Black Carbon in Bulgaria—Observed and Modelled Concentrations in Two Cities for Two Months
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites Description
2.2. PM2.5 and BC Emissions
2.3. Sampling Procedure, Equipment, and Black Carbon Analysis
2.4. Modelling Systems
2.5. Data Analyses
3. Results
3.1. Observed PM2.5 and BC Concentrations in Sofia and Burgas
3.2. PM2.5 and BC Concentrations: Observed vs. Model
3.2.1. Monthly Mean PM2.5 and BC Concentrations: Observed vs. Model
3.2.2. Daily Mean PM2.5 and BC Concentrations: Observed vs. Model
3.2.3. Daily Mean PM2.5 and BC Concentrations: Observed vs. Model for Selected Episodes
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Environment Agency. Air Quality in Europe—2020 Report; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-9480-292-7. [Google Scholar] [CrossRef]
- Samek, L.; Stegowski, Z.; Furman, L.; Fiedor, J. Chemical content and estimated sources of fine fraction of particulate matter collected in Krakow. Air Qual. Atmos. Health 2017, 10, 47–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manousakas, M.; Diapouli, E.; Papaefthymiou, H.; Migliori, A.; Karydas, A.G.; Padilla-Alvarez, R.; Bogovac, M.; Kaiser, R.B.; Jaksic, M.; Bogdanovic-Radovic, I.; et al. Source apportionment by PMF on elemental concentrations obtained by PIXE analysis of PM10 samples collected at the vicinity of lignite power plants and mines in Megalopolis, Greece. Nucl. Instrum. Methods Phys. Res. 2015, 349, 114–124. [Google Scholar] [CrossRef]
- Almeida, S.M.; Manousakas, M.; Diapouli, E.; Kertesz, Z.; Samek, L.; Hristova, E.; Šega, K.; Padilla Alvarez, R.; Belis, C.A.; Eleftheriadis, K. The Iaea European Region Study GROUP, Ambient particulate matter source apportionment using receptor modelling in European and Central Asia urban areas. Environ. Pollut. 2020, 266, 115–199. [Google Scholar] [CrossRef] [PubMed]
- Putaud, J.-P.; Van Dingenen, R.; Alastuey, A.; Bauer, H.; Birmili, W.; Cyrys, J.; Flentje, H.; Fuzzi, S.; Gehrig, R.; Hansson, H.C.; et al. A European aerosol phenomenology 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across. Eur. Atmos. Environ. 2010, 44, 1308–1320. [Google Scholar] [CrossRef]
- Meteorological Synthesizing Centre-West of EMEP (MSC-W); Chemical Co-ordinating Centre (CCC); Centre on Emission Inventories and Projections (CEIP). Transboundary Particulate Matter, Photo-Oxidants, Acidifying and Eutrophying Components; EMEP Status Report 1/2021; Norwegian Meteorological Institute: Oslo, Norway, 2021; ISSN 1504-6109 (print). [Google Scholar]
- Hristova, E.; Veleva, B. Variation of air particulate concentration in Sofia, 2005–2012. Bulg. J. Meteorol. Hydrol. 2013, 18, 47–56. [Google Scholar]
- Veleva, B.; Hristova, E.; Nikolova, E.; Kolarova, M.; Valcheva, R. Statistical evaluation of elemental composition data of PM10 air particulate in Sofia. Int. J. Environ. Pollut. 2015, 57, 175–188. [Google Scholar] [CrossRef]
