A Review of Field Measurement Studies on Thermal Comfort, Indoor Air Quality and Virus Risk
Abstract
:1. Introduction
2. Methodology
Limitations of This Study
3. Background
3.1. Thermal Comfort
3.1.1. Factors Influencing Thermal Comfort
3.1.2. Thermal Comfort Related Indices and Standards
3.2. Indoor Air Quality (IAQ)
3.2.1. Main Air Contaminants
3.2.2. Factors Influencing IAQ
3.2.3. IAQ Related Indices and Standards
3.3. Airborne Virus Risk
3.3.1. Factors Influencing Virus Risk
3.3.2. Virus Risk Related Indices
4. Field Measurement Studies
4.1. Offices
4.2. Educational Facilities
4.2.1. Academic Performance
4.2.2. Health Impact
4.2.3. Green Buildings
4.2.4. Ventilation Strategies
4.2.5. IEQ Analysis
4.2.6. Wireless Custom-Built Solutions
4.3. Residences
4.4. Care Centers
4.5. Other
5. Discussion
5.1. Building Type
5.2. Measured Parameters
5.3. IEQ Influencing Factor
5.4. Data Collection Methods
5.5. Main Outcomes and Results
5.5.1. Statistical Analysis and Standards
5.5.2. Ventilation
5.5.3. Health Impact & Performance
5.5.4. Green Buildings
5.6. Real-Time Monitoring and Control
5.7. Standardisation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. IAQ Recommended Levels and Field Measurement Studies Collective Results
Parameter | Recommended Levels |
---|---|
Physical parameters | |
T | ASHRAE 55 (residences): [122], 19.5–27.8 °C |
RH | |
N | WHO [126]:
|
I | EN 12464-1 (Classrooms & Offices) [28]: 500 lux |
V | Harvard T.H. Chan (classrooms—(Classroom densities: 25 students/1000 ft for 5–8 years-old)) [69]:
|
Chemical parameters | |
PM | RESET Air Standard (PM) [49]:
|
CO | WHO [127]:
|
CO | RESET Air Standard [49]:
|
SO | WHO [127]
|
NO | WHO [127]
|
O | WHO [127]:
|
VOC | WHO [48]:
|
Rn | WHO [130]:
|
Ref. | Selected Measured Parameters | Measuring Methodology | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T | RH | RT | V | N | I | PM | CO | CO | SO | NO | O | VOCs | HCHO | Rn | Sensors | Calibration | Passive Samplers | Occupants’ Questionnaires | |
Offices | |||||||||||||||||||
[71] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||
[72] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | OTS | N/A | ✓ | ||||||
[73] | ✓ | ✓ | ✓ | ✓ | OTS, CS | N/A | |||||||||||||
[74] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | OTS | FC, MC | |||||||||
[75] | ✓ | OTS | MC | ||||||||||||||||
[76] | ✓ | CS | N/A | ✓ | |||||||||||||||
Educational facilities | |||||||||||||||||||
[77] | ✓ | ✓ | ✓ | OTS | FC, MC | ||||||||||||||
[78] | ✓ | ✓ | OTS | N/A | ✓ | ||||||||||||||
[79] | ✓ | ✓ | ✓ | OTS | FC | ||||||||||||||
[80] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | OTS | N/A | ✓ | ||||||||||
[81] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | OTS | FC | ✓ | ✓ | ||||||||
[82] | ✓ | ✓ | ✓ | OTS | N/A | ||||||||||||||
[83] | ✓ | ✓ | ✓ | N/A | N/A | ||||||||||||||
[84] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | OTS | MC | ✓ | |||||||||
[85] | ✓ | ✓ | ✓ | OTS | N/A | ||||||||||||||
[86] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | OTS | N/A | ✓ | |||||||||
[87] | ✓ | ✓ | ✓ | ✓ | CS | N/A | |||||||||||||
[88] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | OTS | N/A | |||||||||||
[89] | ✓ | ✓ | ✓ | OTS | N/A | ✓ | |||||||||||||
[90] | ✓ | ✓ | ✓ | ✓ | ✓ | OTS | N/A | ||||||||||||
[91] | ✓ | ✓ | ✓ | ✓ | ✓ | OTS | FC | ✓ | |||||||||||
[92] | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||
[93] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | OTS | N/A | ||||||||
[94] | ✓ | ✓ | ✓ | ✓ | OTS | FC | ✓ | ||||||||||||
[95] | ✓ | ✓ | ✓ | ✓ | ✓ | OTS | N/A | ||||||||||||
[96] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | OTS | FC, MC | |||||||||||
Residences | |||||||||||||||||||
[97] | ✓ | ✓ | ✓ | ||||||||||||||||
[98] | ✓ | ✓ | ✓ | ✓ | |||||||||||||||
[99] | ✓ | ✓ | ✓ | ✓ | OTS | FC | ✓ | ||||||||||||
[100] | ✓ | ✓ | ✓ | ✓ | OTS | N/A | ✓ | ||||||||||||
[101] | ✓ | ✓ | ✓ | ✓ | OTS | MC | ✓ | ||||||||||||
[102] | ✓ | ✓ | ✓ | ✓ | CS | N/A | |||||||||||||
Care centers | |||||||||||||||||||
[103] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | N/A | N/A | ✓ | ||||||||
[104] | ✓ | ✓ | ✓ | ✓ | ✓ | OTS | N/A | ✓ | |||||||||||
[105] | ✓ | ✓ | ✓ | OTS | N/A | ✓ | |||||||||||||
Other | |||||||||||||||||||
[106] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | OTS, CS | FC | ||||||||
[107] | ✓ | ✓ | ✓ | OTS | FC, MC | ✓ | |||||||||||||
[108] | ✓ | ✓ | ✓ | OTS, CS | N/A | ✓ | |||||||||||||
[109] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | OTS, CS | MC | ||||||||
[110] | ✓ | ✓ | ✓ | OTS | MC | ||||||||||||||
[111] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | OTS, CS | FC |
Ref. | IEQ Analysis | IEQ Influencing Factors | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Performance | Health Impact | Green Building | Ventilation Strategies | Comparison with Standards | I/O Ratios | Statistical Analysis | IAQ | Thermal Comfort | Acoustic Comfort | Visual Comfort | Virus Risk | |
Offices | ||||||||||||
[71] | ✓ | ✓ | ||||||||||
[72] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
[73] | ✓ | ✓ | ||||||||||
[74] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
[75] | ✓ | ✓ | ||||||||||
[76] | ✓ | ✓ | ✓ | ✓ | ||||||||
Educational facilities | ||||||||||||
[77] | ✓ | ✓ | ✓ | |||||||||
