Pollution Characteristics and Health Risk Assessment of VOCs in Jinghong
Abstract
:1. Introduction
2. Materials and Methods
2.1. VOCs Sampling
2.2. Sample Collection and Component Analysis
2.3. Quality Assurance and Control
2.4. Analytical Methods
2.4.1. Ozone Formation Potentials (OFP)
2.4.2. HYSPLIT Model
2.4.3. Health Risk Assessment
2.4.4. Data Sources
3. Results and Discussions
3.1. Species Composition Characteristics of VOCs
3.2. Ozone Formation Potentials (OFP) of VOCs
3.3. Source Analysis of VOCs
3.3.1. Ratio of Specific Species
3.3.2. The Long-Range Transport
3.4. Health Risk Assessment of VOCs
Sampling Site | R (Benzene) | HQ | HI | Reference | ||||
---|---|---|---|---|---|---|---|---|
Benzene | Toluene | Ethylbenzene | m/p-Xylene | O-Xylene | ||||
dry season in suburb of Jinghong | 1.52 × 10−5 | 6.48 × 10−2 | 1.90 × 10−4 | 2.68 × 10−4 | 4.48 × 10−3 | 2.00 × 10−3 | 7.18 × 10−2 | This work |
dry season in urban of Jinghong | 9.62 × 10−6 | 4.11 × 10−2 | 3.31 × 10−3 | 1.57 × 10−3 | 3.82 × 10−2 | 2.30 × 10−2 | 1.07 × 10−1 | |
rainy season in suburb of Jinghong | 9.02 × 10−6 | 3.85 × 10−2 | 1.01 × 10−4 | 5.74 × 10−4 | 6.16 × 10−3 | 1.57 × 10−3 | 4.70 × 10−2 | |
rainy season in urban of Jinghong | 1.82 × 10−5 | 7.75 × 10−2 | 5.24 × 10−3 | 3.24 × 10−3 | 2.36 × 10−2 | 9.57 × 10−3 | 1.91 × 10−1 | |
Guangzhou | 5.34 × 10−5 | 2.28 × 10−1 | 3.95 × 10−1 | 4.26 × 10−3 | 3.06 × 10−2 | 2.42 × 10−2 | 2.91 × 10−1 | [32] |
urban area of Chengdu | 6.77 × 10−5 | 2.89 × 10−1 | 2.36 × 10−3 | 3.34 × 10−3 | 1.18 × 10−1 | 3.38 × 10−2 | 4.47 × 10−1 | [34] |
traffic area of Chengdu | 6.98 × 10−5 | 2.98 × 10−1 | 3.09 × 10−03 | 3.19 × 10−3 | 9.08 × 10−2 | 3.38 × 10−2 | 4.29 × 10−1 | |
Beijing | 4.19 × 10−5 | 1.57 × 10−1 | 2.39 × 10−1 | 3.29 × 10−3 | 8.06 × 10−3 | 3.53 × 10−3 | 1.96 × 10−1 | [46] |
residential area of Xiamen | 1.23 × 10−5 | 5.25 × 10−2 | 9.73 × 10−4 | 2.37 × 10−3 | 1.63 × 10−2 | 1.13 × 10−2 | 8.34 × 10−2 | [47] |
industrial area of Xiamen | 3.08 × 10−5 | 1.32 × 10−1 | 4.29 × 10−3 | 7.98 × 10−3 | 5.57 × 10−2 | 4.36 × 10−2 | 2.43 × 10−1 | |
lanzhou | 8.09 × 10−6 | 3.46 × 10−2 | 1.27 × 10−4 | 4.07 × 10−4 | 6.18 × 10−3 | 2.76 × 10−3 | 4.42 × 10−2 | [48] |
Port Moody (Canada) | - | 2.02 × 10−1 | 9.17 × 10−3 | 2.62 × 10−4 | - | - | 2.02 × 10−1 | [49] |
Burnaby South (Canada) | - | 1.51 × 10−1 | 6.29 × 10−3 | 1.32 × 10−4 | - | - | 1.51 × 10−1 | |
Tabriz (Iran) | - | 1.07 × 10−1 | 1.29 × 10−3 | - | - | - | 2.21 × 10−1 | [50] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamal, M.S.; Razzak, S.A.; Hossain, M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Yang, C.T.; Miao, G.; Pi, Y.H.; Xia, Q.P.; Wu, J.L.; Li, Z.; Xiao, J. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem. Eng. J. 2019, 370, 1128–1153. [Google Scholar] [CrossRef]
