PM2.5-Related Health Risk during Chinese Spring Festival in Taizhou, Zhejiang: The Health Impacts of COVID-19 Lockdown
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Chemical Analysis
2.3. Human Exposure and Health Risk Assessment Model
3. Results and Discussion
3.1. Impact of COVID-19 on the Characteristics of PM2.5 during the CSF
3.2. Comparison of Health Risks Associated with Metals in PM2.5 in 2018 and 2020
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Gao, Z.; Ren, J.; Liu, Y.; Chang, L.T.-C.; Cheung, K.; Feng, Y.; Li, Y. An urban-rural and sex differences in cancer incidence and mortality and the relationship with PM2.5 exposure: An ecological study in the southeastern side of Hu line. Chemosphere 2019, 216, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, G.; Wang, J.; Li, J.; Ren, Y.; Zhang, L.; Cao, C.; Li, J.; Ge, S.; Xie, Y.; et al. Chemical characteristics of haze particles in Xi’an during Chinese Spring Festival: Impact of fireworks burning. J. Environ. Sci. 2018, 71, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Pant, P.; Pope, F.D. Air quality during and after festivals: Aerosol concentrations, composition and health effects. Atmos. Res. 2019, 227, 220–232. [Google Scholar] [CrossRef]
- Dai, L.; Zanobetti, A.; Koutrakis, P.; Schwartz, J.D. Associations of fine particulate matter species with mortality in the United States: A multicity time-series analysis. Environ. Health Perspect. 2014, 122, 837–842. [Google Scholar] [CrossRef]
- Dehghani, M.; Keshtgar, L.; Javaheri, M.R.; Derakhshan, Z.; Conti, G.O.; Zuccarello, P.; Ferrante, M. The effects of air pollutants on the mortality rate of lung cancer and leukemia. Mol. Med. Rep. 2017, 15, 3390–3397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.-J.; Kim, B.; Lee, K. Air pollution exposure and cardiovascular disease. Toxicol. Res. 2014, 30, 71–75. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Cao, F. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 2015, 5, 14884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, J.; Jin, L.; Cui, J.; Luo, X.; Li, J.; Zhang, G.; Li, X. Health risk-oriented source apportionment of PM2.5-associated trace metals. Environ. Pollut. 2020, 262, 114655. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.; Schins, R.P.; Hertel, O.; Loft, S. Transition metals in personal samples of PM2.5 and oxidative stress in human volunteers. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1340–1343. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Lei, Y.; Ren, H.; Gao, J.; Xu, H.; Shen, Z.; Zhang, Q.; Zheng, C.; Liu, H.; Zhang, R.; et al. Seasonal Variation and Health Risk Assessment of Heavy Metals in PM2.5 during Winter and Summer over Xi’an, China. Atmosphere 2017, 8, 91. [Google Scholar] [CrossRef]