[78] | ✓ | ✓ | ✓ | |||||||||
[79] | ✓ | ✓ | ✓ | |||||||||
[80] | ✓ | ✓ | ✓ | ✓ | ||||||||
[81] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
[82] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
[83] | ✓ | ✓ | ✓ | |||||||||
[84] | ✓ | ✓ | ✓ | ✓ | ||||||||
[85] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
[86] | ✓ | ✓ | ✓ | ✓ | ||||||||
[87] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
[88] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
[89] | ✓ | ✓ | ✓ | |||||||||
[90] | ✓ | ✓ | ✓ | |||||||||
[91] | ✓ | ✓ | ✓ | ✓ | ||||||||
[92] | ✓ | ✓ | ✓ | |||||||||
[93] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
[94] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
[95] | ✓ | ✓ | ||||||||||
[96] | ✓ | ✓ | ||||||||||
Residences | ||||||||||||
[97] | ✓ | ✓ | ✓ | |||||||||
[98] | ✓ | ✓ | ✓ | ✓ | ||||||||
[99] | ✓ | ✓ | ||||||||||
[100] | ✓ | ✓ | ||||||||||
[101] | ✓ | ✓ | ✓ | ✓ | ||||||||
[102] | ✓ | ✓ | ||||||||||
Care Centers | ||||||||||||
[103] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
[104] | ✓ | ✓ | ✓ | ✓ | ||||||||
[105] | ✓ | ✓ | ✓ | ✓ | ||||||||
Other | ||||||||||||
[106] | ✓ | ✓ | ✓ | |||||||||
[107] | ✓ | ✓ | ✓ | |||||||||
[108] | ✓ | ✓ | ||||||||||
[110] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
[109] | ✓ | ✓ | ✓ | |||||||||
[111] | ✓ | ✓ | ✓ |
Ref. | Location Info (Ventilation) | Measurement Period, Duration, Resolution | Sensing Equipment (Measured Parameters) | Remarks |
---|---|---|---|---|
[71] | 148 offices from 37 buildings (MV), Europe | 2012 and 2013 (summer and winter seasons), 5 days, N/A | Passive samplers:
|
|
[72] | 400 offices from 20 buildings, U.S. | 2005–2008 (winter and summer season), 10 min, 15 s | National environmental assessment toolkit (CO, CO, PM, VOCs, T, RH) with hand-held sensors (V, RT, N, and I levels) |
|
[73] | Premises of Optoelettronica Italia S.r.l., Far Systems S.p.A., R&D Systems S.r.l. (MV), Italy | July 2013, 3 days, 5 s | Wireless Sensor Network:
|
|
[74] | 1 office and an exit of a car-park (MV), Coventry, UK | N/A, N/A, 10 min | Custom portable IEQ monitoring device:
|
|
[75] | 1 high-rise office building (MV), Hong Kong | Field tests in winter season. Simulation tests for summer and spring, N/A, N/A |
|
|
[76] | 1 office building (MV), Doha, Qatar | April–June 2015 (spring season), 2 months, N/A | Low Volume Sampler LVS16, WB Engineering GmbH (PM) |
|
[77] | 60 classrooms from 30 schools (NV), Scotland | May and June 2010, 1 week, 6 min | Portable data loggers:
|
|
[78] | 1 primary school (MV), Devon, UK | (summer season), random days/week, N/A | Portable data logger, Telaire 7001 monitor (T, CO) |
|
[79] | 2 University classrooms (MV), Malaysia | N/A, 2-h, 5 min | Wireless Sensor Network:
|
|
[80] | 28 classrooms from 7 schools (NV), Venice, Italy | 2009 and 2010, 1 day, N/A |
|
|
[81] | 319 classrooms from 115 schools (NV, MV), Europe | November 2011–March 2012, 1 week, 30 min (CO) |
|
|
[82] | 70 schools (MV), U.S. | 2008–2009 and 2009–2010, 1 week/school, 5 min (T, RH, CO) | Portable data loggers:
|
|
[83] | 1 University lecture hall (MV), Trondheim, Norway | September 2020, 1-h, 1 min | Manual recording (T, RH, CO) |
|
[84] | 3 educational buildings (MV), U.S. | N/A, (fall, winter, and spring season), 48-h and 8-h in each season, 1 min | Custom air sampling station:
|
|
[85] | 4 primary schools (NV), Taiwan, China | November–December 2016, 3 weeks, N/A | Portable data loggers:
|
|
[86] | 55 schools, classroom, computer room and laboratory/school (NV), Korea | July–December 2004 (summer, autumn and winter season), 1-day, N/A |
|
|
[87] | 26 classrooms from 1 University Campus (MV), Salerno, Italy | May 2019, N/A, N/A | N/A |
|
[88] | 18 classrooms, from 9 schools in urban, suburban and rural areas (NV, MV), England | 2006 and 2007 (winter season), 1 week, 5 min (CO), 1 s (T, RH, V) | Portable data loggers:
|
|
[89] | 18 classrooms from 17 schools (NV), Netherland | 2010–2012 (2 winter seasons), 3 weeks, 4 min | Data logger:
|
|
[90] | 4 University classrooms (NV), Turkey | September–May 2018, 2 days/week, 10 min | Portable data loggers:
|
|
[91] | 32 classrooms from 16 schools in urban areas (MV), Qatar | December 2015 -March 2016 (winter season), school-hours, 1 min | Portable data loggers:
|
|
[92] | 27 schools in urban and suburban areas (NV), Antwerp, Belgium | December 2002 and Jun 2003, 5 days, N/A |
|
|
[93] | 16 schools in urban and rural areas (MV), Dubai and Fujairah, UAE | April 2012–Feberary 2013, 8-h daily, 30 s (PM), 15 min (T, RH, CO, CO, O, VOC) | Portable data loggers:
|
|
[94] | 42 schools (NV, MV), Nicosia, Limassol, Larnaca, Pafos, Cyprus | May–July 2021, 2 days/week, N/A |
|
|
[95] | 2 classrooms from 1 Polytechnic Institute, Guarda, Portugal | 2015, 3 months, N/A | Wireless Sensor Network
|
|
[96] | 1 University, main entrances of the building, laboratories, restroom (MV), Korea | 2018, N/A, N/A |
|
|
[97] | 622 flats, living room/flat (NV, MV), Leipzig, Germany | (summer and winter season), 16 months, N/A | Passive samplers:
|
|
[98] | 169 energy—efficient residences, bedroom/residence (NV), Switzerland | September 2015, 7 days, N/A | Passive samplers:
|
|
