Spatiotemporal Changes of sc-PDSI and Its Dynamic Drivers in Yellow River Basin
Abstract
:1. Introduction
2. Study Area and Data
2.1. The Yellow River Basin (YRB)
2.2. Datasets
3. Methodology
3.1. Trend Analysis
3.2. The Modified Mann–Kendall (MMK) Trend Detection Method
3.3. Calculation of AET
3.4. Correlation Analysis
4. Results
4.1. Seasonal Distribution of Drought in the YRB
4.2. Regional Trends in sc-PDSI and the Key Hydrological Cycle Factor
4.3. The Probability Distribution of sc-PDSI, P, ET0 and AET
4.4. Impacts of Key Hydrological Cycle Elements on Drought at Different Time Scales
4.5. Identification of Influence Factors on Drought
4.6. Spatial Variation of Primary Drought Influencing Factor
5. Discussion
5.1. Causes of Drought in the YRB
5.2. The Relationship between AET and ET0
5.3. The Impact of the Relationship between AET and P on Meteorological Drought
6. Conclusions
- The annual sc-PDSI decreased from the southeast to the northwest region in the YRB, which shows remarkable spatial variation in different seasons. The northwest region in the YRB was drier than the southeast region in every season, and the drought in spring and winter was more severe than in other seasons.
- sc-PDSI showed a downwards trend (−0.47/decade), P and AET also showed a downwards trend (−3.408 mm/decade, −0.27 mm/decade), while ET0 showed a significant upwards trend (12.013 mm/decade) by using a linear trend. sc-PDSI and P exhibited a downwards trend by using Sen’s slope and Z statistic (−0.002 and −0.72, respectively, −0.17 and −1.16, respectively), while both ET0 and AET showed upward trends by using Sen’s slope and Z statistic, which were different from the linear trend test method. This may be due to the significant increase in AET in the upper reaches of the YRB, leading to an insignificant increase in AET in the entire YRB.
- The probability of moderate and severe drought in the lower reaches was greater than that in the upper and middle reaches. The midstream area was more prone to mild drought, while the river source area was relatively humid. Although the probability of severe and moderate drought in the lower reaches was higher than that in the middle reaches, the middle reached of the YRB have the highest risk of drought.
- The main driving factor of the upstream and downstream drought was P. The main influencing factor of the midstream drought was ET0. The driving factors for drought upstream and downstream were ranked as follows: P > AET > ET0; the driving factors of midstream drought were ET0 > P > AET.
Author Contributions
Funding
Conflicts of Interest
References
- Schwalm, C.R.; Anderegg, W.R.L.; Michalak, A.M.; Fisher, J.B.; Biondi, F.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Wolf, A. Global patterns of drought recovery. Nature 2017, 548, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions; Routledge: London, UK, 2000. [Google Scholar]
- Huang, L.; Zhou, P.; Cheng, L.; Liu, Z. Dynamic drought recovery patterns over the Yangtze River Basin. Catena 2021, 201, 105–194. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Xu, C.Y.; Hong, Y.; Hardy, J.; Sun, Z. Examining the influence of river–lake interaction on the drought and water resources in the Poyang Lake basin. J. Hydrol. 2015, 522, 510–521. [Google Scholar] [CrossRef]
- Below, R.; Grover-Kopec, E.; Dilley, M. Documenting Drought-Related Disasters A Global Reassessment. J. Environ. Dev. 2007, 16, 328–344. [Google Scholar] [CrossRef]
- Gan, T.Y.; Ito, M.; Hülsmann, S.; Qin, X.; Lu, X.; Liong, S.Y.; Rutschman, P.; Disse, M.; Koivusalo, H.; Huelsmann, S.; et al. Possible climate change/variability and human impacts, vulnerability of drought-prone regions, water resources and capacity building for Africa. Hydrol. Sci. J. 2016, 61, 1209–1226. [Google Scholar] [CrossRef]