- Huang, C.; Lou, D.; Hu, Z.Y.; Feng, Q.; Chen, Y.R.; Chen, Y.H.; Tan, P.J.; Yao, D. A PEMS study of the emissions of gaseous pollutants and ultrafine particles from gasoline- and diesel-fueled vehicles. Atmos. Environ. 2013, 77, 703–710. [Google Scholar] [CrossRef]
- Sukul, P.; Schubert, J.K.; Oertel, P.; Kamysek, S.; Taunk, K.; Trefz, P.; Miekisch, W. FEV manoeuvre induced changes in breath VOC compositions: An unconventional view on lung function tests. Sci. Rep. 2016, 17, 28029. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, Q.; Li, Y.; Ning, P.; Tian, S. Influence of volatile organic compounds (VOCs) on pulmonary surfactant monolayers at air-water interface: Implication for the pulmonary health. Colloid. Surf. 2019, 562, 402–408. [Google Scholar] [CrossRef]
- Jiménez-Garza, O.; Guo, L.; Byun, H.M.; Carrieri, M.; Bartolucci, G.B.; Barrón-Vivanco, B.S.; Baccarelli, A.A. Aberrant promoter methylation in genes related to hematopoietic malignancy in workers exposed to a VOC mixture. Toxicol. Appl. Pharmacol. 2018, 339, 65–72. [Google Scholar] [CrossRef]
- Wang, L.W.; Jay, G.S.; Tong, Y.D.; Duan, J.; Gu, Y.F.; Pragati, R.; Qi, L.; Giulia, S.; Urs, B.; Huang, R.J.; et al. Characteristics of wintertime VOCs in urban Beijing: Composition and source apportionment. Atmos. Environ. 2021, 9, 100100. [Google Scholar] [CrossRef]
- Wei, W.; Chen, S.S.; Wang, Y.; Cheng, L.; Wang, X.Q.; Cheng, S.Y. The impacts of VOCs on PM2.5 increasing via their chemical losses estimates: A case study in a typical industrial city of China. Atmos. Environ. 2022, 273, 118978. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, G.; Wang, L.; Zhao, L.; Ji, S.; Qi, M.; Lu, X.; Liu, Z.; Tan, J.; Liu, Y.; et al. Characteristics and Source Apportionment of VOCs in a City with Complex Pollution in China. Aerosol Air Qual. Res. 2020, 20, 2196–2210. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Liu, B.; Li, Y.; Zhang, Y.; Bi, X.; Wu, J.; Song, C.; Dai, Q.; Han, Y.; Ren, G.; et al. Multi-scale volatile organic compound (VOC) source apportionment in Tianjin, China, using a receptor model coupled with 1-hr resolution data. Environ. Pollut. 2020, 265 Pt A, 115023. [Google Scholar] [CrossRef]
- Liu, Y.H.; Wang, H.L.; Jing, S.G.; Peng, Y.Y.; Gao, Y.P.; Yan, R.S.; Wang, Q.; Lou, S.R.; Cheng, T.T.; Huang, C. Strong regional transport of volatile organic compounds (VOCs) during wintertime in Shanghai megacity of China. Atmos. Environ. 2021, 244, 117940. [Google Scholar] [CrossRef]
- Wang, M.; Lu, S.; Shao, M.; Zeng, L.; Zheng, J.; Xie, F.; Lin, H.; Hu, K.; Lu, X. Impact of COVID-19 lockdown on ambient levels and sources of volatile organic compounds (VOCs) in Nanjing, China. Sci. Total Environ. 2021, 757, 143823. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Fu, S.; Gao, S.; Zhang, S.; Che, X.; Wang, Q.; Jiao, Z. Update on volatile organic compound (VOC) source profiles and ozone formation potential in synthetic resins industry in China. Environ. Pollut. 2021, 291, 118253. