A Quantitative Analysis of the Influence of Temperature Change on the Extreme Precipitation
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Materials
3.2. Method
3.2.1. Extreme Climate Indices
3.2.2. PVAR Models
3.2.3. Spatial Interpolation
3.2.4. Mann–Kendall (MK) Test and Sen’s Trend Estimator
4. Results
5. Discussion
6. Conclusions
- (1)
- The PRCPTOT and SDII researched in this work exhibited spatial distribution characteristics of more significant in the southeast and more minor in the northwest. In terms of the spatial distribution characteristics of wet days, the larger values are concentrated in Northeastern Inner Mongolia.
- (2)
- The Granger cause tests of the temperature and extreme precipitation indicators showed a correlation between each indicator and temperature at the significance level of 1%. The temperature had a positive correlation with only SDII, while the negative correlation with the remaining indicators and temperature was highly negatively correlated with wet days.
- (3)
- Regarding development trends of temperature and extreme precipitation indicators, there are mainly two types of relationships in Inner Mongolia. The first relationship (with the increase in temperature and the decrease in PRCPTOT and wet days) means an increase in drought disasters. The other type of relationship (an increase in SDII, along with an increase in temperature) means an increased risk in flood disaster events.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Florke, M.; Hanasaki, N.; Wisser, D. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.H.; Gu, X.H.; Kong, D.D.; Liu, J.Y. A long-term perspective of hydroclimatological impacts of tropical cyclones on regional heavy precipitation over eastern monsoon China. Atmos. Res. 2021, 264, 105862. [Google Scholar] [CrossRef]
- Blanchet, J.; Ceresetti, D.; Molinié, G.; Creutin, J.-D. A regional GEV scale-invariant framework for Intensity–Duration–Frequency analysis. J. Hydrol. 2016, 540, 82–95. [Google Scholar] [CrossRef]
- Ghanmi, H.; Bargaoui, Z.; Mallet, C. Estimation of intensity-duration-frequency relationships according to the property of scale invariance and regionalization analysis in a Mediterranean coastal area. J. Hydrol. 2016, 541, 38–49. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Cheng, L.Y.; Mazdiyasni, O.; Farahmand, A. Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophys. Res. Lett. 2014, 41, 8847–8852. [Google Scholar] [CrossRef] [Green Version]
- Pöschmann, J.M.; Kim, D.; Kronenberg, R.; Bernhofer, C. An analysis of temporal scaling behaviour of extreme rainfall in Germany based on radar precipitation QPE data. Nat. Hazards Earth Syst. Sci. 2021, 21, 1195–1207. [Google Scholar] [CrossRef]
- Nigussie, T.A.; Altunkaynak, A. Impacts of climate change on the trends of extreme rainfall indices and values of maximum precipitation at Olimpiyat Station, Istanbul, Turkey. Theor. Appl. Climatol. 2019, 135, 1501–1515. [Google Scholar] [CrossRef]
- Moberg, A.; Jones, P.D. Trends in indices for extremes in daily temperature and precipitation in central and western Europe, 1901–1999. Int. J. Climatol. A J. R. Meteorol. Soc. 2005, 25, 1149–1171. [Google Scholar] [CrossRef]
- Santos, C.A.C.D. Recent changes in temperature and precipitation extremes in an ecological reserve in Federal District, Brazil. Rev. Bras. Meteorol. 2014, 29, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [Green Version]
- Aihaiti, A.; Jiang, Z.H.; Zhu, L.H.; Li, W.; You, Q.L. Risk changes of compound temperature and precipitation extremes in China under 1.5 degrees C and 2 degrees C global warming. Atmos. Res. 2021, 64, 105838. [Google Scholar] [CrossRef]