- Cammalleri, C.; Vogt, J.; Salamon, P. Development of an operational low-flow index for hydrological drought monitoring over Europe. Hydrol. Sci. J. 2016, 62, 346–358. [Google Scholar] [CrossRef] [Green Version]
- Hoerling, M.; Kumar, A.; Dole, R.; Nielsen-Gammon, J.W.; Eischeid, J.; Perlwitz, J.; Quan, X.W.; Zhang, T.; Pegion, P.; Chen, M. Anatomy of an Extreme Event. J. Clim. 2013, 26, 2811–2832. [Google Scholar] [CrossRef]
- Kenney, D. Drought and Water Crises: Science, Technology, and Management Issues; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Rojas, O. Agricultural extreme drought assessment at global level using the FAO-Agricultural Stress Index System (ASIS). Weather Clim. Extremes 2018, 27, 100184. [Google Scholar] [CrossRef]
- Delbiso, T.D.; Rodriguez-Llanes, J.M.; Donneau, A.F.; Speybroeck, N.; Guha-Sapir, D. Drought, conflict and children’s undernutrition in Ethiopia 2000–2013: A meta-analysis. Bull. World Health Organ. 2017, 95, 94–102. [Google Scholar] [CrossRef]
- Wilhite, D.; UNISDR. Drought: A Global Assessment; Routledge: London, UK, 2000. [Google Scholar]
- Zhang, J.; Chen, H.; Zhang, Q. Extreme drought in the recent two decades in northern China resulting from Eurasian warming. Clim. Dyn. 2019, 52, 2885–2902. [Google Scholar] [CrossRef] [Green Version]
- Tierney, J.E.; Ummenhofer, C.C.; Demenocal, P.B. Past and future rainfall in the Horn of Africa. Sci. Adv. 2015, 1, e1500682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, Y.; Nijssen, B.; Lettenmaier, D.P. Is climate change implicated in the 2013–2014 California drought? A hydrologic perspective. Geophys. Res. Lett. 2015, 42, 2805–2813. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Carrao, H.; Barbosa, P.; Vogt, J. World drought frequency, duration, and severity for 1951–2010. Int. J. Climatol. 2014, 34, 2792–2804. [Google Scholar] [CrossRef] [Green Version]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Van Loon, A.F. Hydrological drought explained. Wiley Interdiscip. Rev. Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Angulo-Martínez, M. A multiscalar global drought dataset: The SPEIbase: A new gridded product for the analysis of drought variability and impacts. Bull. Am. Meteorol. Soc. 2010, 91, 1351–1354. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Szép, I.J.; Mika, J.; Dunkel, Z. Palmer drought severity index as soil moisture indicator: Physical interpretation, statistical behaviour and relation to global climate. Phys. Chem. Earth 2005, 30, 231–243. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA; 1993; pp. 179–183. [Google Scholar]
- Palmer, W.C. Meteorological Drought; US Department of Commerce, Weather Bureau: Washington, DC, USA, 1965; Volume 30.
- Palmer, W.C. Keeping track of crop moisture conditions, nationwide: The new crop moisture index. Weatherwise 1968, 21, 156–161. [Google Scholar] [CrossRef]
- Shafer, B.A.; Dezman, L.E. Development of a Surface Water Supply Index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. In Proceedings of the Eastern Snow Conference, 39th Annual Meeting, Reno, Nevada, 19–23 April 1982. [Google Scholar]
- Gocic, M.; Trajkovic, S. Water surplus variability index as an indicator of drought. J. Hydrol. Eng. 2015, 20, 04014038. [Google Scholar] [CrossRef]
- Wei, J.; Ma, Z.G. Comparison of Palmer Drought Severity Index, Percentage of Precipitation Anomaly and Surface Humid Index. Acta Geogr. Sin. 2003, 52, 117–124. [Google Scholar]
- Lu, H.; Mo, X.; Liu, S. Intercomparison of three indices for addressing drought variability in North China Plain during 1962−2012. Proc. Int. Assoc. Hydrol. Sci. 2015, 366, 141–142. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, G.; An, W.; Zou, X.; Li, H.; Hou, M. Timescale differences between sc-PDSI and SPEI for drought monitoring in China. Phys. Chem. Earth 2017, 102, 48–58. [Google Scholar] [CrossRef]
