Evapotranspiration Variations of the Minjiang River Basin in Southeastern China from 2000 to 2019
Abstract
:1. Introduction
2. Study Area, Dataset and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Meteorological Data
2.2.2. GLDAS-Noah Data
2.3. Method
2.3.1. Station ETa Calculation
2.3.2. Evaluation Metrics
2.3.3. Partial Least-Squares (PLS) Regression Model
3. Results
3.1. Applicability Assessment of the GLDAS-Noah ETa Data
3.2. Spatio-Temporal Variations of the ETa
3.3. Attribution Analysis of ETa Variations in the MRB
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gan, G.; Liu, Y.; Sun, G. Understanding interactions among climate, water, and vegetation with the Budyko framework. Earth-Sci. Rev. 2021, 212, 103451. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. The Cause of Decreased Pan Evaporation over the Past 50 Years. Science 2002, 298, 1410–1411. [Google Scholar] [CrossRef] [PubMed]
- Beven, K. A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. J. Hydrol. 1979, 44, 169–190. [Google Scholar] [CrossRef]
- Zeng, R.; Cai, X. Assessing the temporal variance of evapotranspiration considering climate and catchment storage factors. Adv. Water Resour. 2015, 79, 51–60. [Google Scholar] [CrossRef]
- McCabe, M.F.; Rodell, M.; Alsdorf, D.E.; Miralles, D.G.; Uijlenhoet, R.; Wagner, W.; Lucieer, A.; Houborg, R.; Verhoest, N.E.C.; Franz, T.E.; et al. The future of Earth observation in hydrology. Hydrol. Earth Syst. Sci. 2017, 21, 3879–3914. [Google Scholar] [CrossRef] [Green Version]
- Bowen, I.S. The ratio of heat losses by conductions and by evaporation from any water surface. Phys. Rev. 1926, 27, 779–787. [Google Scholar] [CrossRef] [Green Version]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from sparse crops-an energy combination theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, D.; Liu, Y.; Chen, H. Review of multi-scale evapotranspiration estimation and spatio-temporal scale expansion. Trans. Chin. Soc. Agric. Eng. 2015, 31, 8–16, (Chinese with English Abstract). [Google Scholar]
- Liu, Y.; Qiu, G.; Zhang, H.; Yang, Y.; Zhang, Y.; Wang, Q.; Zhao, W.; Jia, L.; Ji, X.; Xiong, Y.; et al. Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives. Sci. China Earth Sci. 2022, 65, 197–214. [Google Scholar] [CrossRef]
- Guerschman, J.P.; McVicar, T.R.; Vleeshower, J.; Van Niel, T.G.; Peña-Arancibia, J.L.; Chen, Y. Estimating actual evapotranspiration at field-to-continent scales by calibrating the CMRSET algorithm with MODIS, VIIRS, Landsat and Sentinel-2 data. J. Hydrol. 2021, 605, 127318. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, S.; Dai, E. Determining factors in potential evapotranspiration changes over China in the period 1971–2008. Chin. Sci. Bull. 2010, 55, 3329–3337. [Google Scholar] [CrossRef]
- Wen, S.; Jiang, T.; Li, X.; Wang, T.; Wang, Y.; Thomas, F. Changes of actual evapotranspiration over the Songhua River Basin from 1961 to 2010. Adv. Clim. Chang. Res. 2014, 10, 79–86, (Chinese with English Abstract). [Google Scholar]
- Mo, X.; Chen, X.; Hu, S.; Hu, S.; Liu, S.; Xia, J. Attributing regional trends of evapotranspiration and gross primary productivity with remote sensing: A case study in the North China Plain. Hydrol. Earth Syst. Sci. 2017, 21, 295–310. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhou, M.; Chen, Z.; Li, S. Sensitivity of the potential evapotranspiration to climate and vegetation in Hanjiang River basin based on S-W Model. Trans. Chin. Soc. Agric. Eng. 2013, 29, 92–100, (Chinese with English Abstract). [Google Scholar]
