The Energy Model of Urban Heat Island
Abstract
:1. Introduction
2. Model of Urban Heat Island
2.1. Absorption of the Shortwave and Longwave Radiation by the Underlying Surface
2.1.1. Absorption of Shortwave Radiation (ΔQsurSR)
2.1.2. Absorption of Longwave Radiation (ΔQsurLR)
2.2. Estimation of Atmospheric Absorption of the Shortwave and Longwave Radiation
2.2.1. Absorption of Shortwave Radiation by Urban Water Vapor (ΔQWSR)
2.2.2. Absorption of Longwave Radiation by Urban Water Vapor (ΔQWLR)
2.2.3. Absorption by Minor Gas Constituents and Aerosol of Anthropogenic Origin (ΔQpSR and ΔQpLR)
2.3. Estimation of the Effect of Lower Energy Consumption for Water Evaporation in the City (ΔQE) on Formation of the Urban Heat Island
2.4. Anthropogenic Heat Flux
2.5. Turbulent Heat Flux
2.6. Calculation of the UHII
3. Testing of the Model against Direct Measurements of Heat Island in Tomsk as an Example
3.1. Experimental Site, Measurement Systems, and Statistical Information
3.2. Estimation of Heat Fluxes from Measurements of Meteorological Parameters
3.2.1. Estimation of Absorption of Shortwave and Longwave Radiation by the Underlying Surface
3.2.2. Absorption of Longwave Radiation (ΔQsurLR)
3.2.3. Estimation of Atmospheric Absorption of Shortwave and Longwave Radiation
3.2.4. Estimation of the Effect of Lower Energy Consumption for Water Evaporation in the City (ΔQE) on the UHI Formation
3.2.5. Estimation of the Effect of Anthropogenic Heat Emissions on the UHI Formation
3.3. Relation between the Factors of UHI Formation in Tomsk
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Landsberg, H.E. The Urban Climate; Academic Press: New York, NY, USA, 1981; p. 275. [Google Scholar]
- Belan, B.D. To the problem of contamination «top» formation over industrial centers. Atmos. Ocean. Opt. J. 1996, 9, 460–463. (In Russian) [Google Scholar]
- Stathopoulou, E.; Mihalakakou, G.; Santamouris, M.; Bagiorgas, H.S. On the impact of temperature on tropospheric ozone concentration levels in urban environments. J. Earth Syst. Sci. 2008, 117, 227–236. [Google Scholar] [CrossRef]
- Pantavou, A.; Theoharatos, G.; Mavrakis, A.; Santamouris, M. Evaluating thermal comfort conditions and health responses during an extremely hot summer in Athens. Build. Environ. 2011, 46, 339–344. [Google Scholar] [CrossRef]
- Santamouris, M.; Kolokotsa, D. On the impact of urban overheating and extreme climatic conditions on housing energy comfort and environmental quality of vulnerable population in Europe. Energy Build. 2015, 98, 125–133. [Google Scholar] [CrossRef]
- Sakka, A.; Santamouris, M.; Livada, I.; Nicol, F.; Wilson, M. On the thermal performance of low income housing during heat waves. Energy Build. 2012, 49, 69–77. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Oke, T.R.; Fuggle, R.F. Comparison of urban/rural counter and net radiation at night. Bound. Layer Meteorol. 1972, 2, 290–308. [Google Scholar] [CrossRef]
- Isakov, S.V.; Shklyaev, V.A. Determination of total impact of anthropogenic change surfaces, on the occurrence of the effect of “urban heat island” with the use of geographic information systems. Vestn. Orenbg. State Univ. 2014, 161, 178–182. [Google Scholar]
- Grimmond, C.S.B.; Oke, T.R. Comparison of heat fluxes from summertime observations in the suburbs of four North American cities. J. Appl. Meteorol. 1995, 34, 837–889. [Google Scholar] [CrossRef] [Green Version]