- Zhao, T.; Dai, A. The Magnitude and Causes of Global Drought Changes in the Twenty-First Century under a Low–Moderate Emissions Scenario. J. Clim. 2015, 28, 4490–4512. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Singh, V.P. Drought modeling–A review. J. Hydrol. 2011, 403, 157–175. [Google Scholar] [CrossRef]
- Burke, E.J.; Brown, S.J.; Christidis, N. Modeling the Recent Evolution of Global Drought and Projections for the Twenty-First Century with the Hadley Centre Climate Model. J. Hydrometeorol 2006, 7, 1113. [Google Scholar] [CrossRef]
- Tallaksen, L.M.; Hisdal, H.; Van Lanen, H.A. Space–time modelling of catchment scale drought characteristics. J. Hydrol. 2009, 375, 363–372. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F. Drought: Past Problems and Future Scenarios; Taylor & Francis Group: Abingdon, UK, 2012. [Google Scholar]
- Guo, Y.; Huang, S.; Huang, Q.; Wang, H.; Fang, W.; Yang, Y.; Wang, L. Assessing socioeconomic drought based on an improved Multivariate Standardized Reliability and Resilience Index. J. Hydrol. 2019, 568, 904–918. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, S.; Huang, Q.; Wang, H.; Fang, W. Copulas-based bivariate socioeconomic drought dynamic risk assessment in a changing environment. J. Hydrol. 2019, 575, 1052–1064. [Google Scholar] [CrossRef]
- Huang, S.; Chang, J.; Leng, G.; Huang, Q. Integrated index for drought assessment based on variable fuzzy set theory: A case study in the Yellow River basin, China. J. Hydrol. 2015, 527, 608–618. [Google Scholar] [CrossRef]
- Shi, H.; Hu, C.; Wang, Y.; Cheng, L.; Li, H. Analyses of trends and causes for variations in runoff and sediment load of the Yellow River. Int. J. Sediment Res. 2017, 32, 171–179. [Google Scholar] [CrossRef]
- Fu, G.; Chen, S.; Liu, C.; Shepard, D. Hydro-Climatic Trends of the Yellow River Basin for the Last 50 Years. Clim. Chang. 2004, 65, 149–178. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, D.; Li, L.; Deng, W. Decadal variability of droughts and floods in the Yellow River basin during the last five centuries and relations with the North Atlantic SST. Int. J. Climatol. 2013, 33, 3217–3228. [Google Scholar] [CrossRef]
- Schubert, S.; Gutzler, D.; Wang, H.; Dai, A.; Delworth, T.; Deser, C.; Findell, K.; Fu, R.; Higgins, W.; Hoerling, M. A US CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Clim. 2009, 22, 5251–5272. [Google Scholar] [CrossRef]
- Seager, R.; Kushnir, Y.; Herweijer, C.; Naik, N.; Velez, J. Modeling of Tropical Forcing of Persistent Droughts and Pluvials Over Western North America: 1856–2000. J. Clim. 2004, 18, 4065–4088. [Google Scholar] [CrossRef]
- Aoa, B.; Ma, Z.; Zza, B.; Fsb, C. Natural and anthropogenic influences on the recent droughts in Yellow River Basin, China. Sci. Total Environ. 2020, 704, 135428. [Google Scholar]
- Yang, D.; Sun, F.; Liu, Z.; Cong, Z.; Ni, G.; Lei, Z. Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of China using the Budyko hypothesis. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, G.; Jing, G.; Yao, L.; Yu, Z.; Niu, H. sc_PDSI is more sensitive to precipitation than to reference evapotranspiration in China during the time period 1951–2015. Ecol. Indic. 2019, 96, 448–457. [Google Scholar] [CrossRef]
- Miao, M. Variation of Sunshine Percentage for the Last 40 Years in the Yellow River Basin. Meteorological 2006, 32, 62–66. [Google Scholar]
- Fuxing, L.I.; Chen, D.; Tang, Q. Variations of hydro-meteorological variables in the Yellow River basin and their relationships with the East Asian summer monsoon. Adv. Water Sci. 2015, 26, 481–490. [Google Scholar]