- Luo, P.; Mu, Y.; Wang, S.; Zhu, W.; Mishra, B.K.; Huo, A.; Zhou, M.; Lyu, J.; Hu, M.; Duan, W. Exploring sustainable solutions for the water environment in Chinese and Southeast Asian cities. Ambio 2022, 51, 1199–1218. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Xu, C.; Kang, S.; Huo, A.; Lyu, J.; Zhou, M.; Nover, D. Heavy metals in water and surface sediments of the Fenghe River Basin, China: Assessment and source analysis. Water Sci. Technol. 2021, 84, 3072–3090. [Google Scholar] [CrossRef] [PubMed]
- Zha, X.; Luo, P.; Zhu, W.; Wang, S.; Lyu, J.; Zhou, M.; Huo, A.; Wang, Z. A bibliometric analysis of the research on Sponge City: Current situation and future development direction. Ecohydrology 2021, 14, e2328. [Google Scholar] [CrossRef]
- Easterling, D.R.; Alexander, L.V.; Mokssit, A.; Detemmerman, V. CCI/CLIVAR workshop to develop priority climate indices. Bull. Am. Meteorol. Soc. 2003, 84, 1403–1407. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A.; Phillips, T.J. Changes in concurrent monthly precipitation and temperature extremes. Environ. Res. Lett. 2013, 8, 034014. [Google Scholar] [CrossRef] [Green Version]
- Folland, C.K.; Rayner, N.A.; Brown, S.; Smith, T.; Shen, S.; Parker, D.; Nicholls, N. Global temperature change and its uncertainties since 1861. Geophys. Res. Lett. 2001, 28, 2621–2624. [Google Scholar] [CrossRef]
- Zscheischler, J.; Orth, R.; Seneviratne, S.I. Bivariate return periods of temperature and precipitation explain a large fraction of European crop yields. Biogeosciences 2017, 14, 3309–3320. [Google Scholar] [CrossRef] [Green Version]
- Yihui, D.; Chan, J.C. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar] [CrossRef]
- You, Q.L.; Kang, S.C.; Aguilar, E.; Pepin, N.; Flugel, W.A.; Yan, Y.P.; Huang, J. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim. Dyn. 2011, 36, 2399–2417. [Google Scholar] [CrossRef]
- Wang, S.; Gong, D. Enhancement of the warming trend in China. Geophys. Res. Lett. 2000, 27, 2581–2584. [Google Scholar] [CrossRef]
- Zhai, P.; Zhang, X.; Wan, H.; Pan, X. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Almazroui, M.; Saeed, S. Contribution of extreme daily precipitation to total rainfall over the Arabian Peninsula. Atmos. Res. 2020, 231, 104672. [Google Scholar] [CrossRef]
- Tong, S.; Li, X.; Zhang, J.; Bao, Y.; Bao, Y.; Na, L.; Si, A. Spatial and temporal variability in extreme temperature and precipitation events in Inner Mongolia (China) during 1960–2017. Sci. Total Environ. 2019, 649, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.S.; Bhuiyan, M.A.E. Artificial intelligence-based techniques for rainfall estimation integrating multisource precipitation datasets. Atmosphere 2021, 12, 1239. [Google Scholar] [CrossRef]
- Derin, Y.; Yilmaz, K.K. Evaluation of multiple satellite-based precipitation products over complex topography. J. Hydrometeorol. 2014, 15, 1498–1516. [Google Scholar] [CrossRef] [Green Version]
- Mei, Y.; Nikolopoulos, E.I.; Anagnostou, E.N.; Borga, M. Evaluating satellite precipitation error propagation in runoff simulations of mountainous basins. J. Hydrometeorol. 2016, 17, 1407–1423. [Google Scholar] [CrossRef]
- Aihua, M.; Dapeng, Y.; Jingbo, Z. Spatiotemporal variation and effect of extreme precipitation in Inner Mongolia in recent 60 years. Arid Zone Res. 2020, 37, 74–85. [Google Scholar] [CrossRef]