- Jiang, N.; Duan, S.; Yu, X.; Zhang, R.; Wang, K. Comparative major components and health risks of toxic elements and polycyclic aromatic hydrocarbons of PM2.5 in winter and summer in Zhengzhou: Based on three-year data. Atmos. Res. 2018, 213, 173–184. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.; Du, R.; Teng, X.; Hu, R.; Yuan, Q.; Tang, S.; Ren, C.; Huang, X.; Xu, L.; et al. Chemistry of Atmospheric Fine Particles During the COVID-19 Pandemic in a Megacity of Eastern China. Geophys. Res. Lett. 2021, 48, 2020GL091611. [Google Scholar] [CrossRef] [PubMed]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Thurston, G.D.; Ito, K.; Lall, R. A source apportionment of U.S. fine particulate matter air pollution. Atmos. Environ. 2011, 45, 3924–3936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, N.; Zhang, C.; Jing, D.; Li, W.; Guo, T.; Wang, Q.; Li, S. An integrated chemical mass balance and source emission inventory model for the source apportionment of PM2.5 in typical coastal areas. J. Environ. Sci. 2020, 92, 118–128. [Google Scholar] [CrossRef]
- Jiang, Q.; Sun, Y.L.; Wang, Z.; Yin, Y. Aerosol composition and sources during the Chinese Spring Festival: Fireworks, secondary aerosol, and holiday effects. Atmos. Chem. Phys. 2015, 15, 6023–6034. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Yu, H.; Su, X.; Liu, S.; Li, Y.; Pan, Y.; Sun, J.-H. Chemical composition and source apportionment of PM2.5 during Chinese Spring Festival at Xinxiang, a heavily polluted city in North China: Fireworks and health risks. Atmos. Res. 2016, 182, 176–188. [Google Scholar] [CrossRef]
- Becker, J.M.; Iskandrian, S.; Conkling, J. Fatal and near-fatal asthma in children exposed to fireworks. Ann. Allergy Asthma Immunol. 2000, 85, 512–513. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Chao, S.; Cao, H.; Zhang, A. Levels and health risks of PM2.5-bound toxic metals from firework/firecracker burning during festival periods in response to management strategies. Ecotoxicol. Environ. Saf. 2019, 171, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Gao, X.; Wang, X.; Nie, W.; Wang, J.; Gao, R.; Xu, P.; Shou, Y.; Zhang, Q.; Wang, W. Impacts of firecracker burning on aerosol chemical characteristics and human health risk levels during the Chinese New Year Celebration in Jinan, China. Sci. Total Environ. 2014, 476, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Pirker, L.; Velkavrh, Ž.; Osīte, A.; Drinovec, L.; Močnik, G.; Remškar, M. Fireworks—A source of nanoparticles, PM2.5, PM10, and carbonaceous aerosols. Air Qual. Atmos. Health 2022, 15, 1275–1286. [Google Scholar] [CrossRef]
- Nasir, U.P.; Brahmaiah, D. Impact of fireworks on ambient air quality: A case study. Int. J. Environ. Sci. Technol. 2015, 12, 1379–1386. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Q.; Ding, J.; Song, C.; Liu, B.; Bi, X.; Wu, J.; Zhang, Y.; Feng, Y.; Hopke, P.K. Changes in source contributions to particle number concentrations after the COVID-19 outbreak: Insights from a dispersion normalized PMF. Sci. Total Environ. 2021, 759, 143548. [Google Scholar] [CrossRef]