- Adebayo, Y.R. “Heat island” in a humid tropical city and its relationship with potential evaporation. Theor. Appl. Climatol. 1991, 43, 137–147. [Google Scholar] [CrossRef]
- Komarov, V.S.; Barinova, S.A.; Matveev, Y.L. Change of meteorological conditions in Siberian cities under the effect of anthropogenic factor. Atmos. Ocean. Opt. 2001, 14, 259–262. [Google Scholar]
- Belan, B.D.; Rasskazchikova, T.M. Impact of the urban area of Tomsk on the temperature-humidity regime of air. Atmos. Ocean. Opt. 2001, 14, 267–270. [Google Scholar]
- Oke, T.R. Boundary Layer Climates; Routledge: London, UK, 1987; p. 464. [Google Scholar]
- Unger, J. Intra-urban relationship between surface geometry and urban heat island: Review and new approach. Clim. Res. 2004, 27, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Robbiati, F.O.; Cáceres, N.; Hick, E.C.; Suarez, M.; Soto, S.; Barea, G.; Matoff, E.; Galetto, L.; Imhof, L. Vegetative and thermal performance of an extensive vegetated roof located in the urban heat island of a semiarid region. Build. Environ. 2022, 212, 108791. [Google Scholar] [CrossRef]
- Stache, E.; Schilperoort, B.; Ottelé, M.; Jonkers, H.M. Comparative analysis in thermal behaviour of common urban building materials and vegetation and consequences for urban heat island effect. Build. Environ. 2021, in press. [Google Scholar] [CrossRef]
- Hoffmann, P.; Krueger, O.; Schlünzen, K.H. A statistical model for the urban heat island and its application to a climate change scenario. Int. J. Climatol. 2012, 32, 1238–1248. [Google Scholar] [CrossRef]
- Szymanowski, M.; Kryza, M. Local regression models for spatial interpolation of urban heat island—An example from Wrocław, SW Poland. Theor. Appl. Climatol. 2012, 108, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Theeuwes, N.E.; Steeneveld, G.J.; Ronda, R.J.; Holtslag, A.A. A diagnostic equation for the daily maximum urban heat island effect for cities in northwestern Europe. Int. J. Climatol. 2017, 37, 443–454. [Google Scholar] [CrossRef]
- Sangiorgio, V.; Fiorito, F.; Santamouris, M. Development of a holistic urban heat island evaluation methodology. Sci. Rep. 2020, 10, 17913. [Google Scholar] [CrossRef]
- Dudorova, N.V.; Belan, B.D. Radiation balance of the underlying surface in Tomsk in 2004–2005. Opt. Atmos. I Okeana 2015, 28, 312–317. (In Russian) [Google Scholar] [CrossRef]
- Dudorova, N.V.; Belan, B.D. Thermal balance of the underlying surface in Tomsk in 2004–2005. Opt. Atmos. I Okeana 2015, 28, 229–237. (In Russian) [Google Scholar] [CrossRef]
- Dudorova, N.V.; Belan, B.D. Estimation of the intensity and size of the heat and moisture island in Tomsk from direct measurements. Opt. Atmos. I Okeana 2016, 29, 419–425. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Complete urban surface temperatures. J. Appl. Meteorol. 1997, 36, 1117–1132. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Effects of urban surface geometry on remotely-sensed surface temperature. Int. J. Remote Sens. 1998, 19, 895–920. [Google Scholar] [CrossRef]
- Chesnokova, T.Y.; Zhuravleva, T.B.; Ptashnik, I.V.; Chentsov, A.V. Simulation of solar radiative fluxes in the atmosphere using different models of water vapor continual absorption in typical condition of Western Siberia. Opt. Atmos. I Okeana 2013, 26, 100–107. (In Russian) [Google Scholar]
- Firsov, K.M.; Chesnokova, T.Y.; Bobrov, E.V. Role of water vapor continual absorption in the atmospheric longwave radiative processes of the surface layer in the Lower Volga region. Opt. Atmos. I Okeana 2014, 27, 665–672. (In Russian) [Google Scholar]
