Adjustment of the Standardized Precipitation Index (SPI) for the Evaluation of Drought in the Arroyo Pechelín Basin, Colombia, under Zero Monthly Precipitation Conditions
Abstract
:1. Introduction
2. Data and Method
2.1. The Standardized Precipitation Index (SPI)
2.2. The Standardized Precipitation Index Corrected (SPI-C)
2.3. Study Site
2.4. Obtaining Data
3. Results
3.1. Time Series of the Standardized Precipitation Index in the Study Basin
3.2. Zero Precipitation Frequency (0 mm/Month)
3.3. SPI Calculation
3.4. SPI-C Calculation (Corrected)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohammed, R.; Scholz, M.; Zounemat-Kermani, M. Temporal Hydrologic Alterations Coupled with Climate Variability and Drought for Transboundary River Basins. Water Resour. Manag. 2017, 31, 1489–1502. [Google Scholar] [CrossRef] [Green Version]
- Edwards, D.C.; McKee, T.B. Characteristics of 20th Century Drought in the United States at Multiple Time Scales. Master’s Thesis, Air Force Institute of Technology, Dayton, OH, USA, 1997. [Google Scholar]
- Rouault, M.; Richard, Y. Intensity and Spatial Extension of Drought in South Africa at Different Time Scales. Water SA 2003, 29, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Pasho, E.; Camarero, J.J.; de Luis, M.; Vicente-Serrano, S.M. Impacts of Drought at Different Time Scales on Forest Growth across a Wide Climatic Gradient in North-Eastern Spain. Agric. For. Meteorol. 2011, 151, 1800–1811. [Google Scholar] [CrossRef]
- Santos, E.B.; de Freitas, E.D.; Rafee, S.A.A. Spatio-temporal Variability of Wet and Drought Events in the Paraná River Basin—Brazil and Its Association with the El Niño—Southern Oscillation Phenomenon. Int. J. Climatol. 2021, 41, 4879–4897. [Google Scholar] [CrossRef]
- Muthuvel, D.; Mahesha, A. Spatiotemporal Analysis of Compound Agrometeorological Drought and Hot Events in India Using a Standardized Index. J. Hydrol. Eng. 2021, 26, 04021022. [Google Scholar] [CrossRef]
- Giddings, L.; SOTO, M.; Rutherford, B.M.; Maarouf, A. Standardized Precipitation Index Zones for Mexico. Atmósfera 2005, 18, 33–56. [Google Scholar]
- Cerón, W.L.; Escobar, Y.C.; Montoya, O.L.B. Índice Estandarizado de Precipitación (SPI) Para La Caracterización de Sequías Meteorológicas En La Cuenca Del Río Dagua-Colombia. Estud. Geográficos 2015, 76, 557–578. [Google Scholar] [CrossRef] [Green Version]
- Rahman, K.U.; Shang, S.; Zohaib, M. Assessment of Merged Satellite Precipitation Datasets in Monitoring Meteorological Drought over Pakistan. Remote Sens. 2021, 13, 1662. [Google Scholar] [CrossRef]
- Radia, G.; Kamila, B.H.; Abderrazak, B. Highlighting Drought in the Wadi Lakhdar Watershed Tafna, Northwestern Algeria. Arab. J. Geosci. 2021, 14, 984. [Google Scholar] [CrossRef]
- Neves, A.D.O.; Vilanova, M.R.N. Caracterização Da Seca Histórica Da Década de 2010 Na Bacia Do Rio Paraíba Do Sul, Estado de São Paulo, Brasil. Eng. Sanit. Ambient. 2021, 26, 339–349. [Google Scholar] [CrossRef]
- Bi, V.N.G.; Adjakpa, T.; Allechy, F.; Ta, M.Y.; Assa, Y.; AFFIAN, K. Characterization of the Drought by the Spi and Spei Indices in the West Center of Côte d’ivoire Case of the Lobo Basin. LARHYSS J. 2020, 43, 23–39. [Google Scholar]
- Belayneh, A.; Adamowski, J.; Khalil, B.; Ozga-Zielinski, B. Long-Term SPI Drought Forecasting in the Awash River Basin in Ethiopia Using Wavelet Neural Network and Wavelet Support Vector Regression Models. J. Hydrol. 2014, 508, 418–429. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Guttman, N.B. Accepting the Standardized Precipitation Index: A Calculation Algorithm. J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- Makungo, R.; Odiyo, J.; Mathivha, F.I.; Nkuna, T.R. Hydrological hazards in Vhembe district in Limpopo Province, South Africa. Jàmbá J. Disaster Risk Stud. 2019, 11, 1–13. [Google Scholar]
- Lloyd-Hughes, B.; Saunders, M.A. A Drought Climatology for Europe. J. R. Meteorol. Soc. 2002, 22, 1571–1592. [Google Scholar] [CrossRef]
- Angelidis, P.; Maris, F.; Kotsovinos, N.; Hrissanthou, V. Computation of Drought Index SPI with Alternative Distribution Functions. Water Resour. Manag. 2012, 26, 2453–2473. [Google Scholar] [CrossRef]
- Blain, G.C. Standardized Precipitation Index Based on Pearson Type III Distribution. Rev. Bras. Meteorol. 2011, 26, 167–180. [Google Scholar] [CrossRef] [Green Version]
- Sobral, B.; Oliveira-Junior, J.; de Gois, G.; Pereira-Júnior, E.; de Bodas Terassi, P.; Muniz-Júnior, J.; Bastos, G.; Zeri, M. Drought Characterization for the State of Rio de Janeiro Based on the Annual SPI Index: Trends, Statistical Tests and Its Relation with ENSO. Atmos. Res. 2019, 220, 141–154. [Google Scholar] [CrossRef]