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Y.L.; Wu, Z.Z.; Luo, S.L.; Song, W.; Wang, X.M. Ozone episodes during and after the 2018 Chinese National Day holidays in Guangzhou: Implications for the control of precursor VOCs. J. Environ. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Wang, R.; Yuan, Z.; Zheng, J.; Li, C.; Huang, Z.; Li, W.; Xie, Y.; Wang, Y.; Yu, K.; Duan, L. Characterization of VOC emissions from construction machinery and river ships in the Pearl River Delta of China. J. Environ. Sci. 2020, 96, 138–150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Zhang, Z.; Lu, S.; Huang, Z.; Li, L. Sources of C₂–C₄ olefins, the most important ozone nonmethane hydrocarbon precursors in the Pearl River Delta region. Sci. Total Environ. 2015, 502, 236–245. [Google Scholar] [CrossRef]
- Monks, P.S.; Granier, C.; Fuzzi, S.; Stohl, A.; Williams, M.L.; Akimoto, H.; Amann, M.; Baklanov, A.; Baltensperger, U.; Bey, I.; et al. Atmospheric composition change–global and regional air quality. Atmos. Environ. 2009, 43, 5268–5350. [Google Scholar] [CrossRef] [Green Version]
- Tai, A.P.; Martin, M.V.; Heald, C.L. Threat to future global food security from climate change and ozone air pollution. Nat. Clim.Chang. 2014, 4, 817–821. [Google Scholar] [CrossRef] [Green Version]
- Agyei, T.; Juráň, S.; Kwakye, K.O.; Šigut, L.; Urban, O.; Marek, M.V. The impact of drought on total ozone flux in a mountain Norway spruce forest. J. For. Sci. 2020, 66, 280–287. [Google Scholar] [CrossRef]
- Agyei, T.; Juráň, S.; Edwards-Jonášová, M.; Fischer, M.; Švik, M.; Komínková, K.; Ofori-Amanfo, K.K.; Marek, M.V.; Grace, J.; Urban, O. The Influence of Ozone on Net Ecosystem Production of a Ryegrass–Clover Mixture under Field Conditions. Atmosphere 2021, 12, 1629. [Google Scholar] [CrossRef]
- Guo, H.; Cheng, H.R.; Ling, Z.H.; Louie, P.K.; Ayoko, G.A. Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta? J. Hazard. Mater. 2011, 188, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xue, L.; Carter, W.; Pei, C.; Chen, T.; Mu, J.; Wang, Y.; Zhang, Q.; Wang, W. Development of ozone reactivity scales for volatile organic compounds in a Chinese megacity. Atmos. Chem. Phys. 2021, 21, 11053–11068. [Google Scholar] [CrossRef]
- Venecek, M.A.; Carter, W.P.L.; Kleeman, M.J. Updating the SAPRC Maximum Incremental Reactivity (MIR) scale for the United States from 1988 to 2010. J. Air Waste Manag. Assoc. 2018, 68, 1301–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Luo, S.; Zhao, W.; Wang, Y.; Zhang, Q.; Qu, C.; Liu, X.; Wen, X. Impacts of Meteorological Factors, VOCs Emissions and Inter-Regional Transport on Summer Ozone Pollution in Yuncheng. Atmosphere 2021, 12, 1661. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, M.; Wang, S.; Wang, Y.; Feng, L.; Wu, K. Air pollutant emission characteristics and HYSPLIT model analysis during heating period in Shenyang, China. Environ. Monit. Assess. 2020, 193, 9. [Google Scholar] [CrossRef]
