Impact of Stratospheric Aerosol Geoengineering on Meteorological Droughts in West Africa
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.3. Methods
3. Results
3.1. Evaluation of Model Performance in Simulating Precipitation
3.2. Long Term Projected Drought
3.3. Drought Characteristics
3.3.1. Mean Values of Drought Characteristics in West Africa over Different Periods
3.3.2. Drought Area
3.3.3. Number of Drought Events
3.3.4. Drought Duration
3.3.5. Maximum Length of Drought Events
3.3.6. Severity of the Greatest Drought Event
3.3.7. Intensity of the Greatest Drought Event
3.4. Cause of Change in Drought Characteristic under RCP8.5 and GLENS Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haile, G.G.; Tang, Q.; Hosseini-Moghari, S.; Liu, X.; Gebremicael, T.G.; Leng, G.; Kebede, A.; Xu, X.; Yun, X. Projected Impacts of Climate Change on Drought Patterns over East Africa. Earth’s Future 2020. [Google Scholar] [CrossRef]
- Touma, D.; Ashfaq, M.; Nayak, M.; Kao, S.-C.; Diffenbaugh, N. A multi-model and multi-index evaluation of drought characteristics in the 21st century. J. Hydrol. 2015, 526, 196–207. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Departament of Economic and Social Affairs, Population Division, Key Findings and Advance Tables; World Population Prospects: London, UK, 2017. [Google Scholar]
- Dimitriadis, P.; Koutsoyiannis, D.; Iliopoulou, T.; Papanicolaou, P. A global-scalen investigation of stochastic similarities in marginal distribution and dependence structure of key hydrological-cycle processes. Hydrology 2021, 8, 59. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Revisiting the global hydrological cycle: Is it intensifying? Hydrol. Earth Syst. Sci. 2020, 24, 3899–3932. [Google Scholar] [CrossRef]
- Wang, J.-W.; Wang, K.; Pielke, R.; Lin, J.C.; Matsui, T. Towards a robust test on North America warming trend and precipitable water content increase. Geophys. Res. Lett. 2008, 35, 18804. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, S.; Edwards, D.R.; Yu, Y.; Hamidisepehr, A. An Assessment of climate change impacts on future water availability and droughts in the Kentucky river basin. Environ. Process. 2017, 4, 477–507. [Google Scholar] [CrossRef]
- IPCC. Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects: Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1132. [Google Scholar]
- Robock, A. Reply to comment on “the latest on the volcanic eruptions and climate”. EOS 2014, 95, 353. [Google Scholar] [CrossRef]
- Crutzen, P.J. Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Clim. Chang. 2006, 77, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Irvine, P.; Emanuel, K.; He, J.; Horowitz, L.W.; Vecchi, G.; Keith, D. Halving warming with idealized solar geoengineering moderates key climate hazards. Nat. Clim. Chang. 2019, 9, 295–299. [Google Scholar] [CrossRef]
- Jiang, J.; Cao, L.; MacMartin, D.; Simpson, I.R.; Kravitz, B.; Cheng, W.; Visioni, D.; Tilmes, S.; Richter, J.H.; Mills, M.J. Stratospheric sulfate aerosol geoengineering could alter the high-latitude seasonal cycle. Geophys. Res. Lett. 2019, 46, 14153–14163. [Google Scholar] [CrossRef]
- Jones, A.C.; Hawcroft, M.K.; Haywood, J.M.; Jones, A.; Guo, X.; Moore, J.C. Regional climate impacts of stabilizing global warming at 1.5 k using solar geoengineering. Earth’s Future 2018, 6, 230–251. [Google Scholar] [CrossRef]