[99] | 274 households (NV), Jogjakarta, Indonesia | April–June 2001 and November–January 2002 (summer and winter season), one and a half months (06:00-24:00), N/A | Sensor probes and data loggers mounted on a tripod:
|
|
[100] | 1944 residences (NV), Hainan, China | Mar.–April (spring and early summer), 2 months, 10 min (outdoor) | Data loggers:
|
|
[101] | 6 households, living room and kitchen/ household (NV, MV), Hong Kong | July–October 1999, 8-h (CO, PM), 1 day (HCHO), 1 min (PM) | Portable data loggers:
|
|
[102] | living room, bedroom, office, and kitchen | Feb.–Mar 2016, 1 month, N/A | Wireless Sensor Network:
|
|
[103] | 12 care centres bedrooms/centre (NV), Taiwan | January 1994, 24-h, N/A | N/A |
|
[104] | 15 rooms from 1 nursing home (NV, MV), Hefei, China | September 2019, 2 weeks, 10 min | Wireless Sensor Network |
|
[105] | 3 social housing apartments, living room, and bedroom/apartment (NV), Spain | Mar.–April & December–January (spring and winter season), 2 days, 2 min | Portable data logger:
|
|
[106] | 1 office and 1 living room (MV), Florida, US | September 2021, 1 week, 10 min | Internet of Things(IoT) enabled sensors:
|
|
[107] | 2 offices and 1 educational facility (MV), Delhi, India | June–July 2015, 8-h in a daily basis, 5 days/week, 5 min | Portable passive sampler:
|
|
[108] | 1 Shopping mall (MV), Hong Kong, China | October 2017, 1 week, 1 min |
|
|
[109] | 1 classroom, 1 living room, and 1 church (MV), Korea | (fall and winter season), N/A, N/A | Wireless Sensor Network
|
|
[110] | Stadium, hotel, shopping centre, research centre, commercial office, apartment, detached villa (MV), Beijing, China | Feb.–March 2014, 1 h, 10 min |
|
|
[111] | One double storey building, Malaysia | N/A, N/A, 1 min | Wireless Sensor Network
|
|
References
- Schweizer, C.; Edwards, R.D.; Bayer-Oglesby, L.; Gauderman, W.J.; Ilacqua, V.; Jantunen, M.J.; Lai, H.K.; Nieuwenhuijsen, M.; Künzli, N. Indoor time–microenvironment–activity patterns in seven regions of Europe. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 170–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cincinelli, A.; Martellini, T. Indoor air quality and health. Int. J. Environ. Res. Public Health 2017, 14, 1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persily, A.K.; Emmerich, S.J. Indoor air quality in sustainable, energy efficient buildings. Hvac&R Res. 2012, 18, 4–20. [Google Scholar]
- World Health Organization (WHO). Household Air Pollution. Available online: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/household-air-pollution (accessed on 6 September 2021).
- Chafe, Z.A.; Brauer, M.; Klimont, Z.; Van Dingenen, R.; Mehta, S.; Rao, S.; Riahi, K.; Dentener, F.; Smith, K.R. Household cooking with solid fuels contributes to ambient PM2. 5 air pollution and the burden of disease. Environ. Health Perspect. 2014, 122, 1314–1320. [Google Scholar] [CrossRef] [Green Version]
- Woo, J.M.; Postolache, T.T. The impact of work environment on mood disorders and suicide: Evidence and implications. Int. J. Disabil. Hum. Dev. 2008, 7, 185–200. [Google Scholar] [CrossRef] [Green Version]
- Burge, P.S. Sick building syndrome. Occup. Environ. Med. 2004, 61, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Fisk, W.J.; Black, D.; Brunner, G. Changing ventilation rates in US offices: Implications for health, work performance, energy, and associated economics. Build. Environ. 2012, 47, 368–372. [Google Scholar] [CrossRef] [Green Version]
- Chapter Introductory Chapter: Indoor Environmental Quality. In Muhammad Abdul Mujeebu; Intech Open: London, UK, 2019; pp. 1–13. [CrossRef] [Green Version]
- Shan, X.; Melina, A.N.; Yang, E.H. Impact of indoor environmental quality on students’ wellbeing and performance in educational building through life cycle costing perspective. J. Clean. Prod. 2018, 204, 298–309. [Google Scholar] [CrossRef]
- Spengler, J.D.; Chen, Q. Indoor air quality factors in designing a healthy building. Annu. Rev. Energy Environ. 2000, 25, 567–600. [Google Scholar] [CrossRef] [Green Version]
- Altomonte, S.; Saadouni, S.; Kent, M.G.; Schiavon, S. Satisfaction with indoor environmental quality in BREEAM and non-BREEAM certified office buildings. Archit. Sci. Rev. 2017, 60, 343–355. [Google Scholar] [CrossRef]
- Steinemann, A.; Wargocki, P.; Rismanchi, B. Ten questions concerning green buildings and indoor air quality. Build. Environ. 2017, 112, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Holmgren, M.; Kabanshi, A.; Sörqvist, P. Occupant perception of “green” buildings: Distinguishing physical and psychological factors. Build. Environ. 2017, 114, 140–147. [Google Scholar] [CrossRef]
- Crawley, D.; Pless, S.; Torcellini, P. Getting to net zero. ASHRAE J. 2009, 51, 18. [Google Scholar]
- Becchio, C.; Bottero, M.; Corgnati, S.; Ghiglione, C. nZEB design: Challenging between energy and economic targets. Energy Procedia 2015, 78, 2070–2075. [Google Scholar] [CrossRef] [Green Version]
- Chastas, P.; Theodosiou, T.; Bikas, D. Embodied energy in residential buildings-towards the nearly zero energy building: A literature review. Build. Environ. 2016, 105, 267–282. [Google Scholar] [CrossRef]
- BREEAM. BREEAM—Sustainability Assessment Method. Available online: https://www.breeam.com/ (accessed on 10 September 2021).