- Hosseini; Dehshiri, S.S.; Firoozabadi, B.; Afshin, H. A new application of multi-criteria decision making in identifying critical dust sources and comparing three common receptor-based models. Sci. Total Environ. 2022, 808, 152109. [Google Scholar] [CrossRef]
- Gao, Y.Q.; Li, M.; Wan, X.; Zhao, X.W.; Wu, Y.; Liu, X.X.; Li, X. Important contributions of olefins and aromatics to VOCs emissions, chemistry and secondary pollutants formation at an industrial site of central eastern China. Atmos. Environ. 2021, 244, 117927. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, X.; Cheng, S. Characteristics and Source Apportionment of PM2.5 and O3 during Winter of 2013 and 2018 in Beijing. Atmosphere 2020, 11, 1324. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Dai, H.; Jing, S.; Wang, H.; Ma, Y.; Li, L.; Song, W.; Kan, H. VOC characteristics and inhalation health risks in newly renovated residences in Shanghai, China. Sci. Total Environ. 2017, 577, 73–83. [Google Scholar] [CrossRef]
- Liu, Y.; Xiang, F.; Han, X.Y.; Shi, Z.; Wang, C.H.; Huang, Y.; Shi, J.W.; Ning, P. On pollution characteristics and sources apportionment of ambient VOCs in summer and autumn in Kunming. J. Yunnan Univ. 2018, 40, 104–112. (In Chinese) [Google Scholar]
- Li, L.; Li, H.; Wang, X.Z.; Zhang, X.M.; Wen, C. Pollution characteristics and health risk assessment of atmospheric VOCs in the downtown area of Guangzhou, China. Environ. Sci. 2013, 34, 4558–4564. (In Chinese) [Google Scholar]
- Liu, Y.; Song, M.; Liu, X.; Zhang, Y.; Hui, L.; Kong, L.; Zhang, Y.; Zhang, C.; Qu, Y.; An, J.; et al. Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China. Environ. Pollut. 2020, 257, 113599. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Tang, Y.; Fan, Z.Y.; Pu, M.; Zhang, J.L.; Yang, Z.Z.; Wu, D.L. Pollution Characteristics and Health Risk Assessment of Atmospheric VOCs in Chengdu. Environ. Sci. 2018, 39, 576–584. (In Chinese) [Google Scholar]
- Menchaca-Torre, H.L.; Mercado-Hernández, R.; Mendoza-Domínguez, A. Diurnal and seasonal variation of volatile organic compounds in the atmosphere of Monterrey, Mexico. Atmos. Pollut. Res. 2015, 6, 1073–1081. [Google Scholar] [CrossRef]
- Shinji, S.; Ippei, N.; Hiroshi, K. Characteristics of ambient C2–C11 non-methane hydrocarbons in metropolitan Nagoya, Japan. Atmos. Environ. 2009, 43, 4384–4395. [Google Scholar]
- Kumar, A.; Singh, D.; Kumar, K.; Singh, B.B.; Jain, V.K. Distribution of VOCs in urban and rural atmospheres of subtropical India: Temporal variation, source attribution, ratios, OFP and risk assessment. Sci. Total Environ. 2018, 613–614, 492–501. [Google Scholar] [CrossRef]