- Hristova, E.; Veleva, B.; Georgieva, E.; Branzov, H. Application of Positive Matrix Factorization Receptor Model for Source Identification of PM10 in the City of Sofia, Bulgaria. Atmosphere 2020, 11, 890. [Google Scholar] [CrossRef]
- Sandradewi, J.; Prévôt, A.S.H.; Szidat, S.; Perron, N.; Alfarra, M.R.; Lanz, V.A.; Weingartner, E.; Baltensperger, U. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environ. Sci. Technol. 2008, 42, 3316–3323. [Google Scholar] [CrossRef] [PubMed]
- Gerlos-Nijland, M.; Lanki, T.; Salonen, R.; Cassee, F. Health Effects of Black Carbon; WHO Regional Office for Europe, The WHO European Centre for Environment and Health: Bonn, Germany, 2012. [Google Scholar]
- Petzold, A.; Ogren, J.A.; Fiebig, M.; Laj, P.; Li, S.-M.; Baltensperger, U.; Holzer-Popp, T.; Kinne, S.; Pappalardo, G.; Sugimoto, N.; et al. Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys. 2013, 13, 8365–8379. [Google Scholar] [CrossRef] [Green Version]
- Hitzenberger, R.; Petzold, A.; Bauer, H.; Ctyroky, P.; Pouresmaeil, P.; Laskus, L.; Puxbaum, H. Intercomparison of Thermal and Optical Measurement Methods for Elemental Carbon and Black Carbon at an Urban Location Environ. Sci. Technol. 2006, 40, 6377–6383. [Google Scholar] [CrossRef] [Green Version]
- Peralta, O.; Ortínez-Alvarez, A.; Basaldud, R.; Santiago, N.; Alvarez-Ospina, H.; de la Cruz, K.; Barrera, V.; de la Luz Espinosa, M.; Saavedra, I.; Castro, T.; et al. Atmospheric black carbon concentrations in Mexico. Atmos. Res. 2019, 230, 104–626. [Google Scholar] [CrossRef]
- Mousavi, A.; Sowlat, M.; Lovett, C.; Rauber, M.; Szidat, S.; Boffi, R.; Borgini, A.; De Marco, C.; Ruprecht, A.; Sioutas, C. Source apportionment of black carbon (BC) from fossil fuel and biomass burning in metropolitan Milan, Italy. Atmos. Environ. 2019, 203, 252–261. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. JGA Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Manoj, M.; Satheesh, S.; Moorthy, K.; Gogoi, M.; Babu, S. Decreasing trend in black carbon aerosols over the Indian region. Geophys. Res. Lett. 2019, 46, 2903–2910. [Google Scholar] [CrossRef]
- Bessagnet, B.; Allemand, N. Review on Black Carbon (BC) and Polycyclic Aromatic Hydrocarbons (PAHs) Emission Reductions Induced by PM Emission Abatement Techniques; TFTEI Techno-Scientific Secretariat: Paris, France, 2020; p. 156. [Google Scholar]
- Kunder, R.D.; Schneidemesser, E.; Kuik, F.; Quedenau, J.; Weatherhead, E.C.; Schmale, J. Long-term monitoring of black carbon across Germany. Atmos. Environ. 2018, 185, 41–52. [Google Scholar]
- Zioła, N.; Błaszczak, B.; Klejnowski, K. Long-Term eBC Measurements with the Use of MAAP in the Polluted Urban Atmosphere (Poland). Atmosphere 2021, 12, 808. [Google Scholar] [CrossRef]
- Diapouli, E.; Kalogridis, A.-C.; Markantonaki, C.; Vratolis, S.; Fetfatzis, P.; Colombi, C.; Eleftheriadis, K. Annual Variability of Black Carbon Concentrations Originating from Biomass and Fossil Fuel Combustion for the Suburban Aerosol in Athens, Greece. Atmosphere 2017, 8, 234. [Google Scholar] [CrossRef] [Green Version]