- Arshinov, M.Y.; Belan, B.D.; Davydov, D.K.; Ivlev, G.A.; Kozlov, A.V.; Pestunov, D.A.; Pokrovskii, E.V.; Simonenkov, D.V.; Uzhegova, N.V.; Fofonov, A.V. AKV-2 mobile station and its use in Tomsk city as an example. Atmos. Ocean. Opt. 2005, 18, 575–580. [Google Scholar]
- Belan, B.D.; Ivlev, G.A.; Pirogov, V.A.; Pokrovskij, E.V.; Simonenkov, D.V.; Uzhegova, N.V.; Fofonov, A.B. Comparative assessment of the air composition of industrial cities in Siberia during the cold period. Geogr. Nat. Resour. 2005. (In Russian) [Google Scholar] [CrossRef]
- Belan, B.D.; Ivlev, G.A.; Kozlov, A.S.; Marinaite, I.I.; Penenko, V.V.; Pokrovskii, E.V.; Simonenkov, D.V.; Fofonov, A.V.; Khodzher, T.V. Comparison of air composition over industrial cities of Siberia. Atmos. Ocean. Opt. 2007, 20, 387–396. [Google Scholar]
- Uzhegova, N.V.; Antokhin, P.N.; Belan, B.D.; Ivlev, G.A.; Kozlov, A.V.; Fofonov, A.V. Extraction of anthropogenic contribution to change of city’s air temperature, humidity, gas and aerosol composition. Opt. Atmos. I Okeana 2011, 24, 589–596. (In Russian) [Google Scholar]
- Uzhegova, N.V.; Antokhin, P.N.; Belan, B.D.; Ivlev, G.A.; Kozlov, A.V.; Fofonov, A.V. Daily variations of Tomsk air characteristics in cold season. Opt. Atmos. I Okeana 2011, 24, 782–789. (In Russian) [Google Scholar]
- Kondratiev, K.Y.; Matveev, L.T. The main factors in the formation of a heat island in a big city. Dokl. Earth Sci. 1999, 367, 253–256. (In Russian) [Google Scholar]
- Matveev, L.T.; Matveev, Y.L. Formation and features of a heat island in a big city. Dokl. Earth Sci. 2000, 370, 249–252. [Google Scholar]
- Davydov, D.K.; Belan, B.D.; Antokhin, P.N.; Antokhina, O.Y.; Antonovich, V.V.; Arshinova, V.G.; Arshinov, M.Y.; Akhlestin, A.Y.; Belan, S.B.; Dudorova, N.V.; et al. Monitoring of Atmospheric Parameters: 25 Years of the Tropospheric Ozone Research Station of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences. Atmos. Ocean. Opt. 2019, 32, 180–192. [Google Scholar] [CrossRef]
- Laboratory of Atmosphere Composition Climatology. Available online: https://lop.iao.ru/EN/ (accessed on 23 December 2021).
- Tomsk Center for Hydrometeorology and Environmental Monitoring. Available online: http://www.meteotomsk.ru/site/ (accessed on 23 December 2021).
- Arshinov, M.Y.; Belan, B.D.; Davydov, D.K.; Ivlev, G.A.; Kozlov, A.S.; Kozlov, V.S.; Panchenko, M.V.; Penner, I.E.; Pestunov, D.A.; Safatov, A.S.; et al. Aircraft laboratory Antonov-30 “Optik-E”: 20-year investigations of the environment. Opt. Atmos. I Okeana 2009, 22, 950–957. (In Russian) [Google Scholar]
- Belan, B.D.; Sklyadneva, T.K.; Uzhegova, N.V. The difference in the albedo of underlying surface in Novosibirsk and in the surroundings of Novosibirsk. Opt. Atmos. I Okeana 2005, 18, 238–241. (In Russian) [Google Scholar]
- Arshinov, M.Y.; Belan, B.D.; Davydov, D.K.; Ivlev, G.A.; Kozlov, A.V.; Pestunov, D.A.; Pokrovskii, E.V.; Tolmachev, G.N.; Fofonov, A.V. Sites for monitoring of greenhouse gases and gases oxidizing the atmosphere. Atmos. Ocean. Opt. 2007, 20, 45–53. [Google Scholar]
- Federal State Statistics Service. Available online: https://eng.rosstat.gov.ru/ (accessed on 23 December 2021).
- INTER RAO. TGK-11. Available online: http://tomsk.tgk11.com/english/ (accessed on 23 December 2021).
- Tomskenergosbyt. Available online: http://www.ensb.tomsk.ru/ (accessed on 23 December 2021).
- Google Earth. Available online: https://www.google.com/earth/ (accessed on 23 December 2021).