- Li, C.; Li, Q.; Tong, D.; Wang, Q.; Wu, M.; Sun, B.; Su, G.; Tan, L. Environmental impact and health risk assessment of volatile organic compound emissions during different seasons in Beijing. J. Environ. Sci. 2020, 93, 1–12. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Wu, Z.; Zhang, W.; Liu, K.; Cheng, X.; Zhang, Y.; Li, B.; Chen, Y. Characteristics of atmospheric volatile organic compounds in urban area of Beijing: Variations, photochemical reactivity and source apportionment. J. Environ. Sci. 2020, 95, 190–200. [Google Scholar] [CrossRef]
- Yang, S.; Li, X.; Song, M.; Liu, Y.; Yu, X.; Chen, S.; Lu, S.; Wang, W.; Yang, Y.; Zeng, L.; et al. Characteristics and sources of volatile organic compounds during pollution episodes and clean periods in the Beijing-Tianjin-Hebei region. Sci. Total Environ. 2021, 799, 149491. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Yin, S.S.; Yuan, M.H.; Zhang, R.Q.; Zhang, M.; Yu, S.J.; Li, Y.D. Characteristics and Source Apportionment of Ambient VOCs in Spring in Zhengzhou. Environ. Sci. 2019, 40, 4372–4381. (In Chinese) [Google Scholar]
- Dehghani, M.; Fazlzadeh, M.; Sorooshian, A.; Tabatabaee, H.R.; Miri, M.; Baghani, A.N.; Delikhoon, M.; Mahvi, A.H.; Rashidi, M. Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotoxicol. Environ. Saf. 2018, 155, 133–143. [Google Scholar] [CrossRef]
- Hamid, H.H.A.; Latif, M.T.; Uning, R.; Nadzir, M.S.M.; Khan, M.F.; Ta, G.C.; Kannan, N. Observations of BTEX in the ambient air of Kuala Lumpur by passive sampling. Environ. Monit. Assess. 2020, 192, 342. [Google Scholar] [CrossRef]
- Lyon, D.R.; Alvarez, R.A.; Zavala-Araiza, D.; Brandt, A.R.; Jackson, R.B.; Hamburg, S.P. Aerial Surveys of Elevated Hydrocarbon Emissions from Oil and Gas Production Sites. Environ. Sci. Technol. 2016, 50, 4877–4886. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Lin, C.; Lin, Y.K.; Wang, Y.F.; Weng, W.H.; Kuo, Y.M. Characteristics and determinants of ambient volatile organic compounds in primary schools. Environ. Sci. Process. Impacts 2016, 18, 1458–1468. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mu, Y.; Liu, J.; Mellouki, A. Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China. J. Environ. Sci. 2012, 24, 124–130. [Google Scholar] [CrossRef]
- Xu, H.; Deng, J.J.; Xin, Z.Y.; Chen, J.S. Pollution characteristics and health risk assessment of VOCs in different functional zones of Xiamen. Acta. Sci. Circum. 2015, 35, 2701–2709. (In Chinese) [Google Scholar]
- Jia, C.H.; Mao, X.X.; Huang, T.; Liang, X.X.; Wang, Y.N.; Shen, Y.J.; Jiang, W.Y.H.; Wang, H.Q.; Bai, Z.L.; Ma, M.Q. Non-methane Hydrocarbons (NMHCs) and Their Contribution to Ozone Formation Potential in a Petrochemical Industrialized City, Northwest China. Atmos. Res. 2016, 169, 225–236. [Google Scholar] [CrossRef]
- Xiong, Y.; Bari, M.A.; Xing, Z.; Du, K. Ambient volatile organic compounds (VOCs) in two coastal cities in western Canada: Spatiotemporal variation, source apportionment, and health risk assessment. Sci. Total Environ. 2020, 706, 135970. [Google Scholar] [CrossRef]