- Helin, A.; Niemi, J.V.; Virkkula, A.; Pirjola, L.; Teinilä, K.; Backman, J.; Aurela, M.; Saarikoski, S.; Rönkkö, T.; Asmi, E.; et al. Characteristics and source apportionment of black carbon in the Helsinki metropolitan area, Finland. Atmos. Environ. 2018, 190, 87–98. [Google Scholar] [CrossRef]
- Beekmann, M.; Prévôt, A.S.H.; Drewnick, F.; Sciare, J.; Pandis, S.N.; Denier van der Gon, H.A.C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; et al. In Situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity. Atmos. Chem. Phys. 2015, 15, 9577–9591. [Google Scholar] [CrossRef] [Green Version]
- Becerril-Valle, M.; Coz, E.; Prévôt, A.S.H.; Mocnik, G.; Pandis, S.N.; Sánchez de la Campa, A.M.; Alastuey, A.; Díaz, E.; Pérez, R.M.; Artíñano, B. Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain. Atmos. Environ. 2017, 169, 36–53. [Google Scholar] [CrossRef]
- Kucbel, M.; Corsaro, A.; Švédová, B.; Raclavská, H.; Raclavský, K.; Juchelková, D. Temporal and seasonal variations of black carbon in a highly polluted European city: Apportionment of potential sources and the effect of meteorological conditions. J. Environ. Manag. 2017, 203, 1178–1189. [Google Scholar] [CrossRef] [PubMed]
- Bernardoni, V.; Ferrero, L.; Bolzacchini, E.; Forello, A.C.; Gregorič, A.; Massabò, D.; Močnik, G.; Prati, P.; Rigler, M.; Santagostini, L.; et al. Determination of Aethalometer multiple-scattering enhancement parameters and impact on source apportionment during the winter 2017/18 EMEP/ACTRIS/COLOSSAL campaign in Milan. Atmos. Meas. Tech. 2021, 14, 2919–2940. [Google Scholar] [CrossRef]
- Krol, M.; Houweling, S.; Bregman, B.; van den Broek, M.; Segers, A.; van Velthoven, P.; Peters, W.; Dentener, F.; Bergamaschi, P. The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmos. Chem. Phys. 2005, 5, 417–432. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Schaap, M.; Van Der Gon, H.A.C.D.; Dentener, F.J.; Visschedijk, A.J.H.; Van Loon, M.; ten Brink, H.M.; Putaud, J.P.; Guillaume, B.; Liousse, C.; Builtjes, P.J.H. Anthropogenic black carbon and fine aerosol distribution over Europe. J. Geophys. Res. 2004, 109, D18207. [Google Scholar] [CrossRef] [Green Version]
- Tsyro, S.; Simpson, D.; Tarrason, L.; Klimont, Z.; Kupiainen, K.; Pio, C.; Yttri, K. Modeling of elemental carbon over Europe. J. Geophys. Res. 2007, 112, D23S19. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Vignati, E.; Karl, M.; Krol, M.; Wilson, J.; Stier, P.; Cavalli, F. Sources of uncertainties in modelling black carbon at the global scale. Atmos. Chem. Phys. 2010, 10, 2595–2611. [Google Scholar] [CrossRef] [Green Version]
- Prank, M.; Sofiev, M.; Tsyro, S.; Hendriks, C.; Semeena, V.; Vazhappilly Francis, X.; Butler, T.; Denier van der Gon, H.; Friedrich, R.; Hendricks, J.; et al. Evaluation of the performance of four chemical transport models in predicting the aerosol chemical composition in Europe in 2005. Atmos. Chem. Phys. 2016, 16, 6041–6070. [Google Scholar] [CrossRef] [Green Version]