- Babichev, A.P.; Babushkina, N.A.; Bratkovskii, A.M. Physical Quantities: Directory; Grigoreva, I.S., Mejlikhova, E.Z., Eds.; Energoatomizdat: Moscow, Russia, 1991; p. 1231. [Google Scholar]
- Belward, A.; Loveland, T. The DIS 1 km Land Cover Data Set. IGBP Glob. Chang. Newsl. 1996, 27, 7–9. [Google Scholar]
- Yazikov, E.G.; Talovskaya, A.V.; Zhornyak, L.V. Assessment of the Ecological and Geochemical State of the Territory of Tomsk according to the Study of Dust Aerosols and Soils; TPU: Tomsk, Russia, 2010; p. 264. [Google Scholar]
- Belan, B.D.; Pelymskii, O.A.; Uzhegova, N.V. Study of the anthropogenic component of urban heat balance. Atmos. Ocean. Opt. 2009, 22, 441–445. [Google Scholar] [CrossRef]
Data Needed for Calculation | Measurement Systems, Statistical Databases | Measurement Period, Its Characteristics | Ref. |
---|---|---|---|
Q—total solar radiation, W/m2 t—air temperature, °C Rh—air humidity, % v—wind speed, m/s P—pressure, Pa | TOR station | Every-minute (with hourly averaging) continuous measurements of background values of meteorological parameters at a stationary observation site on the eastern side of the city | [36,37] |
t—air temperature, °C Rh—air humidity, % v—wind speed, m/s P—pressure, Pa | Tomsk Center for Hydrometeorology and Environmental Monitoring—branch of the West-Siberian Hydrometeorology and Environmental Monitoring | Continuous (every 3 h) measurements of background values of meteorological parameters at a stationary observation site on the southern side of the city | [38] |
t—air temperature, °C Rh—air humidity, % v—wind speed, m/s P—pressure, Pa | AKV-2 mobile station | Every-second (with minute averaging) measurements of urban and background meteorological parameters at the mobile station with reference to coordinates. Twelve S-route trips around the city and the background area. | [29,30,31,32,33] |
*Q↑—solar radiation flux reflected by the surface, W/m2 *Q↓—solar radiation flux incident on the surface, W/m2 | Optik-E AN-30 flying laboratory | Every-second (with minute averaging) measurements of solar radiation fluxes from aircraft with reference to coordinates. One flight in a month over the city and the background area. | [39,40] |
t—air temperature, °C Rh—air humidity, % v—wind speed, m/s P—pressure, Pa | BEC observatory | Every-minute (with hourly averaging) measurements of background values of meteorological parameters at a stationary observation site on the eastern side of the city at heights of 10, 20, 30, 40 m | [41] |
Amount of fuel (tons) consumed by large and small enterprises and vehicles | Tomskstat | Annual statistical data | [42] |
Amount of generated electrical energy (kW h) and heat energy (Gcal) for heating of buildings | Territorial Generating Company No. 11, Tomsk branch | Monthly statistical data | [43] |
Amount of consumed electrical energy (kW h) | Tomskenergosbyt regional energy retail company | Monthly statistical data | [44] |
Winter | Summer | |||||
---|---|---|---|---|---|---|
Min | Average | Max | Min | Average | Max | |
W, g/cm2 | 0.1 | 0.25 | 0.4 | 1.0 | 2.0 | 3.1 |
−0.155 | −0.127 | −0.096 | −0.033 | −0.028 | −0.023 |
Date, Local Time | Δa, g/m3 | ΔWmob, g/cm2 | Q, W/m2 | ΔQWSR, W/m2 |
---|---|---|---|---|
23 June 2004 11:00–12:00 | −0.4 | −0.012 | 317 | −0.13 |
11 July 2005 14:30–17:30 | 0 | 0 | 240 | 0.00 |
26 August 2005 08:30–12:05 | 0.6 | 0.018 | 177 | 0.11 |
14 May 2009 15:00–17:30 | 0.6 | 0.018 | 361 | 0.21 |
31 May 2009 11:20–17:00 | 0.3 | 0.009 | 330 | 0.10 |
17 July 2009 02:00–07:00 | 0.4 | 0.012 | 337 | 0.13 |
25 December 2009 13:30–19:00 | 0.1 | 0.003 | 18 | 0.01 |
26 January 2010 13:00–17:00 | 0.06 | 0.0018 | 68 | 0.02 |