- Leila, T.; Zahra, S.; Parvin, S.; Khaled, Z.B.; Mohammad, S.; Yahya, R.; Raana, R.; Siamak, D. Spatiotemporal variation, ozone formation potential and health risk assessment of ambient air VOCs in an industrialized city in Iran. Atmos. Pollut. Res. 2019, 10, 556–563. [Google Scholar]
City | Period | Number of VOCs Species | Concentration of VOCs/(µg·m−3) | Alkanes/(%) | Olefins/(%) | Aromatic Hydrocarbons/(%) | Reference |
---|---|---|---|---|---|---|---|
urban of Jinghong | 2016~2017 | 48 | 144.35 ± 36.15 | 46.03 | 24.58 | 29.39 | This study |
suburbs of Jinghong | 48.21 ± 12.55 | 14.12 | 73.11 | 12.78 | |||
Kunming | 2014 | 35 | 30.22 | 68.58 | 7.78 | 23.64 | [31] |
Guangzhou | 2009 | 31 | 114.50 | 59.97 | 15.18 | 39.24 | [32] |
Beijing | 2016 | 99 | 44.00 | 36.80 | 7.00 | 11.80 | [33] |
Chengdu | 2012 | 59 | 108 ± 52.43 | 47.08 | 11.53 | 44.52 | [34] |
Monterrey (Mexico) | 2011 | 29 | 80.14 | 62.88 | 9.55 | 24.67 | [35] |
Nagoya (Japan) | 2003~2004 | 48 | 62.28 | 50.08 | 9.28 | 40.64 | [36] |
Species | MIR Value | Ozone Formation Potential (μg·m−3) | |||
---|---|---|---|---|---|
DU | DS | RU | RS | ||
Propane | 0.48 | 12.75 | 2.21 | 14.18 | 1.92 |
Isobutane | 1.21 | 8.99 | 0.11 | 7.47 | 0.14 |
N-Butane | 1.02 | 10.64 | 0.22 | 14.03 | 0.06 |
Isopentane | 1.38 | 9.17 | 1.31 | 6.45 | 0.11 |
Pentane | 1.04 | 2.60 | 0.30 | 0.94 | 0.04 |
Cyclopentane | 1.38 | 0.77 | 0.05 | 0.32 | 0.05 |
2,2-Dimethylbutane | 0.82 | 0.10 | 0.01 | 0.3 | 0.02 |
3-Methylpentane | 1.50 | 6.75 | 0.51 | 1.91 | 0.02 |
Methylcyclopentane | 2.80 | 5.26 | 0.49 | 3.16 | 0.04 |
Hexane | 0.98 | 0.94 | 0.11 | 1.27 | 0.54 |
Cyclohexane | 1.28 | 0.72 | 0.09 | 0.58 | 0.20 |
2,4-Dimethylpentane | 1.50 | 1.86 | 0.02 | 0.21 | 0.04 |
2,3-Dimethylpentane | 1.31 | 2.40 | 0.20 | 0.71 | 0.22 |
Methylcyclohexane | 2.80 | 1.48 | 0.10 | 0.38 | 0.20 |
Heptane | 0.81 | 0.55 | 0.06 | 0.03 | 0.11 |
2,2,4-Trimethylpentane | 0.93 | 0.71 | 0.05 | 0.4 | 0.07 |
2,3,4-Trimethylpentane | 1.60 | 0.16 | 0.00 | 0.96 | 0.11 |
2-Methylheptane | 0.96 | 0.63 | 0.04 | 0.34 | 0.06 |
n-Octane | 0.60 | 0.74 | 0.04 | 0.22 | 0.11 |
Nonane | 0.54 | - | - | - | 0.02 |
n-Decane | 0.46 | - | - | - | 0.05 |
n-Undecane | 0.42 | 0.31 | 0.03 | 0.22 | 0.05 |
n-Dodecane | 0.38 | - | - | - | 0.02 |
Total alkanes | 67.55 | 5.95 | 54.08 | 4.20 | |
propylene | 9.40 | 157.26 | 27.68 | 108.47 | 1.78 |
1-Butene | 8.90 | 13.62 | - | 0.48 | 0.88 |
Trans-2-Butene | 10.00 | 9.50 | - | 4 | 0.13 |
Cis-2-Butene | 10.00 | 20.60 | 7.84 | 16.57 | 4.77 |
1-Pentene | 6.20 | 8.68 | 0.00 | 0.89 | 0.16 |
Trans-2-Pentene | 8.80 | 4.95 | 0.34 | 4.05 | 0.05 |
Cis-2-Pentene | 8.80 | 7.88 | 0.00 | 5.78 | 0.59 |
1-Hexene | 4.40 | 4.62 | 1.13 | 3.92 | 0.46 |
Isoprene | 9.10 | 112.39 | 256.62 | 160.52 | 332.15 |
Total olefins | 339.50 | 293.60 | 304.67 | 340.97 | |
Benzene | 0.42 | 0.52 | 0.82 | 0.98 | 0.49 |
Toluene | 2.70 | 44.70 | 2.56 | 70.68 | 1.36 |
Ethylbenzene | 2.70 | 4.24 | 0.72 | 8.74 | 1.55 |