- Kravitz, B.; Caldeira, K.; Boucher, O.; Robock, A.; Rasch, P.J.; Alterskjaer, K.; Karam, D.B.; Cole, J.; Curry, C.; Haywood, J.M.; et al. Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 2013, 118, 8320–8332. [Google Scholar] [CrossRef]
- MacMartin, D.G.; Wang, W.; Kravitz, B.; Tilmes, S.; Richter, J.H.; Mills, M.J. Timescale for detecting the climate response to stratospheric aerosol geoengineering. J. Geophys. Res. Atmos. 2019, 124, 1233–1247. [Google Scholar] [CrossRef]
- Tilmes, S.; Richter, J.H.; Kravitz, B.; MacMartin, D.G.; Mills, M.J.; Simpson, I.R.; Glanville, A.; Fasullo, J.T.; Phillips, A.S.; Lamarque, J.-F.; et al. CESM1(WACCM) stratospheric aerosol geoengineering large ensemble project. Bull. Am. Meteorol. Soc. 2018, 99, 2361–2371. [Google Scholar] [CrossRef]
- Pinto, I.; Jack, C.; Lennard, C.; Tilmes, S.; Odoulami, R. Africa’s Climate Response to Solar Radiation Management with Stratospheric Aerosol. Am. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef] [Green Version]
- Bala, G.; Duffy, P.B.; Taylor, K.E. Impact of geoengineering schemes on the global hydrological cycle. Proc. Natl. Acad. Sci. USA 2008, 105, 7664–7669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robock, A.; Oman, L.; Stenchikov, G.L. Regional climate responses to geoengineering with tropical and arctic SO2 injections. J. Geophys. Res. Earth Surf. 2008, 113, 16101. [Google Scholar] [CrossRef] [Green Version]
- Tilmes, S.; Fasullo, J.; Lamarque, J.-F.; Marsh, D.R.; Mills, M.; Alterskjaer, K.; Muri, H.; Kristjánsson, J.E.; Boucher, O.; Schulz, M.; et al. The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 2013, 118, 11036–11058. [Google Scholar] [CrossRef] [Green Version]
- Kravitz, B.; MacMartin, D.G.; Mills, M.J.; Richter, J.H.; Tilmes, S.; Lamarque, J.; Tribbia, J.J.; Vitt, F. First simulations of designing stratospheric sulfate aerosol geoengineering to meet multiple simultaneous climate objectives. J. Geophys. Res. Atmos. 2017, 122, 12616–12634. [Google Scholar] [CrossRef]
- Niemeier, U.; Schmidt, H.; Alterskjaer, K.; Kristjánsson, J.E. Solar irradiance reduction via climate engineering: Impact of different techniques on the energy balance and the hydrological cycle. J. Geophys. Res. Atmos. 2013, 118, 11905–11917. [Google Scholar] [CrossRef] [Green Version]
- Quenum, G.M.L.D.; Klutse, N.A.B.; Dieng, D.; Laux, P.; Arnault, J.; Kodja, J.D.; Oguntunde, P.G. Identification of potential drought areas in West Africa under climate change and variability. Earth Syst. Environ. 2019, 3, 429–444. [Google Scholar] [CrossRef] [Green Version]
- Oguntunde, P.G.; Abiodun, B.J.; Lischeid, G.; Abatan, A.A. Droughts projection over the Niger and Volta River basins of West Africa at specific global warming levels. Int. J. Clim. 2020, 40, 1–12. [Google Scholar] [CrossRef]
- Kasei, R.; Diekkrüger, B.; Leemhuis, C. Drought frequency in the Volta Basin of West Africa. Sustain. Sci. 2010, 5, 89–97. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Lischeid, G.; Abiodun, B.J. Impacts of climate variability and change on drought characteristics in the Niger River Basin, West Africa. Stoch. Environ. Res. Risk Assess. 2018, 32, 1017–1034. [Google Scholar] [CrossRef]
- Oguntunde, P.; Abiodun, B.J.; Lischeid, G. Impacts of climate change on hydro-meteorological drought over the Volta Basin, West Africa. Glob. Planet. Chang. 2017, 155, 121–132. [Google Scholar] [CrossRef]
- Adaawen, S. Understanding Climate change and drought perceptions, impact and responses in the rural savannah, West Africa. Atmosphere 2021, 12, 594. [Google Scholar] [CrossRef]