- Zhao, Y.; Zou, X.; Zhang, J.; Cao, L.; Xu, X.; Zhang, K.; Chen, Y. Spatio-temporal variation of reference evapotranspiration and aridity index in the Loess Plateau Region of China, during 1961–2012. Quat. Int. 2014, 349, 196–206. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, Y. Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation. Agric. For. Meteorol. 2022, 317, 108887. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, X.; Cao, L.; Yao, W.; Fu, J. Spatiotemporal variations of potential evapotranspiration and aridity index in relation to influencing factors over Southwest China during 1960–2013. Theor. Appl. Climatol. 2018, 133, 711–726. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Shen, Y.; Liu, Y.; Zhang, S. Analysis of changing pan evaporation in the arid region of Northwest China. Water Resour. Res. 2013, 49, 2205–2212. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, D. Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China. Sci. Geogr. Sin. 2011, 66, 579–588, (Chinese with English Abstract). [Google Scholar]
- Chen, Y.; Chen, X.-W.; Yin, Y.-X. Characteristics of Runoff Changes in the Minjiang River Basin from 1960 to 2006. J. Nat. Resour. 2011, 26, 1401–1411. [Google Scholar]
- Huang, W.; Sui, Y.; Yang, X.; Wei, D.; Song, L. Characteristics and adaptation of seasonal drought in southern China under the background of climate change.III. Spatiotemporal characteristics of seasonal drought in southern China based on the percentage of precipitation anomalies. Chin. J. Appl. Ecol. 2013, 24, 397–406, (Chinese with English Abstract). [Google Scholar]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Bosilovich, M. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Ji, X. Quantification of transpiration and evaporation over agricultural field using the FAO-56 dual crop coefficient approach—A case study of the maize field in an oasis in the middlestream of the Heihe River Basin in northwest China. Sci. Agric. Sin. 2010, 43, 4016–4026, (Chinese with English Abstract). [Google Scholar]
- Wright, J.L. New evapotranspiration crop coefficients. Proc. Am. Soc. Civ. Eng. J. Irrig. Drain. Div. 1982, 108, 57–74. [Google Scholar] [CrossRef]
- Baburao, K.; Ayse, K.; Kenneth, H. Estimating Crop Coefficients Using Remote Sensing-Based Vegetation Index. Remote Sens. 2013, 5, 1588–1602. [Google Scholar] [CrossRef] [Green Version]
- Rocha, J.; Perdigo, A.; Melo, R.; Henriques, C. Managing water in agriculture through remote sNSEing applications. In Proceedings of the 30th EARSeL Symposium on Remote Sensing for Science, Education, and Natural and Cultural Heritage, Paris, France, 31 May–3 June 2010; Volume 31, p. 223230. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, X.; Zhou, Q.; Chen, D.; Li, J. DISO: A rethink of Taylor diagram. Int. J. Climatol. 2019, 39, 2825–2832. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Z.; Sang, Y.-F.; Qian, J.; Feng, W.; Chen, X.; Zhou, Q. Temporal and spatial variations in the terrestrial water storage across Central Asia based on multiple satellite datasets and global hydrological models. J. Hydrol. 2021, 596, 126013. [Google Scholar] [CrossRef]
- Zhang, S.H.; Liu, S.X.; Mo, X.G.; Shu, C.; Sun, Y.; Zhang, C. Assessing the impact of climate change on potential evapotranspiration in aksu river basin. J. Geogr. Sci. 2011, 21, 609–620. [Google Scholar] [CrossRef]
- Huang, Q.; Qiu, Y.; Chen, X.; Sun, X.; Lin, Y. Climate Change Characteristics and Future Trends of Fujian Province during 1980—2017. J. Wuyi Univ. 2020, 39, 27–32, (Chinese with English Abstract). [Google Scholar]
- Ramillien, G.; Frappart, F.; Güntner, A.; Ngo-Duc, T.; Cazenave, A.; Laval, K. Time variations of the regional evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry. Water Resour. Res. 2006, 42, 10403-1–10403-8. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Chen, J.; Seneviratne, S.I.; Viterbo, P.; Holl, S.; Wilson, C.R. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 2004, 31, L20504. [Google Scholar] [CrossRef] [Green Version]