- LEED. LEED Rating System. Available online: https://www.usgbc.org/leed (accessed on 10 September 2021).
- GreenStar. Exploring Green Star. Available online: https://new.gbca.org.au/green-star/exploring-green-star/ (accessed on 10 September 2021).
- Franchimon, F.; Dijken, F.; Pernot, C.; van Bronswijk, J. Air-exchange rate under debate. In Proceedings of the 9th International Conference and Exhibition—Healthy Buildings 2009, HB 2009, Syracuse, NY, USA, 13–17 September 2009. [Google Scholar]
- Tran, V.V.; Park, D.; Lee, Y.C. Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef] [Green Version]
- ANSI/ASHRAE Standard 55-2020; Thermal Environmental Conditions for Human Occupancy. ASHRAE: Atlanta, GA, USA, 2021.
- Astolfi, A.; Pellerey, F. Subjective and objective assessment of acoustical and overall environmental quality in secondary school classrooms. J. Acoust. Soc. Am. 2008, 123, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Puglisi, G.; Cutiva, L.C.; Pavese, L.; Castellana, A.; Bona, M.; Fasolis, S.; Lorenzatti, V.; Carullo, A.; Burdorf, A.; Bronuzzi, F.; et al. Acoustic comfort in high-school classrooms for students and teachers. Energy Procedia 2015, 78, 3096–3101. [Google Scholar] [CrossRef] [Green Version]
- Montiel, I.; Mayoral, A.M.; Navarro Pedreño, J.; Maiques, S. Acoustic comfort in learning spaces: Moving towards sustainable development goals. Sustainability 2019, 11, 3573. [Google Scholar] [CrossRef] [Green Version]
- Galasiu, A.D.; Veitch, J.A. Occupant preferences and satisfaction with the luminous environment and control systems in daylit offices: A literature review. Energy Build. 2006, 38, 728–742. [Google Scholar] [CrossRef] [Green Version]
- British Standard Institution. BS EN 12464-1:2021 Light and Lighting. Lighting of Work Places Indoor Work Places. Available online: https://www.en-standard.eu/bs-en-12464-1-2021-light-and-lighting-lighting-of-work-places-indoor-work-places/ (accessed on 10 September 2021).
- Almeida, R.M.; De Freitas, V.P.; Delgado, J.M. School Buildings Rehabilitation: Indoor Environmental Quality and Enclosure Optimization; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Mujan, I.; Anđelković, A.S.; Munćan, V.; Kljajić, M.; Ružić, D. Influence of indoor environmental quality on human health and productivity—A review. J. Clean. Prod. 2019, 217, 646–657. [Google Scholar] [CrossRef]
- Frontczak, M.; Wargocki, P. Literature survey on how different factors influence human comfort in indoor environments. Build. Environ. 2011, 46, 922–937. [Google Scholar] [CrossRef]
- Arif, M.; Katafygiotou, M.; Mazroei, A.; Kaushik, A.; Elsarrag, E. Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. Int. J. Sustain. Built Environ. 2016, 5, 1–11. [Google Scholar] [CrossRef]
- Mannan, M.; Al-Ghamdi, S.G. Indoor Air Quality in Buildings: A Comprehensive Review on the Factors Influencing Air Pollution in Residential and Commercial Structure. Int. J. Environ. Res. Public Health 2021, 18, 3276. [Google Scholar] [CrossRef] [PubMed]
- d’Ambrosio Alfano, F.R.; Ficco, G.; Frattolillo, A.; Palella, B.I.; Riccio, G. Mean Radiant Temperature Measurements through Small Black Globes under Forced Convection Conditions. Atmosphere 2021, 12, 621. [Google Scholar] [CrossRef]
- British Standard Institution. BS EN ISO 7730:2005; Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. British Standard Institution: London, UK, 2005.
- d’Ambrosio Alfano, F.R.; Olesen, B.W.; Palella, B.I.; Pepe, D.; Riccio, G. Fifty years of PMV model: Reliability, implementation and design of software for its calculation. Atmosphere 2020, 11, 49. [Google Scholar] [CrossRef] [Green Version]
- British Standard Institution. Bs en 15251:2007; Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics. British Standard Institution: London, UK, 2008.
