.; Yu, X.; Yin, W. Bubble Formation Characteristic of Submerged Single-Hole Orifice in Aerosol Suspension. Front. Energy Res. 2019, 7, 92. [Google Scholar] [CrossRef]
- Takagi, S.; Matsumoto, Y. Surfactant Effects on Bubble Motion and Bubbly Flows. Annu. Rev. Fluid Mech. 2011, 43, 615–636. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, C.; Mou, X.; Wang, X.C. Bioaerosol in a typical municipal wastewater treatment plant: Concentration, size distribution, and health risk assessment. Water Sci. Technol. 2020, 82, 1547–1559. [Google Scholar] [CrossRef]
- Yang, K.; Li, L.; Wang, Y.; Xue, S.; Han, Y.; Liu, J. Airborne bacteria in a wastewater treatment plant: Emission characterization, source analysis and health risk assessment. Water Res. 2018, 149, 596–606. [Google Scholar] [CrossRef]
- Burdsall, A.C.; Xing, Y.; Cooper, C.W.; Harper, W.F. Bioaerosol emissions from activated sludge basins: Characterization, release, and attenuation. Sci. Total Environ. 2020, 753, 141852. [Google Scholar] [CrossRef]
- Sánchez-Monedero, M.A.; Aguilar, M.I.; Fenoll, R.; Roig, A. Effect of the aeration system on the levels of airborne microor-ganisms generated at wastewater treatment plants. Water Res. 2008, 42, 3739–3744. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Yang, T.; Chen, T.; Li, L.; Liu, J. Characteristics of submicron aerosols produced during aeration in wastewater treatment. Sci. Total Environ. 2019, 696, 134019. [Google Scholar] [CrossRef] [PubMed]
- Fernando, N.L.; Fedorak, P.M. Changes at art activated sludge sewage treatment plant alter the numbers of airborne aerobic microorganisms. Water Res. 2005, 39, 4597–4608. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.L.; Chung, W.T.; Ng, T.W. Airborne Survival of Escherichia coli under Different Culture Conditions in Synthetic Wastewater. Int. J. Environ. Res. Public Health 2019, 16, 4745. [Google Scholar] [CrossRef] [Green Version]
- Mirskaya, E.; Agranovski, I.E. Generation of bacterial aerosols by interaction of microbial suspension with hot surfaces. J. Aerosol Sci. 2017, 107, 1–8. [Google Scholar] [CrossRef]
- Macher, J. Positive-hole correction of multiple-jet impactors for collecting viable microorganisms. Am. Ind. Hyg. Assoc. J. 1989, 50, 561–568. [Google Scholar] [CrossRef]
- Afeti, G.M.; Resch, F.J. Distribution of the liquid aerosol produced from bursting bubbles in sea and distilled water. Tellus B Chem. Phys. Meteorol. 1990, 42, 378–384. [Google Scholar] [CrossRef]
Air Flow 0.25 L/min | Air Flow 1.0 L/min | |||
---|---|---|---|---|
Small Bubble | Large Bubble | Small Bubble | Large Bubble | |
Without filter, CFU/m3 | 21,302 ± 3546 | 4322 ± 356 | 181,551 ± 21,453 | 117,111 ± 12,756 |
With filter, CFU/m3, | 1632 ± 194 | 270 ± 33 | 7208 ± 678 | 3918 ± 322 |
% in the gas phase | 7.66 | 6.25 | 3.97 | 3.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruglyakova, E.; Mirskaya, E.; Agranovski, I.E. Bioaerosol Release from Concentrated Microbial Suspensions in Bubbling Processes. Atmosphere 2022, 13, 2029. https://doi.org/10.3390/atmos13122029
Kruglyakova E, Mirskaya E, Agranovski IE. Bioaerosol Release from Concentrated Microbial Suspensions in Bubbling Processes. Atmosphere. 2022; 13(12):2029. https://doi.org/10.3390/atmos13122029
Chicago/Turabian StyleKruglyakova, Elena, Ekaterina Mirskaya, and Igor E. Agranovski. 2022. "Bioaerosol Release from Concentrated Microbial Suspensions in Bubbling Processes" Atmosphere 13, no. 12: 2029. https://doi.org/10.3390/atmos13122029
APA StyleKruglyakova, E., Mirskaya, E., & Agranovski, I. E. (2022). Bioaerosol Release from Concentrated Microbial Suspensions in Bubbling Processes. Atmosphere, 13(12), 2029. https://doi.org/10.3390/atmos13122029