- Kraemer, M.U.; Yang, C.-H.; Gutierrez, B.; Wu, C.-H.; Klein, B.; Pigott, D.M.; Group†, O.C.-D.W.; Plessis, L.D.; Faria, N.R.; Li, R. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 2020, 368, 493–497. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Liu, Y.; Li, Y.; Wu, C.-H.; Chen, B.; Kraemer, M.U.; Li, B.; Cai, J.; Xu, B.; Yang, Q. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 2020, 368, 638–642. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world. Environ. Pollut. 2020, 266, 115042. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Singh, R.P. Decline in PM2.5 concentrations over major cities around the world associated with COVID-19. Environ. Res. 2020, 187, 109634. [Google Scholar] [CrossRef]
- Chen, H.; Huo, J.; Fu, Q.; Duan, Y.; Xiao, H.; Chen, J. Impact of quarantine measures on chemical compositions of PM2.5 during the COVID-19 epidemic in Shanghai, China. Sci. Total Environ. 2020, 743, 140758. [Google Scholar] [CrossRef]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 369, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Miao, Q.; Shen, L.; Yang, Q.; Wu, Y.; Wei, H. Air pollutant variations in Suzhou during the 2019 novel coronavirus (COVID-19) lockdown of 2020: High time-resolution measurements of aerosol chemical compositions and source apportionment. Environ. Pollut. 2021, 271, 116298. [Google Scholar] [CrossRef] [PubMed]
- Sulaymon, I.D.; Zhang, Y.; Hopke, P.K.; Hu, J.; Zhang, Y.; Li, L.; Mei, X.; Gong, K.; Shi, Z.; Zhao, B. Persistent high PM2.5 pollution driven by unfavorable meteorological conditions during the COVID-19 lockdown period in the Beijing-Tianjin-Hebei region, China. Environ. Res. 2021, 198, 111186. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Huang, R.-J.; Ge, X.; Huang, X.; Hu, J.; Duan, Y.; Zou, Z.; Liu, X.; Lehmann, M.F. Puzzling Haze Events in China during the Coronavirus (COVID-19) Shutdown. Geophys. Res. Lett. 2020, 47, e2020GL088533. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Jeon, K.; Park, J.; Shim, K.; Kim, S.-W.; Shin, H.-J.; Yi, S.-M.; Hopke, P.K. Local and transboundary impacts of PM2.5 sources identified in Seoul during the early stage of the COVID-19 outbreak. Atmos. Pollut. Res. 2022, 13, 101510. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment); EPA-540-R-070-002, OSWER 9285.7-82; Office of Superfund Remediation and Technology Innovation, United States Environmental Protection Agency: Washington, DC, USA, 2009; pp. 13–24. [Google Scholar]
- USEPA. Risk-Assessment Guidance for Superfund. Volume 1. Human Health Evaluation Manual. Part A. Interim Report (Final); EPA/540/1-89/002; Office of Solid Waste and Emergency Response: Washington, DC, USA, 1989; pp. 8–28. [Google Scholar]
- USEPA. Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals); EPA/540/R-92/003; Office of Emergencyand Remedical Response: Washington, DC, USA, 1991; pp. 1–4. [Google Scholar]
- USEPA. Regional Screening Level (RSL) Summary Table (TR = 1E-06, HQ = 1); US Environmental Protection Agency (EPA): Washington, DC, USA, 2021. [Google Scholar]