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adgate, J.L.; Church, T.R.; Ryan, A.D.; Ramachandran, G.; Fredrickson, A.L.; Stock, T.H.; Morandi, M.T.; Sexton, K. Outdoor, indoor, and personal exposure to VOCs in children. Environ. Health Perspect. 2004, 112, 1386–1392. [Google Scholar] [CrossRef] [Green Version]
- Rodes, C.E.; Lawless, P.A.; Thornburg, J.W.; Williams, R.W.; Croghan, C.W. DEARS particulate matter relationships for personal, indoor, outdoor, and central site settings for a general population. Atmos. Environ. 2010, 44, 1386–1399. [Google Scholar] [CrossRef]
- Meng, Q.Y.; Spector, D.; Colome, S.; Turpin, B. Determinants of indoor and personal exposure to PM2.5 of indoor and outdoor origin during the RIOPA study. Atmos. Environ. 2009, 43, 5750–5758. [Google Scholar] [CrossRef] [Green Version]
- Levin, H. Indoor air pollutants. Part 1: General description of pollutants, levels and standards. Vent. Inf. Pap. 2003, 2, 12. [Google Scholar]
- Parajuli, I.; Lee, H.; Shrestha, K.R. Indoor air quality and ventilation assessment of rural mountainous households of Nepal. Int. J. Sustain. Built Environ. 2016, 5, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Freijer, J.I.; Bloemen, H.J.T. Modeling relationships between indoor and outdoor air quality. J. Air Waste Manag. Assoc. 2000, 50, 292–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundell, N.; Andersson, L.M.; Brittain-Long, R.; Lindh, M.; Westin, J. A four year seasonal survey of the relationship between outdoor climate and epidemiology of viral respiratory tract infections in a temperate climate. J. Clin. Virol. 2016, 84, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Deng, Q.; Li, Y.; Sundell, J.; Norbäck, D. Outdoor air pollution, meteorological conditions and indoor factors in dwellings in relation to Sick Building Syndrome (SBS) among adults in China. Sci. Total Environ. 2016, 560, 186–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Settimo, G.; Manigrasso, M.; Avino, P. Indoor air quality: A focus on the European legislation and state-of-the-art research in Italy. Atmosphere 2020, 11, 370. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2010. [Google Scholar]
- RESET® Air. Available online: https://www.reset.build/standard/air (accessed on 22 July 2021).
- Atmo Indoor Environmental Monitoring. Available online: https://atmotube.de/pages/atmocube?view=en (accessed on 22 July 2021).
- Lu, J.; Gu, J.; Li, K.; Xu, C.; Su, W.; Lai, Z.; Zhou, D.; Yu, C.; Xu, B.; Yang, Z. COVID-19 Outbreak Associated with Air Conditioning in Restaurant, Guangzhou, China, 2020. Emerg. Infect. Dis. 2020, 26, 1628–1631. [Google Scholar] [CrossRef]
- Hamner, L. High SARS-CoV-2 attack rate following exposure at a choir practice—Skagit County, Washington, March 2020. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 606–610. [Google Scholar] [CrossRef]
- Günther, T.; Czech-Sioli, M.; Indenbirken, D.; Robitaille, A.; Tenhaken, P.; Exner, M.; Ottinger, M.; Fischer, N.; Grundhoff, A.; Brinkmann, M.M. SARS-CoV-2 outbreak investigation in a German meat processing plant. EMBO Mol. Med. 2020, 12, e13296. [Google Scholar] [CrossRef]
- Yao, Y.; Pan, J.; Wang, W.; Liu, Z.; Kan, H.; Qiu, Y.; Meng, X.; Wang, W. Association of particulate matter pollution and case fatality rate of COVID-19 in 49 chinese cities. Sci. Total Environ. 2020, 741, 140396. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci. Total Environ. 2020, 727, 138704. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, X.L.; Dai, D.W.; Huang, Z.Y.; Ma, Z.; Guan, Y.J. Air pollution and temperature are associated with increased COVID-19 incidence: A time series study. Int. J. Infect. Dis. 2020, 97, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M.G.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Torboli, V.; Fontana, F.; et al. SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: First evidence. Environ. Res. 2020, 188, 109754. [Google Scholar] [CrossRef]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Pallavicini, A.; Ruscio, M.; Piscitelli, P.; Colao, A.; Miani, A. Searching for SARS-COV-2 on particulate matter: A possible early indicator of COVID-19 epidemic recurrence. Int. J. Environ. Res. Public Health 2020, 17, 2986. [Google Scholar] [CrossRef] [PubMed]
- Van Doremalen, N.; Bushmaker, T.; Munster, V. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Eurosurveillance 2013, 18, 20590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyankov, O.V.; Bodnev, S.A.; Pyankova, O.G.; Agranovski, I.E. Survival of aerosolized coronavirus in the ambient air. J. Aerosol Sci. 2018, 115, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Riley, E.; Murphy, G.; Riley, R. Airborne spread of measles in a suburban elementary school. Am. J. Epidemiol. 1978, 107, 421–432. [Google Scholar] [CrossRef]
- Fennelly, K.P.; Nardell, E.A. The relative efficacy of respirators and room ventilation in preventing occupational tuberculosis. Infect. Control Hosp. Epidemiol. 1998, 19, 754–759. [Google Scholar] [CrossRef]
- Dai, H.; Zhao, B. Association of the infection probability of COVID-19 with ventilation rates in confined spaces. In Building Simulation; Springer: Berlin/Heidelberg, Germany, 2020; Volume 13, pp. 1321–1327. [Google Scholar] [CrossRef]
- Rudnick, S.; Milton, D. Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air 2003, 13, 237–245. [Google Scholar] [CrossRef]
- RESET. Initiative RESET® Viral Index. Available online: https://reset.build/programs/initiatives/RESETViralIndex (accessed on 22 July 2021).
- AIRTHINGS. Virus Risk Indicator. Available online: https://www.airthings.com/business/virus-risk (accessed on 17 March 2021).
- Harvard Healthy Buildings ACH-CO2 Tool. Available online: https://docs.google.com/spreadsheets/d/1wG0dO0Su75iBuUCmY5WpfYtQlTKbQ1UzJOeBVbDxJks/edit?usp=sharing (accessed on 6 May 2021).