- Haywood, J.M.; Jones, A.; Bellouin, N.; Stephenson, D.B. Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Clim. Chang. 2013, 3, 660–665. [Google Scholar] [CrossRef]
- Onojeghuo, A.R.; Heiko, B.; Monks, P.S. Tropospheric NO2 concentrations over West Africa are influenced by climate zone and soil moisture variability. Atmos. Chem. Phys. Discuss. 2017. [Google Scholar] [CrossRef]
- Ly, M.; Traore, B.S.; Alhassane, A.; Sarr, B. Evolution of some observed climate extremes in the West African Sahel. Weather. Clim. Extrem. 2013, 1, 19–25. [Google Scholar]
- Mills, M.J.; Schmidt, A.; Easter, R.; Solomon, S.; Kinnison, D.E.; Ghan, S.J.; Marhs, D.R.; Lamarque, J.-F.; Calvo, N.; Polvani, L.M. Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM). J. Geophys. Res. Atmos. 2016, 121, 2332–2348. [Google Scholar] [CrossRef] [Green Version]
- Farahmand, A.; AghaKouchak, A. A generalized framework for deriving nonparametric standardized drought indicators. Adv. Water Resour. 2015, 76, 140–145. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Stochastics of Hydroclimatic Extremes. A Cool Look at Risk; Kallipos: Athens, Greece, 2021; 333p, ISBN 978-618-85370-0-2. [Google Scholar]
- Kumar, M.N.; Murthy, C.S.; Sai, M.V.R.S.; Roy, P.S. On the use of standardized precipitation index (SPI) for drought intensity assessment. Meteorol. Appl. 2009, 16, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Quiring, S.M. Developing Objective Operational Definitions for Monitoring Drought. J. Appl. Meteorol. Clim. 2009, 48, 1217–1229. [Google Scholar] [CrossRef]
- Turnbull, B.W. The Empirical Distribution Function with Arbitrarily Grouped, Censored and Truncated Data. J. R. Stat. Soc. Ser. B 1976, 38, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Gringorten, I.I. A plotting rule for extreme probability paper. J. Geophys. Res. Earth Surf. 1963, 68, 813–814. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A.; Nakhjiri, N.; Farahmand, A. Global integrated drought monitoring and prediction system. Sci. Data 2014, 1, 140001. [Google Scholar] [CrossRef] [PubMed]
- Akinsanola, A.A.; Ogunjobi, K.O.; Gbode, I.E.; Ajayi, V.O. Assessing the capabilities of three regional climate models over CORDEX Africa in simulating West African summer monsoon precipitation. Adv. Meteorol. 2015, 2015, 935431. [Google Scholar] [CrossRef] [Green Version]
- Akinsanola, A.A.; Zhou, W. Ensemble-based CMIP5 simulations of West African summer monsoon rainfall: Current climate and future changes. Theor. Appl. Clim. 2019, 136, 1021–1031. [Google Scholar] [CrossRef]
- Diallo, I.; Giorgi, F.; Tall, M.; Mariotti, L.; Gaye, A.T. Projected changes of summer monsoon extreme and hydro-climatic regimes over West Africa for the twenty-first century. Clim. Dyn. 2016, 47, 3931–3954. [Google Scholar] [CrossRef]
- Da-Allada, C.Y.; Baloïtcha, E.; Alamou, E.A.; Awo, F.M.; Bonou, F.; Pomalegni, Y.; Biao, E.I.; Obada, E.; Zandagba, J.E.; Tilmes, S.; et al. Changes in West African summer monsoon precipitation under stratospheric aerosol geoengineering. Earth’s Future 2020, 8, e2020EF001595. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, W.; Sun, C.; Song, H.; Cobb, K.M.; Li, J.; Leavitt, S.W.; Wu, L.; Cai, Q.; Liu, R.; et al. Anthropogenic aerosols cause recent pronounced weakening of asian summer monsoon relative to last four centuries. Geophys. Res. Lett. 2019, 46, 5469–5479. [Google Scholar] [CrossRef] [Green Version]
- Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–799. [Google Scholar] [CrossRef]
- Biao, E.I.; Alamou, E.A. Influence of the long-range dependence in rainfall in modelling oueme river basin (Benin, West Africa). Am. J. Biol. Environ. Stat. 2016, 2, 50–59. [Google Scholar] [CrossRef]
- Obada, E.; Alamou, E.A.; Biao, E.I.; Afouda, A. On the use of simple scaling stochastic (SSS) framework to the daily hydroclimatic time series in the context of climate change. Hydrology 2016, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Sakalauskiene, G. The hurst phenomenon in hydrology. Environ. Res. Eng. Manag. 2003, 3, 16–20. [Google Scholar]
- Cheng, W.; MacMartin, D.G.; Dagon, K.; Kravitz, B.; Tilmes, S.; Richter, J.H.; Mills, M.J.; Simpson, I.R. Soil moisture and other hydrological changes in a stratospheric aerosol geoengineering large ensemble. J. Geophys. Res. Atmos. 2019, 124, 12773–12793. [Google Scholar] [CrossRef]
- Chadwick, R.; Good, P.; Willett, K. A simple moisture advection model of specific humidity change over land in response to SST warming. J. Clim. 2016, 29, 7613–7632. [Google Scholar] [CrossRef]
- Chadwick, R.; Boutle, I.; Martin, G. Spatial Patterns of Precipitation Change in CMIP5: Why the Rich Do Not Get Richer in the Tropics. J. Clim. 2013, 26, 3803–3822. [Google Scholar] [CrossRef]
Simulations | Year | Ensemble Members |
---|---|---|
Historical | 1981–2010 | 1 (001) |
RCP8.5 | 2010–2097 | 4 (001–003; 021) |
GLENS | 2031–2097 | 4 (001–003; 021) |
SPI | Drought Scale | Description |
---|---|---|
−0.50 to −0.79 | D0 | Abnormally dry |
−0.80 to −1.29 | D1 | Moderate drought |
−1.30 to −1.59 | D2 | Severe drought |
−1.60 to –1.99 | D3 | Extreme drought |
−2.00 or less | D4 | Exceptional drought |
Period | Number of Drought Events | Drought Duration (Months) | Length of Greatest Drought (Months) | Severity of Greatest Drought | Intensity of Greatest Drought |
---|---|---|---|---|---|
CTRL (2010–2029) | 4.60 | 18.40 | 34 | 40.70 | 1.16 |
RCP8.5_2030–2049 | 6.59 | 12.43 | 22.96 | 28.01 | 1.21 |
GLENS_2030–2049 | 4.68 | 11.10 | 18.63 | 22.19 | 1.15 |
RCP8.5_2070–2089 | 2.15 | 6.46 | 9.15 | 10.87 | 0.94 |
GLENS_2070–2089 | 7.11 | 14.23 | 28.72 | 36.77 | 1.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamou, A.E.; Obada, E.; Biao, E.I.; Zandagba, E.B.J.; Da-Allada, C.Y.; Bonou, F.K.; Baloïtcha, E.; Tilmes, S.; Irvine, P.J. Impact of Stratospheric Aerosol Geoengineering on Meteorological Droughts in West Africa. Atmosphere 2022, 13, 234. https://doi.org/10.3390/atmos13020234
Alamou AE, Obada E, Biao EI, Zandagba EBJ, Da-Allada CY, Bonou FK, Baloïtcha E, Tilmes S, Irvine PJ. Impact of Stratospheric Aerosol Geoengineering on Meteorological Droughts in West Africa. Atmosphere. 2022; 13(2):234. https://doi.org/10.3390/atmos13020234
Chicago/Turabian StyleAlamou, Adéchina Eric, Ezéchiel Obada, Eliézer Iboukoun Biao, Esdras Babadjidé Josué Zandagba, Casimir Y. Da-Allada, Frederic K. Bonou, Ezinvi Baloïtcha, Simone Tilmes, and Peter J. Irvine. 2022. "Impact of Stratospheric Aerosol Geoengineering on Meteorological Droughts in West Africa" Atmosphere 13, no. 2: 234. https://doi.org/10.3390/atmos13020234
APA StyleAlamou, A. E., Obada, E., Biao, E. I., Zandagba, E. B. J., Da-Allada, C. Y., Bonou, F. K., Baloïtcha, E., Tilmes, S., & Irvine, P. J. (2022). Impact of Stratospheric Aerosol Geoengineering on Meteorological Droughts in West Africa. Atmosphere, 13(2), 234. https://doi.org/10.3390/atmos13020234