- Bhunia, P.; Pritha, D.; Maiti, R. Meteorological Drought Study through SPI in Three Drought Prone Districts of West Bengal, India. Earth Syst. Environ. 2020, 4, 43–55. [Google Scholar] [CrossRef]
- Nguvava, M.; Abiodun, B.J.; Otieno, F. Projecting Drought Characteristics over East African Basins at Specific Global Warming Levels. Atmos. Res. 2019, 228, 41–54. [Google Scholar] [CrossRef]
- Vijay, A.; Sivan, S.D.; Mudbhatkal, A.; Mahesha, A. Long-Term Climate Variability and Drought Characteristics in Tropical Region of India. J. Hydrol. Eng. 2021, 26, 05021003. [Google Scholar] [CrossRef]
- Mallenahalli, N.K. Comparison of Parametric and Nonparametric Standardized Precipitation Index for Detecting Meteorological Drought over the Indian Region. Theor. Appl. Climatol. 2020, 142, 219–236. [Google Scholar] [CrossRef]
- Pandey, R.P.; Dash, B.B.; Mishra, S.K.; Singh, R. Study of Indices for Drought Characterization in KBK Districts in Orissa (India). Hydrol. Processes Int. J. 2008, 22, 1895–1907. [Google Scholar] [CrossRef]
- Jesus, E.T.; da Amorim, J.S.; Junqueira, R.; Viola, M.R.; Mello, C.R. Meteorological and Hydrological Drought from 1987 to 2017 in Doce River Basin, Southeastern Brazil. RBRH 2020, 25, e29. [Google Scholar] [CrossRef]
- Ntale, H.K.; Gan, T.Y. Drought Indices and Their Application to East Africa. Int. J. Climatol. J. R. Meteorol. Soc. 2003, 23, 1335–1357. [Google Scholar] [CrossRef]
- Rodríguez, J.J.; García, M.A. Evaluación de Las Sequias En El Norte de Sudamérica Utilizando Mallas de Precipitación y Temperaturas. Ph.D. Thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 2014. [Google Scholar]
SPI Value | Probability (%) | Interpretation |
---|---|---|
>2 | 97.72 | Extremely wet |
1.50 | 93.32 | Severely wet |
1.00 | 84.13 | Moderately wet |
0.50 | 69.15 | Normal |
0.00 | 50 | Normal |
−0.50 | 30.85 | Normal |
−1.00 | 15.87 | Moderately drought. |
−1.50 | 6.68 | Severely drought |
<−2 | 2.28 | Extremely drought |
Station | Latitude | Longitude | Code | Information Available | % Missing Data | Basin Area |
---|---|---|---|---|---|---|
Tolú | 9.52 | −75.59 | 13090070 | 35 years | 3.57 | Low zone |
Hda Argentina | 9.49 | −75.47 | 13090100 | 35 years | 1.43 | |
Unisucre | 9.32 | −75.39 | 25025270 | 35 years | 4.52 | Middle zone |
Rafael Bravo | 9.33 | −75.28 | 25025080 | 35 years | 3.1 | |
Primates | 9.53 | −75.35 | 13095020 | 35 years | 8.33 | High Zone |
Chalan | 9.54 | −75.32 | 13090040 | 35 years | 0.48 |
Adjustment Coefficient K (SPI-C) Study Basin | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Basin Area | Station | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
Low zone | Tolú | 0.743 | 0.841 | 0.180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hda Argentina | 0.180 | 0.328 | 0.000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Promedio | 0.461 | 0.585 | 0.090 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Correlation of the SPI-SPI-C | |||||||||||||
High zone | Tolú | Y = X − 0.79 | Y = X − 0.841 | Y = X − 0.180 | Y = X | Y = X | Y = X | Y = X | Y = X | Y = X | Y = X | Y = X | Y = X |
Hda Argentina | Y = X − 180 | Y = X − 0.328 | Y = X | Y = X | Y = X | Y = X | Y = X | Y = X | Y = X | Y = X | Y = X | Y = X | |
Promedio | Y = X − 0.461 | Y = X − 0.585 | Y = X − 0.090 | Y = X | Y = X | Y = X | Y = X | Y = X | Y = X | Y = X | Y = X | Y = X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerpa Reyes, L.J.; Ávila Rangel, H.; Herazo, L.C.S. Adjustment of the Standardized Precipitation Index (SPI) for the Evaluation of Drought in the Arroyo Pechelín Basin, Colombia, under Zero Monthly Precipitation Conditions. Atmosphere 2022, 13, 236. https://doi.org/10.3390/atmos13020236
Cerpa Reyes LJ, Ávila Rangel H, Herazo LCS. Adjustment of the Standardized Precipitation Index (SPI) for the Evaluation of Drought in the Arroyo Pechelín Basin, Colombia, under Zero Monthly Precipitation Conditions. Atmosphere. 2022; 13(2):236. https://doi.org/10.3390/atmos13020236
Chicago/Turabian StyleCerpa Reyes, Luis José, Humberto Ávila Rangel, and Luis Carlos Sandoval Herazo. 2022. "Adjustment of the Standardized Precipitation Index (SPI) for the Evaluation of Drought in the Arroyo Pechelín Basin, Colombia, under Zero Monthly Precipitation Conditions" Atmosphere 13, no. 2: 236. https://doi.org/10.3390/atmos13020236
APA StyleCerpa Reyes, L. J., Ávila Rangel, H., & Herazo, L. C. S. (2022). Adjustment of the Standardized Precipitation Index (SPI) for the Evaluation of Drought in the Arroyo Pechelín Basin, Colombia, under Zero Monthly Precipitation Conditions. Atmosphere, 13(2), 236. https://doi.org/10.3390/atmos13020236