- 5-Step Guide to Checking Ventilation Rates in Classrooms. Harvard Healthy Buildings Program. Available online: https://schools.forhealth.org/ventilation-guide/ (accessed on 23 December 2021).
- CoronaSense Project (SEED-COVID/0420/0026): Indoor Air Quality Monitoring for COVID-19. Available online: https://lelantusinnovations.com/lelantus-project/coronasense/ (accessed on 1 February 2021).
- Mandin, C.; Trantallidi, M.; Cattaneo, A.; Canha, N.; Mihucz, V.G.; Szigeti, T.; Mabilia, R.; Perreca, E.; Spinazzè, A.; Fossati, S.; et al. Assessment of indoor air quality in office buildings across Europe–The OFFICAIR study. Sci. Total Environ. 2017, 579, 169–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.H.; Loftness, V.; Aziz, A. Post-occupancy evaluation of 20 office buildings as basis for future IEQ standards and guidelines. Energy Build. 2012, 46, 167–175. [Google Scholar] [CrossRef]
- Torresani, W.; Battisti, N.; Maglione, A.; Brunelli, D.; Macii, D. A multi-sensor wireless solution for indoor thermal comfort monitoring. In Proceedings of the 2013 IEEE Workshop on Environmental Energy and Structural Monitoring Systems, Trento, Italy, 11–12 September 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Tiele, A.; Esfahani, S.; Covington, J. Design and development of a low-cost, portable monitoring device for indoor environment quality. J. Sens. 2018, 2018, 5353816. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, S.; Ma, Z. In situ implementation and validation of a CO2-based adaptive demand-controlled ventilation strategy in a multi-zone office building. Build. Environ. 2011, 46, 124–133. [Google Scholar] [CrossRef]
- Saraga, D.; Maggos, T.; Sadoun, E.; Fthenou, E.; Hassan, H.; Tsiouri, V.; Karavoltsos, S.; Sakellari, A.; Vasilakos, C.; Kakosimos, K. Chemical characterization of indoor and outdoor particulate matter (PM2.5, PM10) in Doha, Qatar. Aerosol Air Qual. Res 2017, 17, 1156–1168. [Google Scholar] [CrossRef] [Green Version]
- Gaihre, S.; Semple, S.; Miller, J.; Fielding, S.; Turner, S. Classroom carbon dioxide concentration, school attendance, and educational attainment. J. Sch. Health 2014, 84, 569–574. [Google Scholar] [CrossRef]
- Coley, D.A.; Greeves, R.; Saxby, B.K. The effect of low ventilation rates on the cognitive function of a primary school class. Int. J. Vent. 2007, 6, 107–112. [Google Scholar] [CrossRef]
- Wang, S.; Chew, S.; Jusoh, M.T.; Khairunissa, A.; Leong, K.Y.; Azid, A. WSN based indoor air quality monitoring in classrooms. In Proceedings of the AIP Conference Proceedings, Penang, Malaysia, 16–18 November 2015; Volume 1808, p. 020063. [Google Scholar] [CrossRef]
- De Giuli, V.; Da Pos, O.; De Carli, M. Indoor environmental quality and pupil perception in Italian primary schools. Build. Environ. 2012, 56, 335–345. [Google Scholar] [CrossRef]
- Baloch, R.M.; Maesano, C.N.; Christoffersen, J.; Banerjee, S.; Gabriel, M.; Csobod, É.; de Oliveira Fernandes, E.; Annesi-Maesano, I.; Szuppinger, P.; Prokai, R.; et al. Indoor air pollution, physical and comfort parameters related to schoolchildren’s health: Data from the European SINPHONIE study. Sci. Total Environ. 2020, 739, 139870. [Google Scholar] [CrossRef]
- Haverinen-Shaughnessy, U.; Shaughnessy, R.J.; Cole, E.C.; Toyinbo, O.; Moschandreas, D.J. An assessment of indoor environmental quality in schools and its association with health and performance. Build. Environ. 2015, 93, 35–40. [Google Scholar] [CrossRef]
- Cao, G. Infection probability of COVID-19 in a large lecture room with mechanical ventilation. REHVA Eur. HVAC J. 2021, 58, 51–54. [Google Scholar]
- Erlandson, G.; Magzamen, S.; Carter, E.; Sharp, J.L.; Reynolds, S.J.; Schaeffer, J.W. Characterization of indoor air quality on a college campus: A pilot study. Int. J. Environ. Res. Public Health 2019, 16, 2721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Z.; Deng, W.; Tenorio, R. Investigation of indoor air quality and the identification of influential factors at primary schools in the North of China. Sustainability 2017, 9, 1180. [Google Scholar] [CrossRef]
- Yang, W.; Sohn, J.; Kim, J.; Son, B.; Park, J. Indoor air quality investigation according to age of the school buildings in Korea. J. Environ. Manag. 2009, 90, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Attaianese, E.; d’Ambrosio Alfano, F.R.; Palella, B.I.; Pepe, D.; Vanacore, R. An Integrated Methodology of Subjective Investigation for a Sustainable Indoor Built Environment. The Case Study of a University Campus in Italy. Atmosphere 2021, 12, 1272. [Google Scholar] [CrossRef]
- Mumovic, D.; Palmer, J.; Davies, M.; Orme, M.; Ridley, I.; Oreszczyn, T.; Judd, C.; Critchlow, R.; Medina, H.; Pilmoor, G.; et al. Winter indoor air quality, thermal comfort and acoustic performance of newly built secondary schools in England. Build. Environ. 2009, 44, 1466–1477. [Google Scholar] [CrossRef]