- Taner, S.; Pekey, B.; Pekey, H. Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks. Sci. Total Environ. 2013, 454–455, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Shi, X.; Yan, G.; Wang, J.; Xu, Y.; Tang, Q.; Wang, Y.; Zheng, Y.; Lei, Y. Impacts of meteorology and emission variations on the heavy air pollution episode in North China around the 2020 Spring Festival. Sci. China Earth Sci. 2021, 64, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Chen, L.; Chen, J.; Bao, Z.; Wang, C.; Gao, X.; Cen, K. Unexpected rise of atmospheric secondary aerosols from biomass burning during the COVID-19 lockdown period in Hangzhou, China. Atmos. Environ. 2022, 278, 119076. [Google Scholar] [CrossRef]
- An, Z.; Huang, R.-J.; Zhang, R.; Tie, X.; Li, G.; Cao, J.; Zhou, W.; Shi, Z.; Han, Y.; Gu, Z.; et al. Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes. Proc. Natl. Acad. Sci. USA 2019, 116, 8657–8666. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Hu, M.; Zamora, M.L.; Peng, J.; Shang, D.; Zheng, J.; Du, Z.; Wu, Z.; Shao, M.; Zeng, L.; et al. Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA 2014, 111, 17373–17378. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yuan, Y.; Wang, Q.; Liu, C.; Zhi, Q.; Cao, J. Changes in air quality related to the control of coronavirus in China: Implications for traffic and industrial emissions. Sci. Total Environ. 2020, 731, 139133. [Google Scholar] [CrossRef]
- Luo, K.; Wang, Z.; Wu, J. Association of population migration with air quality: Role of city attributes in China during COVID-19 pandemic (2019–2021). Atmos. Pollut. Res. 2022, 13, 101419. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yu, R.; Shen, H.; Wang, S.; Hu, Q.; Cui, J.; Yan, Y.; Huang, H.; Hu, G. Chemical characteristics, sources, and formation mechanisms of PM2.5 before and during the Spring Festival in a coastal city in Southeast China. Environ. Pollut. 2019, 251, 442–452. [Google Scholar] [CrossRef]
- Feng, J.; Sun, P.; Hu, X.; Zhao, W.; Wu, M.; Fu, J. The chemical composition and sources of PM2.5 during the 2009 Chinese New Year’s holiday in Shanghai. Atmos. Res. 2012, 118, 435–444. [Google Scholar] [CrossRef]
- Wu, K.; Duan, M.; Liu, H.; Zhou, Z.; Deng, Y.; Song, D.; Tan, Q. Characterizing the composition and evolution of firework-related components in air aerosols during the Spring Festival. Environ. Geochem. Health 2018, 40, 2761–2771. [Google Scholar] [CrossRef] [PubMed]
- Turpin, B.J.; Huntzicker, J.J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos. Environ. 1995, 29, 3527–3544. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Wang, Y.; Ren, Y.; Wang, X.; Shi, Z.; Zhang, D.; Che, H.; Zhao, H.; Liu, Y.; et al. Chemical composition, source, and process of urban aerosols during winter haze formation in Northeast China. Environ. Pollut. 2017, 231, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chen, K.; Zhu, S.; Wang, P.; Zhang, H. Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak, Resources. Conserv. Recycl. 2020, 158, 104814. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Xu, X.; Liao, D.; Zheng, R.; Ji, X.; Chen, Y.; Xu, L.; Li, M.; Wang, H.; Xiao, H.; et al. Source apportionment of PM2.5 and sulfate formation during the COVID-19 lockdown in a coastal city of southeast China. Environ. Pollut. 2021, 286, 117577. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J.; Gómez-Perales, J.E.; Colvile, R.N. Levels of particulate air pollution, its elemental composition, determinants and health effects in metro systems. Atmos. Environ. 2007, 41, 7995–8006. [Google Scholar] [CrossRef]