- Peng, Y.; Long, S.; Ma, J.; Song, J.; Liu, Z. Temporal-spatial variability in correlations of drought and flood during recent 500 years in Inner Mongolia, China. Sci. Total Environ. 2018, 633, 484–491. [Google Scholar] [CrossRef]
- Li, Y.; Xin-Gang, D.; Yu, Z. Extreme precipitation events in Inner Mongolia in 1961–2008. Adv. Clim. Change Res. 2010, 6, 411. [Google Scholar]
- Wei, X.; Wang, N.; Luo, P.; Yang, J.; Zhang, J.; Lin, K. Spatiotemporal assessment of land marketization and its driving forces for sustainable urban–rural development in Shaanxi province in China. Sustainability 2021, 13, 7755. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, M.J.; Wang, S.J.; Ma, Q.; Sun, M.P. Changes in temperature extremes in the Yangtze River Basin, 1962–2011. J. Geogr. Sci. 2014, 24, 59–75. [Google Scholar] [CrossRef]
- Costa, A.C.; Soares, A. Trends in extreme precipitation indices derived from a daily rainfall database for the South of Portugal. Int. J. Climatol. A J. R. Meteorol. Soc. 2009, 29, 1956–1975. [Google Scholar] [CrossRef]
- Tramblay, Y.; El Adlouni, S.; Servat, E. Trends and variability in extreme precipitation indices over Maghreb countries. Nat. Hazards Earth Syst. Sci. 2013, 13, 3235–3248. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, A.S.; Wang, G.; Ullah, W.; Ullah, S.; Fiifi Tawia Hagan, D.; Kwesi Nooni, I.; Ullah, I. Trend in extreme precipitation indices based on long term in situ precipitation records over Pakistan. Water 2020, 12, 797. [Google Scholar] [CrossRef] [Green Version]
- Fahimnia, B.; Sarkis, J.; Davarzani, H. Green supply chain management: A review and bibliometric analysis. Int. J. Prod. Econ. 2015, 162, 101–114. [Google Scholar] [CrossRef]
- Sims, C.A. Macroeconomics and reality. Econom. J. Econom. Soc. 1980, 48, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Abrigo, M.R.; Love, I. Estimation of panel vector autoregression in Stata. Stata J. 2016, 16, 778–804. [Google Scholar] [CrossRef] [Green Version]
- Levin, A.; Lin, C.-F.; Chu, C.-S.J. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econom. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Breitung, J.; Das, S. Panel unit root tests under cross-sectional dependence. Stat. Neerl. 2005, 59, 414–433. [Google Scholar] [CrossRef]
- Choi, I. Unit root tests for panel data. J. Int. Money Financ. 2001, 20, 249–272. [Google Scholar] [CrossRef]
- Westerlund, J. A note on the use of the LLC panel unit root test. Empir. Econ. 2009, 37, 517–531. [Google Scholar] [CrossRef]
- Maddala, G.S.; Wu, S. A comparative study of unit root tests with panel data and a new simple test. Oxf. Bull. Econ. Stat. 1999, 61, 631–652. [Google Scholar] [CrossRef]
- Andrews, D.W.; Lu, B. Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models. J. Econom. 2001, 101, 123–164. [Google Scholar] [CrossRef]
- Sassi, S.; Gasmi, A. The Dynamic Relationship Between Corruption—Inflation: Evidence from Panel Vector Autoregression. Jpn. Econ. Rev. 2017, 68, 458–469. [Google Scholar] [CrossRef]
- Childs, C. Interpolating surfaces in ArcGIS spatial analyst. ArcUser 2004, 3235, 32–35. [Google Scholar]
- Meng, Q.; Liu, Z.; Borders, B.E. Assessment of regression kriging for spatial interpolation–comparisons of seven GIS interpolation methods. Cartogr. Geogr. Inf. Sci. 2013, 40, 28–39. [Google Scholar] [CrossRef]
- Siska, P.P.; Hung, I.-K. Assessment of kriging accuracy in the GIS environment. In Proceedings of the 21st Annual ESRI International Conference, San Diego, CA, USA, 9–13 July 2001. [Google Scholar]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Xie, S.; Liu, Y.; Yao, F. Spatial Downscaling of TRMM Precipitation Using an Optimal Regression Model with NDVI in Inner Mongolia, China. Water Resour. 2020, 47, 1054–1064. [Google Scholar] [CrossRef]