- Di, W.; Yan, D.H.; Yang, G.Y.; Wang, X.G.; Xiao, W. Assessment on agricultural drought vulnerability in the Yellow River basin based on a fuzzy clustering iterative model. Nat. Hazards 2013, 67, 919–936. [Google Scholar]
- Ma, X.; Zhang, M.; Wang, S.; Ma, Q.; Pan, S. Evaporation paradox in the Yellow River Basin. Acta Geogr. Sin. 2012, 67, 645–656. [Google Scholar]
- Shao, X.M.; Yan, C.R.; Wei, H.B. Spatial and temporal structure of precipitation in the Yellow River Basin based on Kriging method. Chin. J. Agrometeorol. 2006, 27, 65. [Google Scholar]
- Wang, F.; Wang, Z.; Yang, H.; Zhao, Y.; Li, Z.; Wu, J. Capability of Remotely Sensed Drought Indices for Representing the Spatio-Temporal Variations of the Meteorological Droughts in the Yellow River Basin. Remote Sens. 2018, 10, 1834. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wu, J.; Lei, T.; He, B.; Wu, Z.; Ming, L.; Mo, X.; Geng, G.; Li, X.; Zhou, H. Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale. Quat. Int. 2014, 349, 10–21. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.; Angulo, M.; Kenawy, A.E. A New Global 0.5° Gridded Dataset (1901–2006) of a Multiscalar Drought Index: Comparison with Current Drought Index Datasets Based on the Palmer Drought Severity Index. J. Hydrometeorol. 2010, 11, 1033–1043. [Google Scholar] [CrossRef] [Green Version]
- Budyko, M.I. Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Gao, X.; Sun, M.; Zhao, Q.; Wu, P.; Zhao, X.; Pan, W.; Wang, Y. Actual ET modelling based on the Budyko framework and the sustainability of vegetation water use in the loess plateau. Sci. Total Environ. 2016, 579, 1550–1559. [Google Scholar] [CrossRef]
- Xu, K.; Yang, D.; Yang, H.; Li, Z.; Qin, Y.; Shen, Y. Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective. J. Hydrol. 2015, 526, 253–264. [Google Scholar] [CrossRef]
- She, D.; Xia, J. The spatial and temporal analysis of dry spells in the Yellow River basin, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 29–42. [Google Scholar] [CrossRef]
- Huang, S.; Chang, J.; Huang, Q.; Chen, Y. Spatio-temporal Changes and Frequency Analysis of Drought in the Wei River Basin, China. Water Resour. Manag. 2014, 28, 3095–3110. [Google Scholar] [CrossRef]
- Peng, G.H.; Xia, J.; Xiu-Feng, M.A.; Jian-Qin, M.A. Analysis on Drought Frequency Distribution and Digital Characteristics of Number of Turns of the Yellow River Basin. Yellow River 2011, 33, 3–5. [Google Scholar]
- Xing, W.; Wang, W.; Zou, S.; Deng, C. Projection of future runoff change using climate elasticity method derived from Budyko framework in major basins across China. Global Planet. Chang. 2018, 162, 120–135. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, J.; Singh, V.P.; Li, J.; Chen, Y.D. Spatio-temporal variations of precipitation in arid and semiarid regions of China: The Yellow River basin as a case study. Glob. Planet. Chang. 2014, 114, 38–49. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Yang, H.; Zhao, Y. Study of the temporal and spatial patterns of drought in the Yellow River basin based on SPEI. Sci. China: Earth Sci. 2018, 61, 1098–1111. [Google Scholar] [CrossRef]
- Huang, S.; Li, P.; Huang, Q.; Leng, G.; Hou, B.; Ma, L. The propagation from meteorological to hydrological drought and its potential influence factors. J. Hydrol. 2017, 547, 184–195. [Google Scholar] [CrossRef]
- Miao, C.; Sun, Q.; Duan, Q.; Wang, Y. Joint analysis of changes in temperature and precipitation on the Loess Plateau during the period 1961–2011. Clim. Dyn. 2016, 47, 3221–3234. [Google Scholar] [CrossRef] [Green Version]