Styrene | 1.95 | 7.48 | 4.36 | 22.25 | 3.97 |
m-p-Xylene | 7.40 | 7.45 | 0.87 | 4.6 | 1.20 |
o-Xylene | 6.50 | 17.01 | 1.48 | 7.09 | 1.16 |
Cumene | 2.20 | 0.90 | 0.09 | 1.56 | 2.85 |
Propylene | 2.10 | 0.49 | 0.08 | 0.55 | 0.34 |
m-Ethyltoluene | 7.20 | 0.61 | 0.04 | 0.55 | 0.20 |
4-Ethyltoluene | 7.20 | 28.10 | 3.88 | 13.37 | 1.08 |
2-Ethyltoluene | 7.20 | 4.86 | 0.67 | 4.15 | 1.08 |
1,3,5-Trimethylbenzene | 10.10 | 2.99 | 0.39 | 1.8 | 0.67 |
1,2,4-Trimethylbenzene | 8.87 | 42.20 | 4.50 | 25.86 | 3.83 |
1,2,3-Trimethylbenzene | 8.90 | 14.63 | 1.76 | 10.38 | 0.96 |
m-Diethylbenzene | 6.45 | 3.34 | - | 4.09 | 2.09 |
p-Diethylbenzene | 6.45 | 1.51 | 5.51 | - | 0.98 |
Total aromatic hydrocarbons | 181.01 | 27.75 | 176.64 | 23.81 | |
Total VOCs | 588.07 | 327.30 | 535.38 | 368.98 |
Characteristic Species Ratio | Value | Source | Reference |
---|---|---|---|
Benzene/Toluene | 0.00–0.20 | solvent usage | [39] |
0.50–0.60 | vehicle emissions | ||
1.05–2.20 | coal emissions | ||
2.50 | biomass burning | ||
Isopentane/n-pentane | 0.56–0.80 | coal emissions | [41] |
1.50–3.00 | liquid gasoline | ||
1.84–4.60 | fuel volatilization | ||
2.93 | motor vehicle exhaust |
Area | Benzene/Toluene | Isopentane/ n-Pentane | Isoprene/TVOCs | M-p-Xylene/Ethylbenzene |
---|---|---|---|---|
DU | 0.09 | 2.66 | 8.45% | 2.44 |
RU | 0.10 | 5.19 | 12.38% | 0.73 |
DS | 2.42 | 3.24 | 59.80% | 1.67 |
RS | 2.70 | 2.10 | 74.10% | 1.07 |
Trajectory | Frequency of Occurrence/ (%) | SO2/ (μg·m−3) | NO2/ (μg·m−3) | CO/ (mg·m−3) | O3/ (μg·m−3) | PM2.5/ (μg·m−3) | PM10/ (μg·m−3) |
---|---|---|---|---|---|---|---|
1 | 48.09 | 6.83 | 13.85 | 0.70 | 36.21 | 20.01 | 39.45 |
2 | 34.65 | 8.90 | 20.08 | 0.81 | 50.84 | 34.65 | 61.78 |
3 | 1.18 | 6.56 | 14.38 | 0.72 | 40.85 | 22.06 | 42.71 |
4 | 13.79 | 6.38 | 13.48 | 0.73 | 29.85 | 19.14 | 37.27 |
5 | 2.29 | 7.89 | 20.82 | 0.78 | 49.65 | 34.45 | 57.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Bao, Y.; Xiang, F.; Wang, Z.; Ren, L.; Pang, X.; Wang, J.; Han, X.; Ning, P. Pollution Characteristics and Health Risk Assessment of VOCs in Jinghong. Atmosphere 2022, 13, 613. https://doi.org/10.3390/atmos13040613
Shi J, Bao Y, Xiang F, Wang Z, Ren L, Pang X, Wang J, Han X, Ning P. Pollution Characteristics and Health Risk Assessment of VOCs in Jinghong. Atmosphere. 2022; 13(4):613. https://doi.org/10.3390/atmos13040613
Chicago/Turabian StyleShi, Jianwu, Yuzhai Bao, Feng Xiang, Zhijun Wang, Liang Ren, Xiaochen Pang, Jian Wang, Xinyu Han, and Ping Ning. 2022. "Pollution Characteristics and Health Risk Assessment of VOCs in Jinghong" Atmosphere 13, no. 4: 613. https://doi.org/10.3390/atmos13040613
APA StyleShi, J., Bao, Y., Xiang, F., Wang, Z., Ren, L., Pang, X., Wang, J., Han, X., & Ning, P. (2022). Pollution Characteristics and Health Risk Assessment of VOCs in Jinghong. Atmosphere, 13(4), 613. https://doi.org/10.3390/atmos13040613