- Mircea, M.; Bessagnet, B.; D’Isidoro, M.; Pirovano, G.; Aksoyoglu, S.; Ciarelli, G.; Tsyro, S.; Manders, A.; Bieser, J.; Stern, R. EURODELTA III exercise: An evaluation of air quality models’ capacity to reproduce the carbonaceous aerosol. Atmos. Environ. X 2019, 2, 100018. [Google Scholar] [CrossRef]
- Kuik, F.; Lauer, A.; Beukes, J.P.; Van Zyl, P.G.; Josipovic, M.; Vakkari, V.; Laakso, L.; Feig, G.T. The anthropogenic contribution to atmospheric black carbon concentrations in southern Africa: A WRF-Chem modeling study. Atmos. Chem. Phys. 2015, 15, 8809–8830. [Google Scholar] [CrossRef] [Green Version]
- Morino, Y.; Nagashima, T.; Sugata, S.; Sato, K.; Tanabe, K.; Noguchi, T.; Takami, A.; Tanimoto, H.; Ohara, T. Verification of Chemical Transport Models for PM2.5 Chemical Composition Using Simultaneous Measurement Data over Japan. Aerosol Air Qual. Res. 2015, 15, 2009–2023. [Google Scholar] [CrossRef] [Green Version]
- Permadi, D.A.; Kim Oanh, N.T.; Vautard, R. Integrated emission inventory and modeling to assess distribution of particulate matter mass and black carbon composition in Southeast Asia. Atmos. Chem. Phys. 2018, 18, 2725–2747. [Google Scholar] [CrossRef] [Green Version]
- Hristova, E.; Veleva, B. Estimation of black carbon concentration in fine particulate matter in urban area. In Proceedings of the 20th International Multidisciplinary Scientific GeoConference SGEM 2020, Albena, Bulgaria, 16–25 August 2020; Volume 20, pp. 415–422. [Google Scholar]
- Hristova, E.; Veleva, B.; Naydenova, S.; Gonsalvesh-Musakova, L. Air particulate matter and black carbon concentrations during winter time at two Bulgarian urban sites. In Proceedings of the 21st International Multidisciplinary Scientific GeoConference SGEM 2021, Albena, Bulgaria, 14–22 August 2021. in press. [Google Scholar]
- Copernicus Atmosphere Monitoring Service. Available online: https://atmosphere.copernicus.eu/ (accessed on 18 October 2021).
- National Statistical Institute. Available online: https://www.nsi.bg/en/content/6710/population-towns-and-sex (accessed on 1 June 2021).
- Hak, C.; Sivertsen, B. Mission Report. Burgas, 1–12 March 2010—Screening Study; NILU OR, Scientific Reports—OR 39/2010; Norwegian Institute for Air Research: Kjeller, Norway, 2010; ISBN 978-82-425-2238-2. [Google Scholar]
- National State of the Environment Report. Available online: http://eea.government.bg/en/output/soe-report/index.html (accessed on 10 October 2021).
- EMEP Centre on Emission Inventories and Projections. Data Viewer—Reported Emissions Data. Available online: https://www.ceip.at/data-viewer (accessed on 10 October 2021).
- Program for Improving the Quality of the Atmospheric Air on the Territory of Sofia Municipality for the Period 2021–2026. Available online: https://www.sofia.bg/en/programa-kav (accessed on 5 October 2021).
- Program for Improving the Quality of the Atmospheric Air on the Territory of Burgas Municipality for the Period 2021–2026. Available online: https://www.burgas.bg/bg/programi/ (accessed on 5 October 2021).