- Winterbourn, C.C. Toxicity of iron and hydrogen peroxide the Fenton reaction. Toxicol. Lett. 1995, 82–83, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Park, E.H.; Schauer, J.J.; Yi, S.-M.; Heo, J. Reactive oxygen species (ROS) activity of ambient fine particles (PM2.5) measured in Seoul, Korea. Environ. Int. 2018, 117, 276–283. [Google Scholar] [PubMed]
- Keeling, B.; Li, K.Y.; Churg, A. Iron enhances uptake of mineral particles and increases lipid peroxidation in tracheal epithelial cells. Am. J. Respir. Cell Mol. Biol. 1994, 10, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, D.; Wu, X.; Chen, L.; Zhang, B.; Tan, Y.; Yu, D.; Niu, Y.; Duan, H.; Li, Q.; et al. Application of cell-based biological bioassays for health risk assessment of PM2.5 exposure in three megacities, China. Environ. Int. 2020, 139, 105703. [Google Scholar] [CrossRef]
- Park, E.J.; Kim, S.N.; Lee, G.H.; Jo, Y.M.; Yoon, C.; Kim, D.W.; Cho, J.W.; Han, J.S.; Lee, S.J.; Seong, E.; et al. Inhaled underground subway dusts may stimulate multiple pathways of cell death signals and disrupt immune balance. Environ. Res. 2020, 191, 109839. [Google Scholar] [CrossRef]
Sampling Period | Pre-SF | SF | Post-SF | Lunar New Year |
---|---|---|---|---|
2018 CSF | 5–14 February 2018 | 15–20 February 2018 | / | 16 February 2018 |
2020 CSF | 16–23 January 2020 | 24–30 January 2020 | 31 January−11 February 2020 | 25 January 2020 |
2018 | Pre-SF | SF | 2020 | Pre-SF | SF | Post-SF |
---|---|---|---|---|---|---|
OC | 30.743 ± 3.656 | 28.527 ± 2.416 | OC | 28.897 ± 6.436 | 15.113 ± 1.787 | 15.372 ± 3.815 |
EC | 6.063 ± 1.834 | 4.767 ± 1.827 | EC | 4.019 ± 1.337 | 1.612 ± 0.466 | 3.074 ± 2.241 |
OC/EC | 5.293 ± 0.978 | 6.906 ± 3.036 | OC/EC | 7.962 ± 3.190 | 9.832 ± 1.989 | 6.544 ± 3.373 |
CM | 55.252 ± 7.165 | 6.906 ± 3.036 | CM | 50.255 ± 10.146 | 25.792 ± 3.284 | 27.669 ± 7.534 |
As | 0.084 ± 0.018 | 0.084 ± 0.021 | As | 0.070 ± 0.020 | 0.030 ± 0.024 | 0.036 ± 0.026 |
Ba | - | - | Ba | 0.152 ± 0.011 | 0.262 ± 0.234 | 0.158 ± 0.022 |
Cd | - | - | Cd | 0.005 ± 0.001 | 0.003 ± 0.003 | 0.003 ± 0.001 |
Co | 0.014 ± 0.000 | 0.019 ± 0.001 | Co | - | - | - |
Cr | 0.128 ± 0.022 | 0.157 ± 0.013 | Cr | 0.009 ± 0.001 | 0.010 ± 0.001 | 0.010 ± 0.001 |
Cu | 0.355 ± 0.073 | 0.398 ± 0.060 | Cu | 0.199 ± 0.017 | 0.242 ± 0.030 | 0.215 ± 0.030 |
Fe | 5.052 ± 3.625 | 3.625 ± 0.616 | Fe | 1.489 ± 0.166 | 1.555 ± 0.203 | 1.465 ± 0.142 |
Mn | 0.506 ± 0.093 | 0.299 ± 0.161 | Mn | 0.419 ± 0.032 | 0.542 ± 0.119 | 0.442 ± 0.047 |
Pb | 0.176 ± 0.068 | 0.313 ± 0.120 | Pb | 0.087 ± 0.018 | 0.069 ± 0.020 | 0.043 ± 0.016 |
Ti | 0.154 ± 0.052 | 0.227 ± 0.028 | Ti | 0.034 ± 0.003 | 0.034 ± 0.003 | 0.031 ± 0.004 |
2018 | Principle Components | 2020 | Principle Components | ||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | ||
OC | 0.529 | OC | 0.738 | ||||
EC | 0.938 | EC | 0.611 | ||||
As | 0.777 | As | 0.725 | ||||