- Mukherjee, S.; Aadhar, S.; Stone, D.; Mishra, V. Increase in extreme precipitation events under anthropogenic warming in India. Weather Clim. Extrem. 2018, 20, 45–53. [Google Scholar] [CrossRef]
- Higgins, R.; Schemm, J.E.; Shi, W.; Leetmaa, A. Extreme precipitation events in the western United States related to tropical forcing. J. Clim. 2000, 13, 793–820. [Google Scholar] [CrossRef]
- Li, W.; Jiang, Z.; Zhang, X.; Li, L. On the emergence of anthropogenic signal in extreme precipitation change over China. Geophys. Res. Lett. 2018, 45, 9179–9185. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.; Mortimore, M.; Batterbury, S.P.; Herrick, J.E. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Yang, J.; Luo, P.; Lin, L.; Lin, K.; Guan, J. Assessment of the variation and influencing factors of vegetation NPP and carbon sink capacity under different natural conditions. Ecol. Indic. 2022, 138, 108834. [Google Scholar] [CrossRef]
Indices | Definitions | Units |
---|---|---|
Temperature | Annual average temperature | °C |
PRCPTOT | Annual total precipitation in wet days | mm |
Wet Days | Annual count of days when rainfall ≥ 1 mm | day |
SDII | Annual total precipitation divided by the number of wet days in the year | mm/day |
Variable | Mean | Std. Dev. | Min | Max | Observations | |
---|---|---|---|---|---|---|
Temperature | overall | 3.4853 | 3.3381 | −6.71 | 10.34 | N = 2100 |
between | 3.2463 | −4.3323 | 8.1197 | n = 35 | ||
within | 0.9489 | 0.8457 | 5.97 | T = 60 | ||
PRCPTOT | overall | 325.3502 | 127.5773 | 39.7 | 1111.5 | N = 2100 |
between | 93.5182 | 137.0217 | 509.175 | n = 35 | ||
within | 88.1824 | 34.7202 | 932.9202 | T = 60 | ||
Wet Days | overall | 77.5557 | 25.1283 | 21 | 205 | N = 2100 |
between | 22.9522 | 36.0333 | 153.75 | n = 35 | ||
within | 10.9286 | 36.8057 | 128.8057 | T = 60 | ||
SDII | overall | 4.2781 | 1.4414 | 1.28 | 11.54 | N = 2100 |
between | 1.0011 | 2.8538 | 5.9875 | n = 35 | ||
within | 1.0506 | 0.9766 | 11.0829 | T = 60 |
Variables | LLC | IPS | Breitung | Fisher-ADF |
---|---|---|---|---|
Temperature | −30.9737 *** | −28.0859 *** | −1.4916 ** | 168.3305 *** |
PRCPTOT | −44.4018 *** | −41.2530 *** | −4.5287 *** | 355.0586 *** |
Wet Days | −37.9387 *** | −36.7455 *** | −3.9278 *** | 249.3556 *** |
SDII | −43.9659 *** | −40.5206 *** | −3.9635 *** | 306.1874 *** |
Null Hypothesis (H0) | F-Statistics | p-Value | Conclusion |
---|---|---|---|
Temperature is not a Granger cause equation variable | 20.375 | 0.001 | Rejection |
PRCPTOT is not a Granger cause equation variable | 17.540 | 0.004 | Rejection |
Temperature is not a Granger cause equation variable | 41.208 | 0.000 | Rejection |
Wet Days are not Granger cause equation variables | 20.713 | 0.001 | Rejection |
Temperature is not a Granger cause equation variable | 45.216 | 0.000 | Rejection |
SDII is not a Granger cause equation variable | 7.737 | 0.171 | Acceptance |
Variables | Temperature | PRCPTOT | Wet Days | SDII |
---|---|---|---|---|
Temperature | 1 | |||
PRCPTOT | −0.183 *** | 1 | ||
Wet Days | −0.720 *** | 0.552 *** | 1 | |
SDII | 0.401 *** | 0.689 *** | −0.178 *** | 1 |
Station | Temperature | PRCPTOT | Wet Days | SDII | ||||
---|---|---|---|---|---|---|---|---|
Z | Sen | Z | Sen | Z | Sen | Z | Sen | |
Eerguna | −2.268 | 0.039 | −0.836 | −0.485 | −0.166 | 0 | −0.249 | −0.001 |
Tulihe | 4.981 | 0.033 | −0.434 | −0.222 | −5.166 | −0.556 | 2.398 | 0.011 |