- Rosbach, J.; Krop, E.; Vonk, M.; van Ginkel, J.; Meliefste, C.; de Wind, S.; Gehring, U.; Brunekreef, B. Classroom ventilation and indoor air quality—Results from the FRESH intervention study. Indoor Air 2015, 26, 538–545. [Google Scholar] [CrossRef]
- Argunhan, Z.; Avci, A.S. Statistical evaluation of indoor air quality parameters in classrooms of a university. Adv. Meteorol. 2018, 2018, 4391579. [Google Scholar] [CrossRef]
- Abdel-Salam, M.M. Investigation of indoor air quality at urban schools in Qatar. Indoor Built Environ. 2019, 28, 278–288. [Google Scholar] [CrossRef]
- Stranger, M.; Potgieter-Vermaak, S.; Van Grieken, R. Characterization of indoor air quality in primary schools in Antwerp, Belgium. Indoor Air 2008, 18, 454–463. [Google Scholar] [CrossRef]
- Fadeyi, M.O.; Alkhaja, K.; Sulayem, M.B.; Abu-Hijleh, B. Evaluation of indoor environmental quality conditions in elementary schools classrooms in the United Arab Emirates. Front. Archit. Res. 2014, 3, 166–177. [Google Scholar] [CrossRef] [Green Version]
- Konstantinou, C.; Constantinou, A.; Kleovoulou, E.; Kyriacou, A.; Milis, G.; Kakoulli, C.; Andrianou, X.; Michaelides, M.; Makris, K. Assessment of Indoor and Outdoor Air Quality in Primary Schools of Cyprus during the 2021 COVID-19 Pandemic Measures; Technical Report; Cyprus International Institute for Environmental and Public Health (CII), Cyprus University of Technology: Limassol, Cyprus, 2021. [Google Scholar]
- Pitarma, R.; Marques, G.; Ferreira, B.R. Monitoring indoor air quality for enhanced occupational health. J. Med. Syst. 2017, 41, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.; Jo, B.; Kim, J.; Kim, S.; Han, W. Development of an IoT-based indoor air quality monitoring platform. J. Sens. 2020, 2020. [Google Scholar] [CrossRef]
- Rösch, C.; Kohajda, T.; Röder, S.; von Bergen, M.; Schlink, U. Relationship between sources and patterns of VOCs in indoor air. Atmos. Pollut. Res. 2014, 5, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Perret, V.; Hager Jörin, C.; Niculita-Hirzel, H.; Goyette Pernot, J.; Licina, D. Volatile organic compounds in 169 energy-efficient dwellings in Switzerland. Indoor Air 2020, 30, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Feriadi, H.; Wong, N.H. Thermal comfort for naturally ventilated houses in Indonesia. Energy Build. 2004, 36, 614–626. [Google Scholar] [CrossRef]
- Lu, S.; Pang, B.; Qi, Y.; Fang, K. Field study of thermal comfort in non-air-conditioned buildings in a tropical island climate. Appl. Ergon. 2018, 66, 89–97. [Google Scholar] [CrossRef]
- Lee, S.C.; Li, W.M.; Ao, C.H. Investigation of indoor air quality at residential homes in Hong Kong–case study. Atmos. Environ. 2002, 36, 225–237. [Google Scholar] [CrossRef]
- Alhmiedat, T.; Samara, G. A low cost ZigBee sensor network architecture for indoor air quality monitoring. Int. J. Comput. Sci. Inf. Secur. 2017, 15, 140–144. [Google Scholar]
- Chiang, C.M.; Chou, P.C.; Lai, C.M.; Li, Y.Y. A methodology to assess the indoor environment in care centers for senior citizens. Build. Environ. 2001, 36, 561–568. [Google Scholar] [CrossRef]
- Zhan, H.; Yu, J.; Yu, R. Assessment of older adults’ acceptance of IEQ in nursing homes using both subjective and objective methods. Build. Environ. 2021, 108063. [Google Scholar] [CrossRef]
- Serrano-Jiménez, A.; Lizana, J.; Molina-Huelva, M.; Barrios-Padura, Á. Indoor environmental quality in social housing with elderly occupants in Spain: Measurement results and retrofit opportunities. J. Build. Eng. 2020, 30, 101264. [Google Scholar] [CrossRef]
- Zhang, H.; Srinivasan, R.; Ganesan, V. Low cost, multi-pollutant sensing system using raspberry pi for indoor air quality monitoring. Sustainability 2021, 13, 370. [Google Scholar] [CrossRef]
- Datta, A.; Suresh, R.; Gupta, A.; Singh, D.; Kulshrestha, P. Indoor air quality of non-residential urban buildings in Delhi, India. Int. J. Sustain. Built Environ. 2017, 6, 412–420. [Google Scholar] [CrossRef]
- Li, A.T.Y.; Che, W.; Song, Y.; Tong, J.C.K.; Lau, A.K.H. Exposure to Particles and Gases in a Shopping Mall: Spatial Heterogeneity and Outdoor Infiltration. Atmosphere 2021, 12, 1313. [Google Scholar] [CrossRef]
- Kim, J.Y.; Chu, C.H.; Shin, S.M. ISSAQ: An integrated sensing systems for real-time indoor air quality monitoring. IEEE Sens. J. 2014, 14, 4230–4244. [Google Scholar] [CrossRef]
- Deng, G.; Li, Z.; Wang, Z.; Gao, J.; Xu, Z.; Li, J.; Wang, Z. Indoor/outdoor relationship of PM2.5 concentration in typical buildings with and without air cleaning in Beijing. Indoor Built Environ. 2017, 26, 60–68. [Google Scholar] [CrossRef]
- Saad, S.M.; Saad, A.R.M.; Kamarudin, A.M.Y.; Zakaria, A.; Shakaff, A.Y.M. Indoor air quality monitoring system using Wireless Sensor Network (WSN) with web interface. In Proceedings of the 2013 International Conference on Electrical, Electronics and System Engineering (ICEESE), Piscataway, NJ, USA, 4–5 December 2013; pp. 60–64. [Google Scholar] [CrossRef]
- TSI Incorporated, Shoreview, USA. Available online: https://tsi.com/home/ (accessed on 30 August 2021).