- Dimitrova, R.; Velizarova, M. Assessment of the Contribution of Different Particulate Matter Sources on Pollution in Sofia City. Atmosphere 2021, 12, 423. [Google Scholar] [CrossRef]
- Manohar, M.; Atanacio, A.; Button, D.; Cohen, D. MABI—A multi-wavelength absorption black carbon instrument for the measurement of fine light absorbing carbon particles. Atmos. Pollut. Res. 2021, 12, 133–140. [Google Scholar] [CrossRef]
- Cohen, D.D. Summary of Light Absorbing Carbon and Visibility Measurements and Terms; ANSTO/External Report ER-790; Australian Nuclear Science and Technology Organisation: Sydney, Australia, 2020; ISBN 1-921268-32-8. [Google Scholar]
- Leskinen, A.; Ruuskanen, A.; Kolmonen, P.; Zhao, Y.; Fang, D.; Wang, Q.; Gu, C.; Jokiniemi, J.; Hirvonen, M.R.; Lehtinen, K.E.; et al. The Contribution of Black Carbon and Non-BC Absorbers to the Aerosol Absorption Coefficient in Nanjing, China. Aerosol Air Qual. Res. 2020, 20, 590–605. [Google Scholar] [CrossRef]
- Alas, H.D.C.; Müller, T.; Weinhold, K.; Pfeifer, S.; Glojek, K.; Gregorič, A.; Močnik, G.; Drinovec, L.; Costabile, F.; Ristorini, M.; et al. Performance of microAethalometers: Real-world Field Intercomparisons from Multiple Mobile Measurement Campaigns in Different Atmospheric Environments. Aerosol Air Qual. Res. 2020, 20, 2640–2653. [Google Scholar] [CrossRef]
- Bond, T.C.; Anderson, T.L.; Campbell, D. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Sci. Technol. 1999, 30, 582–600. [Google Scholar] [CrossRef]
- Ogren, J.A.; Wendell, J.; Andrews, E.; Sheridan, P.J. Continuous light absorption photometer for long-term studies. Atmos. Meas. Tech. 2017, 10, 4805–4818. [Google Scholar] [CrossRef] [Green Version]
- Weingartnera, E.; Saatho, H.; Schnaiter, M.; Streit, N.; Bitnar, B.; Baltensperger, U. Absorption of light by soot particles: Determination of the absorption coeffcient by means of aethalometers. Aerosol Sci. 2003, 34, 1445–1463. [Google Scholar] [CrossRef]
- Virkkula, A.; Ahlquist, N.; Covert, D.; Arnott, W.; Sheridan, P.J.; Quinn, P.; Coffman, D. Modification, Calibration and a Field Test of an Instrument for Measuring Light Absorption by Particles. Aerosol Sci. Technol. 2005, 39, 68–83. [Google Scholar] [CrossRef]
- Virkkula, A.; Mäkelä, T.; Hillamo, R.; Yli-Tuomi, T.; Hirsikko, A.; Hämeri, K.; Koponen, I. A Simple Procedure for Correcting Loading Effects of Aethalometer Data. J. Air Waste Manag. Assoc. 2007, 57, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Drinovec, L.; Močnik, G.; Zotter, P.; Prévôt, A.S.H.; Ruckstuhl, C.; Coz, E.; Rupakheti, M.; Sciare, J.; Müller, T.; Wiedensohler, A.; et al. The “dual-spot” Aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Meas. Tech. 2015, 8, 1965–1979. [Google Scholar] [CrossRef] [Green Version]
- Drinovec, L.; Gregorič, A.; Zotter, P.; Wolf, R.; Bruns, E.; Prévôt, A.S.H.; Petit, J.-E.; Favez, O.; Sciare, J.; Arnold, I.J.; et al. The filter-loading effect by ambient aerosols in filter absorption photometers depends on the coating of the sampled particles. Atmos. Meas. Tech. 2017, 10, 1043–1059. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization (WMO); Global Atmosphere Watch (GAW). WMO/GAW Aerosol Measurement Procedures, Guidelines and Recommendations, 2nd ed.; GAW Report No. 227; World Meteorological Organization: Geneva, Switzerland, 2016; ISBN 978-92-63-11177-7. [Google Scholar]