4 February 2010 00:00–03:40 | 0.07 | 0.0021 | 87 | 0.03 |
11 February 2010 12:20–16:20 | 0.06 | 0.0018 | 100 | 0.03 |
12 February 2010 20:00–23:00 | 0.04 | 0.0012 | 113 | 0.02 |
9 April 2010 11:30–16:20 | 0.03 | 0.009 | 216 | 0.06 |
Winter | Summer | |||||
---|---|---|---|---|---|---|
Min | Average | Max | Min | Average | Max | |
W, g/cm2 | 0.1 | 0.25 | 0.4 | 1.0 | 2.0 | 3.1 |
0.9 | 0.8 | 0.7 | 0.17 | 0.09 | 0.05 |
Date, Time | Δa, g/m3 | ΔW, g/cm2 | Ba, W/m2 | ΔQWLR, W/m2 |
---|---|---|---|---|
23 June 2004 11:00–12:00 | −0.4 | −0.012 | 321 | −0.52 |
11 July 2005 14:30–17:30 | 0 | 0 | 303 | 0.00 |
26 August 2005 08:30–12:05 | 0.6 | 0.018 | 296 | 0.90 |
14 May 2009 15:00–17:30 | 0.6 | 0.018 | 231 | 0.71 |
31 May 2009 11:20–17:00 | 0.3 | 0.009 | 309 | 0.47 |
17 July 2009 02:00–07:00 | 0.4 | 0.012 | 351 | 0.72 |
25 December 2009 13:30–19:00 | 0.1 | 0.003 | 110 | 0.30 |
26 January 2010 13:00–17:00 | 0.06 | 0.0018 | 121 | 0.20 |
4 February 2010 00:00–03:40 | 0.07 | 0.0021 | 122 | 0.23 |
11 February 2010 12:20–16:20 | 0.06 | 0.0018 | 123 | 0.20 |
12 February 2010 20:00–23:00 | 0.04 | 0.0012 | 120 | 0.13 |
9 April 2010 11:30–16:20 | 0.03 | 0.009 | 166 | 0.25 |
Date, Local Time | Weather Conditions | ΔT | ΔTUHI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
QF | ∆QE | Q+ | *∑ | *MS | |||||||
23 June 2004 11:00–12:00 | 10/1 Cu Ci; NEE 2.1 m/s; No precipitation | 1.34 | 0.51 | 0.13 | 0.00 | 0.00 | 0.16 | 2.14 | −1.04 | 1.10 | 1.1 |
11 July 2005 14:30–17:30 | 7/4 Cu Ci; S 3 m/s; No precipitation | 0.48 | 0.45 | 0.06 | 0.00 | 0.00 | 0.00 | 0.99 | −0.31 | 0.68 | 0.9 |
26 August 2005 08:30–12:05 | 10/10 Ns; Calm; Light rain shower | 3.59 | 0.00 | 0.43 | 0.02 | 0.15 | −0.20 | 3.99 | −2.98 | 1.01 | 1.0 |
14 May 2009 15:00–17:30 | 3/0 Ci fib; NWW 1.6 m/s; No precipitation | 1.34 | 0.61 | 0.04 | 0.01 | 0.02 | 0.00 | 2.02 | −0.81 | 1.21 | 1.3 |
31 May 2009 11:20–17:00 | 10/7 Cb Ci; SWW 1.6 m/s; Light rain shower | 1.59 | 0.11 | 0.05 | 0.01 | 0.02 | 0.00 | 1.78 | −0.80 | 0.98 | 1.3 |
17 July 2009 02:00–07:00 | 4/0 Ci; NEE 1.6 m/s; No precipitation | 0.99 | 1.15 | 0.13 | 0.01 | 0.03 | 0.00 | 2.31 | −1.02 | 1.29 | 1.2 |
25 December 2009 13:30–19:00 | As Ci 10/0; S 2.4 m/s; Light snow | 3.39 | 0.15 | 0.10 | 0.00 | 0.01 | 0.00 | 3.65 | −1.69 | 1.96 | 2.1 |
26 January 2010 13:00–17:00 | Clear sky; NNW 1.2 m/s; No precipitation; ice needles | 3.84 | 1.13 | 0.13 | 0.00 | 0.01 | 0.00 | 5.11 | −3.17 | 1.94 | 1.9 |
4 February 2010 00:00–03:40 | Clear sky; NNE 2.1 m/s; No precipitation | 2.79 | 0.38 | 0.04 | 0.00 | 0.01 | 0.00 | 3.22 | −1.42 | 1.80 | 1.8 |
11 February 2010 12:20–16:20 | Clear sky; NNE 1.7 m/s; No precipitation | 2.48 | 0.17 | 0.04 | 0.00 | 0.01 | 0.00 | 2.70 | −1.02 | 1.68 | 0.9 |
12 February 2010 20:00–23:00 | Clear sky; S 1.7 m/s; No precipitation | 3.81 | 1.03 | 0.06 | 0.00 | 0.01 | 0.00 | 4.91 | −2.82 | 2.09 | 2.0 |
9 April 2010 11:30–16:20 | Clear sky; W 1.6 m/s; No precipitation | 2.84 | 0.30 | 0.06 | 0.00 | 0.01 | 0.00 | 3.21 | −1.58 | 1.63 | 1.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudorova, N.V.; Belan, B.D. The Energy Model of Urban Heat Island. Atmosphere 2022, 13, 457. https://doi.org/10.3390/atmos13030457
Dudorova NV, Belan BD. The Energy Model of Urban Heat Island. Atmosphere. 2022; 13(3):457. https://doi.org/10.3390/atmos13030457
Chicago/Turabian StyleDudorova, Nina V., and Boris D. Belan. 2022. "The Energy Model of Urban Heat Island" Atmosphere 13, no. 3: 457. https://doi.org/10.3390/atmos13030457
APA StyleDudorova, N. V., & Belan, B. D. (2022). The Energy Model of Urban Heat Island. Atmosphere, 13(3), 457. https://doi.org/10.3390/atmos13030457