- GrayWolf Sensing Solutions. Available online: https://graywolfsensing.com/ (accessed on 30 August 2021).
- Bertin Instruments. Available online: https://www.bertin-instruments.com/ (accessed on 30 August 2021).
- Hadi-Vencheh, A.; Tan, Y.; Wanke, P.; Loghmanian, S.M. Air Pollution Assessment in China: A Novel Group Multiple Criteria Decision Making Model under Uncertain Information. Sustainability 2021, 13, 1686. [Google Scholar] [CrossRef]
- Eliades, D.; Michaelides, M.; Panayiotou, C.; Polycarpou, M. Security-oriented sensor placement in intelligent buildings. Build. Environ. 2013, 63, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Michaelides, M.; Reppa, V.; Christodoulou, M.; Panayiotou, C.; Polycarpou, M. Contaminant event monitoring in multi-zone buildings using the state-space method. Build. Environ. 2014, 71, 140–152. [Google Scholar] [CrossRef]
- Kyriacou, A.; Timotheou, S.; Michaelides, M.; Panayiotou, C.; Polycarpou, M. Partitioning of intelligent buildings for distributed contaminant detection and isolation. IEEE Trans. Emerg. Top. Comput. Intell. 2017, 1, 72–86. [Google Scholar] [CrossRef]
- Kyriacou, A.; Michaelides, M.P.; Reppa, V.; Timotheou, S.; Panayiotou, C.G.; Polycarpou, M.M. Distributed contaminant detection and isolation for intelligent buildings. IEEE Trans. Control Syst. Technol. 2017, 26, 1925–1941. [Google Scholar] [CrossRef]
- Boracchi, G.; Michaelides, M.; Roveri, M. A Cognitive Monitoring System for Detecting and Isolating Contaminants and Faults in Intelligent Buildings. IEEE Trans. Syst. Man, Cybern. Syst. 2018, 48, 433–447. [Google Scholar] [CrossRef]
- Kyriacou, A.; Michaelides, M.P.; Eliades, D.G.; Panayiotou, C.G.; Polycarpou, M.M. COMOB: A MATLAB toolbox for sensor placement and contaminant event monitoring in multi-zone buildings. Build. Environ. 2019, 154, 348–361. [Google Scholar] [CrossRef]
- ANSI/ASHRAE Standard 55-2017; Thermal Environmental Conditions for Human Occupancy. ASHRAE: Atlanta, GA, USA, 2020.
- United States Environmental Protection Agency (EPA). Available online: https://www.epa.gov/mold/mold-course-chapter-2#Chapter2Lesson3 (accessed on 22 September 2021).
- ANSI/ASHRAE Standard 62.1-2019; Ventilation for Acceptable Indoor Air Quality. ASHRAE: Atlanta, GA, USA, 2019.
- American Society of Heating, Refrigerating and Air-Conditioning Engineering (ASHRAE). ASHRAE Epidemic Task Force: Schools & Universities. Available online: https://www.ashrae.org/filelibrary/technicalresources/covid-19/ashrae-reopening-schools-and-universities-c19-guidance.pdf (accessed on 6 May 2021).
- Berglund, B.; Lindvall, T.; Schwela, D.H. New WHO guidelines for community noise. Noise Vib. Worldw. 2000, 31, 24–29. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization, Regional Office for Europe: Bonn, Germany, 2021. [Google Scholar]
- American Conference of Governmental Industrial Hygienists (ACGIH). TLVs® and BEIs®: Threshold Limit Values for Chemical Substances and Biological Exposure Indices; ACGIH: Cincinnati, OH, USA, 2005. [Google Scholar]
- European Centre for Disease Prevention and Control (ECDC). Heating, Ventilation and Air-Conditioning Systems in the Context of COVID-19; Technical Report; ECDC: Stockholm, Sweden, 2020. [Google Scholar]
- World Health Organization (WHO). WHO Handbook on Indoor Radon: A Public Health Perspective; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- European Union Council. COUNCIL DIRECTIVE 2013/59/EURATOM. In Official Journal of the European Union; European Union Council: Brussels, Belgium, 2014. [Google Scholar]
- United States Environmental Protection Agency (EPA). What is EPA’s Action Level for Radon and What Does It Mean? Available online: https://www.epa.gov/radon/what-epas-action-level-radon-and-what-does-it-mean (accessed on 22 September 2021).
- International Commission on Radiological Protection (ICRP). Summary of ICRP Recommendations on Radon. Available online: http://www.icrpaedia.org/images/f/fd/ICRPRadonSummary.pdf (accessed on 6 September 2021).
- Harrison, J.; Marsh, J. ICRP recommendations on radon. Ann. ICRP 2020, 49, 68–76. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakoulli, C.; Kyriacou, A.; Michaelides, M.P. A Review of Field Measurement Studies on Thermal Comfort, Indoor Air Quality and Virus Risk. Atmosphere 2022, 13, 191. https://doi.org/10.3390/atmos13020191
Kakoulli C, Kyriacou A, Michaelides MP. A Review of Field Measurement Studies on Thermal Comfort, Indoor Air Quality and Virus Risk. Atmosphere. 2022; 13(2):191. https://doi.org/10.3390/atmos13020191
Chicago/Turabian StyleKakoulli, Christina, Alexis Kyriacou, and Michalis P. Michaelides. 2022. "A Review of Field Measurement Studies on Thermal Comfort, Indoor Air Quality and Virus Risk" Atmosphere 13, no. 2: 191. https://doi.org/10.3390/atmos13020191
APA StyleKakoulli, C., Kyriacou, A., & Michaelides, M. P. (2022). A Review of Field Measurement Studies on Thermal Comfort, Indoor Air Quality and Virus Risk. Atmosphere, 13(2), 191. https://doi.org/10.3390/atmos13020191