- Arnott, W.; Hamasha, K.; Moosmüller, H.; Sheridan, P.; Ogren, J. Towards Aerosol Light-Absorption Measurements with a 7-Wavelength Nethalometer: Evaluation with a Photoacoustic Instrument and 3-Wavelength Nephelometer. Aerosol Sci. Technol. 2005, 39, 17–29. [Google Scholar] [CrossRef]
- Segura, S.; Estellés, V.; Titos, G.; Lyamani, H.; Utrillas, M.P.; Zotter, P.; Prévôt, A.S.H.; Močnik, G.; Alados-Arboledas, L.; Martínez-Lozano, J.A. Determination and analysis of in situ spectral aerosol optical properties by a multi-instrumental approach. Atmos. Meas. Tech. 2014, 7, 2373–2387. [Google Scholar] [CrossRef] [Green Version]
- Marécal, V.; Peuch, V.-H.; Andersson, C.; Andersson, S.; Arteta, J.; Beekmann, M.; Benedictow, A.; Bergström, R.; Bessagnet, B.; Cansado, A.; et al. A regional air quality forecasting system over Europe: The MACC-II daily ensemble production. Geosci. Model Dev. 2015, 8, 2777–2813. [Google Scholar] [CrossRef] [Green Version]
- Rémy, S.; Kipling, Z.; Flemming, J.; Boucher, O.; Nabat, P.; Michou, M.; Bozzo, A.; Ades, M.; Huijnen, V.; Benedetti, A.; et al. Description and evaluation of the tropospheric aerosol scheme in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS-AER, cycle 45R1). Geosci. Model Dev. 2019, 12, 4627–4659. [Google Scholar] [CrossRef] [Green Version]
- Granier, C.; Darras, S.; Denier van der Gon, H.A.C.; Doubalova, J.; Elguindi, N.; Galle, B.; Gauss, M.; Guevara, M.; Jalkanen, J.-P.; Kuenen, J.; et al. The Copernicus Atmosphere Monitoring Service Global and Regional Emissions (April 2019 Version); Copernicus Atmosphere Monitoring Service (CAMS) Report, 2019; Copernicus Atmosphere Monitoring Service: Reading, UK, 2019. [Google Scholar] [CrossRef]
- Kuenen, J.; Dellaert, S.; Visschedijk, A.; Jalkanen, J.-P.; Super, I.; Denier van der Gon, H. Copernicus Atmosphere Monitoring Service regional Emissions Version 4.2 (CAMS-REG-v4.2); Copernicus Atmosphere Monitoring Service: Reading, UK, 2021. [Google Scholar] [CrossRef]
- Copernicus Atmosphere Monitoring Service (CAMS). Regional Production, Updated Documentation Covering All Regional Operational Systems and the ENSEMBLE: Following U2 Upgrade, February 2020; CAMS—ECMWF Report, Isuued by METEO-FRANCE/G. Collin, CAMS50_2018SC2_D2.0.2-U2_Models_documentation_202003_v2; Copernicus Atmosphere Monitoring Service: Reading, UK, 2020. [Google Scholar]
- CAMS European Air Quality Forecasts, ENSEMBLE Data; Copernicus Atmosphere Monitoring Service (CAMS), Atmosphere Data Store (ADS). Available online: https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-europe-air-quality-forecasts?tab=overview (accessed on 11 October 2021).
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteor. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- National Oceanic and Atmospheric Administration, Earth System Research Laboratories (NOAA/ESRL). Available online: https://psl.noaa.gov/data/composites/day/ (accessed on 15 October 2021).
- Emissions of Atmospheric Compounds and Compilation of Ancillary Data (ECCAD). Available online: https://eccad3.sedoo.fr/#CAMS-REG-AP (accessed on 15 October 2021).
- National Institute of Meteorology and Hydrology of Bulgaria. Monthly Hydrometeorological Bulletin; National Institute of Meteorology and Hydrology of Bulgaria: Sofia, Bulgaria, 2021; ISSN 1314-894X. Available online: http://www.meteo.bg/ (accessed on 15 October 2021).
- Fire Information for Resource Management System Service. Available online: https://firms.modaps.eosdis.nasa.gov (accessed on 5 October 2021).