Cd | Cd | −0.661 | |||||
Co | 0.643 | Co | |||||
Cr | 0.851 | Cr | 0.744 | ||||
Cu | 0.543 | 0.667 | Cu | 0.928 | |||
Fe | 0.782 | Fe | 0.856 | ||||
Mn | 0.599 | Mn | 0.934 | ||||
Pb | 0.958 | Pb | 0.704 | ||||
Ti | 0.817 | Ti | 0.596 | ||||
Variance, % | 32.517 | 23.387 | 20.907 | Variance, % | 30.175 | 23.457 | 15.036 |
Cumulative, % | 32.517 | 55.905 | 76.812 | Cumulative, % | 30.175 | 53.632 | 68.669 |
Source | Industry | Combustion | Mineral/road dust | Mineral/road dust | Combustion | Industry |
HQ | RfCi (mg/m3) | 2018 | 2020 | |||
---|---|---|---|---|---|---|
Pre-SF | SF | Pre-SF | SF | Post-SF | ||
As | 1.5 × 10−5 | 2.77 ± 0.60 | 2.77 ± 0.68 | 2.30 ± 0.66 | 0.99 ± 0.78 | 1.17 ± 0.86 |
Ba | 5 × 10−4 | - | - | 0.15 ± 0.01 | 0.26 ± 0.23 | 0.16 ± 0.02 |
Cd | 1 × 10−5 | - | - | 0.23 ± 0.07 | 0.14 ± 0.13 | 0.16 ± 0.06 |
Co | 6 × 10−6 | 1.16 ± 0.21 | 1.55 ± 0.12 | - | - | - |
Cr(VI) | 1 × 10−4 | 0.09 ± 0.02 | 0.11 ± 0.01 | 0.04 ± 0.00 | 0.05 ± 0.01 | 0.05 ± 0.00 |
Mn | 5 × 10−5 | 4.99 ± 0.92 | 2.95 ± 1.59 | 4.13 ± 0.04 | 5.35 ± 0.13 | 4.36 ± 0.05 |
Ti | 1 × 10−4 | 0.76 ± 0.26 | 1.12 ± 0.14 | 0.17 ± 0.01 | 0.17 ± 0.01 | 0.15 ± 0.02 |
CR | IUR (μg/m3)−1 | 2018 | 2020 | |||
---|---|---|---|---|---|---|
pre-SF | SF | pre-SF | SF | post-SF | ||
As | 4.3 × 10−3 | 6.12 × 10−5 ± 1.32 × 10−5 | 6.12 × 10−5 ± 1.50 × 10−5 | 5.09 × 10−5 ± 1.45 × 10−5 | 2.18 × 10−5 ± 1.73 × 10−5 | 2.59 × 10−5 ± 1.91 × 10−5 |
Cd | 1.8 × 10−3 | - | - | 7.84 × 10−9 ± 2.42 × 10−9 | 4.79 × 10−9 ± 4.49 × 10−9 | 5.50 × 10−9 ± 2.11 × 10−9 |
Co | 9 × 10−3 | 1.43 × 10−8 ± 2.57 × 10−9 | 1.92 × 10−8 ± 1.46 × 10−9 | - | - | - |
Cr(VI) | 8.4 × 10−2 | 2.60 × 10−4 ± 4.43 × 10−5 | 3.18 × 10−4 ± 2.66 × 10−5 | 1.29 × 10−4 ± 1.08 × 10−5 | 1.37 × 10−4 ± 1.59 × 10−5 | 1.35 × 10−4 ± 1.42 × 10−5 |
Pb | 8 × 10-5 | 2.38 × 10−6 ± 9.20 × 10−7 | 4.23 × 10−6 ± 1.62 × 10−6 | 1.18 × 10−6 ± 2.73 × 10−8 | 9.34 × 10−7 ± 3.15 × 10−8 | 5.88 × 10−7 ± 2.44 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Wang, X.; Ji, K.; Qiu, H.; Feng, W.; Huang, S.; Huang, T.; Li, J.; Wu, D. PM2.5-Related Health Risk during Chinese Spring Festival in Taizhou, Zhejiang: The Health Impacts of COVID-19 Lockdown. Atmosphere 2022, 13, 2099. https://doi.org/10.3390/atmos13122099
Wu Q, Wang X, Ji K, Qiu H, Feng W, Huang S, Huang T, Li J, Wu D. PM2.5-Related Health Risk during Chinese Spring Festival in Taizhou, Zhejiang: The Health Impacts of COVID-19 Lockdown. Atmosphere. 2022; 13(12):2099. https://doi.org/10.3390/atmos13122099
Chicago/Turabian StyleWu, Quanquan, Xianglian Wang, Kai Ji, Haibing Qiu, Weiwei Feng, Shan Huang, Ting Huang, Jianlong Li, and Daishe Wu. 2022. "PM2.5-Related Health Risk during Chinese Spring Festival in Taizhou, Zhejiang: The Health Impacts of COVID-19 Lockdown" Atmosphere 13, no. 12: 2099. https://doi.org/10.3390/atmos13122099
APA StyleWu, Q., Wang, X., Ji, K., Qiu, H., Feng, W., Huang, S., Huang, T., Li, J., & Wu, D. (2022). PM2.5-Related Health Risk during Chinese Spring Festival in Taizhou, Zhejiang: The Health Impacts of COVID-19 Lockdown. Atmosphere, 13(12), 2099. https://doi.org/10.3390/atmos13122099