Manzhouli | 3.89 | 0.028 | −2.289 | −1.162 | 0.357 | 0.036 | −2.041 | −0.016 |
Hailaer | 4.719 | 0.039 | −0.242 | −0.123 | −1.486 | −0.147 | 1.792 | 0.01 |
Xiaoergou | 6.339 | 0.048 | 1.512 | 1.112 | −4.369 | −0.458 | 3.852 | 0.031 |
Xinbaerhuyouqi | 5.134 | 0.037 | −1.237 | −0.811 | 0.549 | 0.041 | −1.677 | −0.015 |
Xinbaerhuzuoqi | 5.102 | 0.038 | 0.383 | 0.154 | 0.823 | 0.063 | 0.268 | 0.002 |
Zhalantun | 5.236 | 0.035 | 1.549 | 1.497 | 0.855 | 0.069 | 0.561 | 0.006 |
Aershan | 5.096 | 0.032 | 0.542 | 0.407 | −4.216 | −0.457 | 2.283 | 0.011 |
Suolun | 5.185 | 0.03 | 0.166 | 0.148 | −0.708 | −0.063 | 0.542 | 0.004 |
Dongwuzhumuqinqi | 5.899 | 0.044 | 0.006 | 0.003 | 0 | 0 | 0.325 | 0.002 |
Erlianhaote | 5.638 | 0.048 | 0.434 | 0.149 | −1.365 | −0.092 | 0.721 | 0.005 |
Narenbaolige | 5.791 | 0.047 | −0.14 | −0.097 | −0.88 | −0.077 | 0.306 | 0.001 |
Mandula | 5.708 | 0.037 | 1.014 | 0.392 | −0.804 | −0.053 | 1.843 | 0.011 |
Abagaqi | 5.938 | 0.049 | −0.517 | −0.2 | −0.191 | 0 | −0.364 | −0.002 |
Wulatezhongqi | 6.971 | 0.048 | 0.899 | 0.433 | −0.842 | −0.052 | 1.677 | 0.013 |
Damaoqi | 6.333 | 0.044 | 0.874 | 0.457 | −1.677 | −0.111 | 2.341 | 0.011 |
Siziwangqi | 5.772 | 0.039 | 1.371 | 0.861 | 0.319 | 0 | 1.69 | 0.009 |
Huade | 6.327 | 0.041 | 0.051 | 0.031 | −0.472 | −0.045 | 0.057 | 0.001 |
Baotou | 6.027 | 0.038 | 0.414 | 0.29 | −0.568 | −0.036 | 1.582 | 0.016 |
Hohhot | 6.244 | 0.043 | 0.491 | 0.594 | 0.121 | 0 | 0.829 | 0.008 |
Jining | 6.039 | 0.036 | 0.134 | 0.052 | −1.544 | −0.127 | 1.25 | 0.01 |
Linhe | 6.448 | 0.048 | 0.204 | 0.088 | 0.887 | 0.056 | −0.369 | −0.003 |
Eketuoqi | 5.466 | 0.031 | 0.427 | 0.269 | 0.019 | 0 | 0.593 | 0.007 |
Dongsheng | 7.111 | 0.051 | 0.019 | 0.025 | −0.976 | −0.078 | 1.142 | 0.012 |
Xiwuzhumuqinqi | 5.019 | 0.033 | −0.299 | −0.203 | 0.561 | 0.061 | −1.033 | −0.006 |
Zhalute | 6.225 | 0.039 | −0.319 | −0.254 | −0.95 | −0.078 | 0.083 | 0.001 |
Balinzuoqi | 6.697 | 0.047 | 0.427 | 0.218 | −1.837 | −0.105 | 1.199 | 0.012 |
Xilinhaote | 5.676 | 0.041 | −0.338 | −0.239 | 0.549 | 0.054 | −0.918 | −0.006 |
Linxi | 4.745 | 0.024 | −0.899 | −0.607 | −0.599 | −0.052 | −0.816 | −0.006 |
Kailu | 5.785 | 0.035 | −0.338 | −0.213 | 0.013 | 0 | −0.159 | −0.002 |
Tongliao | 6.269 | 0.041 | −0.274 | −0.163 | −2.003 | −0.152 | 0.281 | 0.003 |
Duolun | 6.123 | 0.04 | 0.587 | 0.334 | −1.416 | −0.143 | 1.62 | 0.01 |
Wengniuteqi | 4.618 | 0.025 | −0.364 | −0.304 | −1.461 | −0.11 | 0.268 | 0.002 |
Chifeng | 4.095 | 0.02 | 0.395 | 0.238 | −1.703 | −0.125 | 1.767 | 0.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Wang, S.; Luo, P.; Zha, X.; Cao, Z.; Lyu, J.; Zhou, M.; He, B.; Nover, D. A Quantitative Analysis of the Influence of Temperature Change on the Extreme Precipitation. Atmosphere 2022, 13, 612. https://doi.org/10.3390/atmos13040612
Zhu W, Wang S, Luo P, Zha X, Cao Z, Lyu J, Zhou M, He B, Nover D. A Quantitative Analysis of the Influence of Temperature Change on the Extreme Precipitation. Atmosphere. 2022; 13(4):612. https://doi.org/10.3390/atmos13040612
Chicago/Turabian StyleZhu, Wei, Shuangtao Wang, Pingping Luo, Xianbao Zha, Zhe Cao, Jiqiang Lyu, Meimei Zhou, Bin He, and Daniel Nover. 2022. "A Quantitative Analysis of the Influence of Temperature Change on the Extreme Precipitation" Atmosphere 13, no. 4: 612. https://doi.org/10.3390/atmos13040612
APA StyleZhu, W., Wang, S., Luo, P., Zha, X., Cao, Z., Lyu, J., Zhou, M., He, B., & Nover, D. (2022). A Quantitative Analysis of the Influence of Temperature Change on the Extreme Precipitation. Atmosphere, 13(4), 612. https://doi.org/10.3390/atmos13040612