- Di, L.; Longuevergne, L.; Scanlon, B.R. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res. 2014, 50, 1131–1151. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, S.; Bai, X.; Tang, H.; Cao, Y.; Wang, M.; Wu, L. Inversion and Spatiotemporal Evolution of Actual Evapotranspiration in Southwest China for the Past 50 Years. Acta Ecol. Sin. 2018, 38, 8835–8848. [Google Scholar] [CrossRef]
- Chen, X.; Deng, C. Evaluation and Integration of Multiple Evapotranspiration Products in the Yellow River Basin. Water Resour. Power 2021, 39, 5–8. [Google Scholar]
- Wang, Y.; Wang, S.; Song, W.; Yang, S. Application of GLDAS Data to the Potential Evapotranspiration Monitoring in Weihe River Basin. J. Arid Land Resour. Environ. 2013, 27, 53–58. [Google Scholar] [CrossRef]
- Zhan, Y.; Zhang, W.; Yan, Y.; Wang, C.; Rong, Y.; Zhu, J.; Lu, H.; Zheng, T. Analysis of actual evapotranspiration evolution and influencing factors in the Yangtze River Basin. Acta Ecol. Sin. 2021, 41, 6924–6935. [Google Scholar] [CrossRef]
Name | Lat. (°N) | Lon. (°E) | ELev. (m) | Pre. (mm) | Temp. (°C) | LUCC |
---|---|---|---|---|---|---|
Shaowu | 27 | 117 | 218 | 1855 | 18.3 | Grass land |
Wuyishan | 27 | 118 | 222 | 1899 | 18.7 | Forest land |
Pucheng | 28 | 118 | 277 | 1756 | 18.0 | Forest land |
Jianyang | 27 | 118 | 197 | 1663 | 18.6 | Cultivated land |
Jianou | 27 | 118 | 155 | 1682 | 19.4 | Forest land |
Taining | 26 | 117 | 343 | 1804 | 17.9 | Forest land |
Nanping | 26 | 118 | 152 | 1611 | 20.1 | Grass land |
Name | R2 | NSE | DISO |
---|---|---|---|
Shaowu | 0.93 | 0.91 | 0.16 |
Wuyishan | 0.92 | 0.90 | 0.16 |
Pucheng | 0.93 | 0.82 | 0.29 |
Jianyang | 0.94 | 0.93 | 0.15 |
Jianou | 0.94 | 0.85 | 0.25 |
Taining | 0.93 | 0.85 | 0.23 |
Nanping | 0.92 | 0.80 | 0.26 |
Mean Value (mm) | Trend (mm yr−1) | |
---|---|---|
Annual | 846.2 | 3.60 ** |
Winter | 92.6 | 1.10 ** |
Spring | 207.5 | 2.60 ** |
Summer | 342.1 | 0.19 |
Autumn | 202.5 | −0.10 |
Precipitation | Temperature | Wind Speed | |
---|---|---|---|
Annual ETa | −0.20 | 0.35 | −0.08 |
Winter ETa | −0.35 | 0.16 | −0.24 |
Spring ETa | −0.10 | 0.60 *** | −0.14 |
Summer ETa | −0.52 ** | 0.45 ** | 0.26 |
Autumn ETa | −0.44 * | −0.21 | −0.10 |
b | c | d | ||||
---|---|---|---|---|---|---|
Annual | −0.20 | 0.35 | −0.04 | 33.9% | 59.6% | 6.5% |
Winter | −0.31 | 0.002 | −0.17 | 64% | 0.5% | 35.5% |
Spring | 0.06 | 0.61 | −0.01 | 8.6% | 89.4% | 2.0% |
Summer | −0.40 | 0.17 | 0.10 | 59.8% | 24.8% | 15.5% |
Autumn | −0.53 | −0.20 | −0.23 | 54.9% | 21.0% | 24.1% |
Precipitation (mm yr−1) | Temperature (°C yr−1) | Wind Speed (m yr−1) | |
---|---|---|---|
Annual | 18.56 | 0.03 * | −0.001 |
Winter | 0.40 | 0.01 | 0.005 |
Spring | 5.98 | 0.01 | 0.002 |
Summer | 6.39 | 0.02 | 0.001 |
Autumn | 0.37 | 0.06 ** | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Wang, Y.; Liu, Q.; Chen, X.; Zhang, Y.; Gao, L.; Chen, Y.; Liu, M.; Deng, H. Evapotranspiration Variations of the Minjiang River Basin in Southeastern China from 2000 to 2019. Atmosphere 2022, 13, 562. https://doi.org/10.3390/atmos13040562
Lu Y, Wang Y, Liu Q, Chen X, Zhang Y, Gao L, Chen Y, Liu M, Deng H. Evapotranspiration Variations of the Minjiang River Basin in Southeastern China from 2000 to 2019. Atmosphere. 2022; 13(4):562. https://doi.org/10.3390/atmos13040562
Chicago/Turabian StyleLu, Yijin, Yuanyuan Wang, Qun Liu, Xingwei Chen, Yuqing Zhang, Lu Gao, Ying Chen, Meibing Liu, and Haijun Deng. 2022. "Evapotranspiration Variations of the Minjiang River Basin in Southeastern China from 2000 to 2019" Atmosphere 13, no. 4: 562. https://doi.org/10.3390/atmos13040562
APA StyleLu, Y., Wang, Y., Liu, Q., Chen, X., Zhang, Y., Gao, L., Chen, Y., Liu, M., & Deng, H. (2022). Evapotranspiration Variations of the Minjiang River Basin in Southeastern China from 2000 to 2019. Atmosphere, 13(4), 562. https://doi.org/10.3390/atmos13040562