Place | Period | Mean BC, μg.m−3 | Source |
---|---|---|---|
Zabrze, Poland (urban) | 2019 | 3.4 | [21] |
Zabrze, Poland (urban) | 2020 | 2.9 | [21] |
Zabrze, Poland (urban) | October 2020 | 4.4 | [21] |
Zabrze, Poland (urban) | January 2020 | 6.7 | [21] |
Athens, Greece (suburban) | October 2013 January 2014 | 1.8 3.7 | [22] |
Helsinki, Filand (urban) | October 2015–May 2017 | 1.7 | [23] |
Paris, France (urban) | September 2009–September 2010 | 3.0 | [24] |
London, UK (urban) | 2009 | 2.0 | [24] |
Madrid, Spain, (urban background) | Autumn 2015 Winter 2014–2015 | 3.8 2.4 | [25] |
Madrid, Spain (urban traffic) | Autumn 2015 Winter 2014–2015 | 4.9 4.2 | [25] |
urban station in Germany | 2005–2014 | 2.1 | [26] |
Ostrava, Czech Republic (urban) | 2012–2014 | 3.5 | [27] |
Sofia, Bulgaria (urban background) | October 2018 | 3.8 | [40] |
Sofia, Bulgaria | January 2019 | 3.7 | [40] |
Sofia, Bulgaria (urban background) | October 2020 January 2021 | 2.4 3.6 | This study |
Burgas, Bulgaria (urban background) | October 2020 January 2021 | 1.6 1.8 | This study |
October 2020 | n | Mean_OBS | Mean_MOD | MBE | RMSE | Corr | FGE | NMB % |
---|---|---|---|---|---|---|---|---|
BC_Sofia | 14 | 2.44 | 2.02 | −0.42 | 1.09 | 0.42 | 0.43 | −17.21 |
PM2.5_Sofia | 14 | 11.76 | 13.77 | 2.00 | 4.77 | 0.65 | 0.31 | 17.09 |
BC_Burgas | 14 | 1.63 | 0.80 | −0.83 | 1.04 | 0.51 | 0.67 | −50.92 |
PM2.5_Burgas | 14 | 14.47 | 13.6 | −0.87 | 3.81 | 0.87 | 0.26 | −6.01 |
January 2021 | n | Mean_OBS | Mean_MOD | MBE | RMSE | Corr | FGE | NMB % |
---|---|---|---|---|---|---|---|---|
BC_Sofia | 19 | 3.62 | 4.67 | 1.05 | 1.85 | 0.46 | 0.39 | 29.01 |
PM2.5_Sofia | 19 | 18.58 | 14.71 | −3.87 | 8.80 | 0.65 | 0.28 | −20.83 |
BC_Burgas | 10 | 1.75 | 1.70 | −0.04 | 0.55 | 0.80 | 0.25 | −2.86 |
PM2.5_Burgas | 10 | 16.16 | 9.32 | −6.84 | 10.07 | 0.70 | 0.47 | −42.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hristova, E.; Georgieva, E.; Veleva, B.; Neykova, N.; Naydenova, S.; Gonsalvesh-Musakova, L.; Neykova, R.; Petrov, A. Black Carbon in Bulgaria—Observed and Modelled Concentrations in Two Cities for Two Months. Atmosphere 2022, 13, 213. https://doi.org/10.3390/atmos13020213
Hristova E, Georgieva E, Veleva B, Neykova N, Naydenova S, Gonsalvesh-Musakova L, Neykova R, Petrov A. Black Carbon in Bulgaria—Observed and Modelled Concentrations in Two Cities for Two Months. Atmosphere. 2022; 13(2):213. https://doi.org/10.3390/atmos13020213
Chicago/Turabian StyleHristova, Elena, Emilia Georgieva, Blagorodka Veleva, Nadya Neykova, Stela Naydenova, Lenia Gonsalvesh-Musakova, Rozeta Neykova, and Anton Petrov. 2022. "Black Carbon in Bulgaria—Observed and Modelled Concentrations in Two Cities for Two Months" Atmosphere 13, no. 2: 213. https://doi.org/10.3390/atmos13020213
APA StyleHristova, E., Georgieva, E., Veleva, B., Neykova, N., Naydenova, S., Gonsalvesh-Musakova, L., Neykova, R., & Petrov, A. (2022). Black Carbon in Bulgaria—Observed and Modelled Concentrations in Two Cities for Two Months. Atmosphere, 13(2), 213. https://doi.org/10.3390/atmos13020213