- Lü, Y.; Fu, B.; Feng, X.; Zeng, Y.; Liu, Y.; Chang, R.; Sun, G.; Wu, B. A Policy-Driven Large Scale Ecological Restoration: Quantifying Ecosystem Services Changes in the Loess Plateau of China. PLoS ONE 2012, 7, e31782. [Google Scholar] [CrossRef]
- Cui, Y.B. Spatial and temporal variability of annual precipitation during 1961–2006 in Yellow River Basin, China. J. Hydrol. 2008, 361, 330–338. [Google Scholar]
- Wang, Q.X.; Wang, M.B.; Fan, X.H.; Zhang, F.; Zhu, S.Z.; Zhao, T.L. Change trends of temperature and precipitation in the Loess Plateau Region of China, 1961–2010. Glob. Planet. Chang. 2012, 92, 138–147. [Google Scholar] [CrossRef]
- Fan, X.; Ma, Z.; Yang, Q.; Han, Y.; Mahmood, R.; Zheng, Z. Land use/land cover changes and regional climate over the Loess Plateau during 2001–2009. Part I: Observational evidence. Clim. Chang. 2015, 129, 427–440. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yu, P.; Feger, K.H.; Wei, X.; Sun, G.; Bonell, M.; Xiong, W.; Zhang, S.; Xu, L. Annual runoff and evapotranspiration of forestlands and non-forestlands in selected basins of the Loess Plateau of China. Ecohydrology 2011, 4, 277–287. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Ren, L.; Yong, B.; Singh, V.P.; Yuan, F.; Jiang, S.; Yang, X. On the mechanisms of two composite methods for construction of multivariate drought indices. Sci. Total Environ. 2018, 647, 981–991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.X.; Pan, S.M.; Zhang, W.; Xu, Y.H.; Cao, L.G.; Hao, Y.P.; Wang, Y. Influence of climate change on reference evapotranspiration and aridity index and their temporal-spatial variations in the Yellow River Basin, China, from 1961 to 2012. Quat. Int. 2015, 380, 75–82. [Google Scholar] [CrossRef]
sc-PDSI Value | sc-PDSI Category | sc-PDSI Value | sc-PDSI Category |
---|---|---|---|
≥4 | extreme wet | −2~−1 | mild drought |
3~4 | severe wet | −3~−2 | moderate drought |
2~3 | moderate wet | −4~−3 | severe drought |
1~2 | mild wet | <−4 | extreme drought |
Upper Reach | Middle Reach | Lower Reach | YRB | |||||
---|---|---|---|---|---|---|---|---|
S | Z | S | Z | S | Z | S | Z | |
sc-PDSI | 0.007 * | 2.38 * | −0.02 * | −3.97 ** | −0.01 | −0.89 | −0.002 | −0.72 |
P | 0.10 | 1.37 | −0.61 * | −3.29 ** | −0.31 | −1.01 | −0.17 | −1.16 |
ET0 | 0.87 * | 7.52 ** | 1.32 * | 8.09 ** | 1.36 * | 22.43 ** | 1.18 * | 13.07 ** |
AET | 0.13 * | 2.22 * | −0.15 | −1.22 | 0.09 | 0.46 | 0.05 | 0.44 |
Time Scale | P | ET0 | AET | ||||||
---|---|---|---|---|---|---|---|---|---|
U | M | L | U | M | L | U | M | L | |
1 month | 0.19 | 0.22 | 0.25 | −0.01 | −0.07 | 0.00 | 0.15 | 0.09 | 0.12 |
3 months | 0.18 | 0.21 | 0.24 | −0.02 | −0.09 | −0.02 | 0.14 | 0.07 | 0.10 |
6 months | 0.18 | 0.24 | 0.28 | −0.06 | −0.14 | −0.14 | 0.13 | 0.06 | 0.09 |
9 months | 0.31 | 0.41 | 0.38 | −0.06 | −0.22 | −0.06 | 0.23 | 0.08 | 0.12 |
12 months | 0.74 | 0.78 | 0.69 | −0.43 | −0.48 | −0.13 | 0.72 | 0.20 | 0.36 |
15 months | 0.37 | 0.46 | 0.48 | −0.08 | −0.20 | −0.13 | 0.30 | 0.07 | 0.18 |
18 months | 0.25 | 0.36 | 0.41 | −0.08 | −0.18 | −0.02 | 0.60 | 0.08 | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Zhang, Y. Spatiotemporal Changes of sc-PDSI and Its Dynamic Drivers in Yellow River Basin. Atmosphere 2022, 13, 399. https://doi.org/10.3390/atmos13030399
Liu W, Zhang Y. Spatiotemporal Changes of sc-PDSI and Its Dynamic Drivers in Yellow River Basin. Atmosphere. 2022; 13(3):399. https://doi.org/10.3390/atmos13030399
Chicago/Turabian StyleLiu, Wen, and Yuqing Zhang. 2022. "Spatiotemporal Changes of sc-PDSI and Its Dynamic Drivers in Yellow River Basin" Atmosphere 13, no. 3: 399. https://doi.org/10.3390/atmos13030399
APA StyleLiu, W., & Zhang, Y. (2022). Spatiotemporal Changes of sc-PDSI and Its Dynamic Drivers in Yellow River Basin. Atmosphere, 13(3), 399. https://doi.org/10.3390/atmos13030399