The Contents of Potentially Toxic Elements and Emission Characteristics of PM2.5 in Soil Fugitive Dust around Six Cities of the Yunnan-Guizhou Plateau in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Sample Collection and Processing
2.3. Chemical Analysis
2.4. Enrichment Factor (EF)
2.5. Computational Model of Soil Fugitive Dust Emssion
2.6. Health Risk Assessment
2.7. Data Source for Calculating Soil Fugitive Dust Emission
3. Results and Discussion
3.1. Potentially Toxic Elements Content Characteristics
3.2. Enrichment Factor and Correlation Analysis
3.3. Emission of PM2.5 in Soil Fugitive Dust
3.3.1. Key Parameter Values
3.3.2. Soil Fugitive Dust Emission Characteristics
3.3.3. Uncertainty Analysis
3.4. Health Risk Assessment
3.4.1. Non-Carcinogenic Health Risk Assessment
3.4.2. Carcinogenic Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Contini, D.; Genga, A.; Cesari, D.; Siciliano, M.; Donateo, A.; Bove, M.; Guascito, M. Characterisation and source apportionment of PM10 in an urban background site in Lecce. Atmos. Res. 2010, 95, 40–54. [Google Scholar] [CrossRef]
- Owoade, K.O.; Hopke, P.K.; Olise, F.S.; Adewole, O.O.; Ogundele, L.T.; Fawole, O.G. Source apportionment analyses for fine (PM2.5) and coarse (PM2.5–10) mode particulate matter (PM) measured in an urban area in southwestern Nigeria. Atmos. Pollut. Res. 2016, 7, 843–857. [Google Scholar] [CrossRef]
- Arhami, M.; Hosseini, V.; Shahne, M.Z.; Bigdeli, M.; Lai, A.; Schauer, J.J. Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran. Atmos. Environ. 2017, 153, 70–82. [Google Scholar] [CrossRef]
- Wang, Q.; Bi, X.H.; Wu, J.H.; Zhang, Y.; Feng, Y.C. Heavy metals in urban ambient PM10 and soil background in eight cities around China. Environ. Monit. Assess. 2013, 185, 1473–1482. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wen, H.; Shi, J.S.; Bi, J.R.; Huang, Z.W.; Zhang, B.D.; Zhou, T.; Fu, K.Q.; Chen, Q.L.; Xin, J.Y. Optical and microphysical properties of natural mineral dust and anthropogenic soil dust near dust source regions over northwestern China. Atmos. Chem. Phys. 2017, 18, 2119–2138. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Dong, Z.; Xu, Y.Q.; Yu, F.; Yin, S.S.; Zhang, R.Q.; Tang, X.Y. Characterization of PM10 and PM2.5 Source Profiles of Fugitive Dust in Zhengzhou, China. Aerosol Air Qual. Res. 2018, 18, 314–329. [Google Scholar] [CrossRef] [Green Version]
- Alves, D.D.; Riegel, R.P.; Klauck, C.R.; Ceratti, A.M.; Hansen, J.; Cansi, L.M.; Pozza, S.A.; Quevedo, D.M.; Osório, D.M.M. Source apportionment of metallic elements in urban atmospheric particulate matter and assessment of its water-soluble fraction toxicity. Environ. Sci. Pollut. Res. 2020, 27, 12202–12214. [Google Scholar] [CrossRef]
- Song, H.Q.; Zhang, K.S.; Piao, S.L.; Wan, S.Q. Spatial and temporal variations of spring dust emissions in northern China over the last 30 years. Atmos. Environ. 2016, 126, 117–127. [Google Scholar] [CrossRef]
- Li, T.K.; Bi, X.H.; Dai, Q.L.; Wu, J.H.; Zhang, Y.F.; Feng, Y.C. Optimized approach for developing soil fugitive dust emission inventory in ”2 + 26” Chinese cities. Environ. Pollut. 2021, 285, 117521. [Google Scholar] [CrossRef]
- Song, L.L.; Li, T.K.; Bi, X.H.; Wang, X.H.; Zhang, W.H.; Zhang, Y.F.; Wu, J.H.; Feng, Y.C. Construction and dynamic method of soil fugitive dust emission inventory with high spatial resolution in Beijing-Tianjin-Hebei Region. Res. Environ. Sci. 2021, 34, 1771–1781. (In Chinese) [Google Scholar]
- Woodruff, N.P.; Siddoway, F.H. A Wind Erosion Equation. Soil Sci. Soc. Am. J. 1965, 29, 602–608. [Google Scholar] [CrossRef]
- Panebianco, J.E.; Buschiazzo, D.E. Erosion predictions with the Wind Erosion Equation (WEQ) using different climatic factors. Land Degrad Dev. 2008, 19, 36–44. [Google Scholar] [CrossRef]
- Bao, A.M.; Yang, G.G.H.; Liu, H.H.L.; Liu, Y. Evaluation of wind erosion in Xinjiang based on grid method. Soil Sci. 2012, 177, 69–77. [Google Scholar]
- Mandakh, N.; Tsogtbaatar, J.; Dash, D.; Khudulmur, S. Spatial assessment of soil wind erosion using WEQ approach in Mongolia. J. Geogr. Sci. 2016, 26, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Li, T.K.; Bi, X.H.; Dai, Q.L.; Liu, B.S.; Han, Y.; You, H.Y.; Wang, L.; Zhang, J.Y.; Cheng, Y.; Zhang, Y.C.; et al. Improving spatial resolution of soil fugitive dust emission inventory using RS-GIS technology: An application case in Tianjin, China. Atmos. Environ. 2018, 191, 46–54. [Google Scholar] [CrossRef]
- Cheng, X. Geochemical Behavior and Risk Analysis for Heavy Elements in Soil Profiles with Different Parent Material, Yunnan Province, China. Master’s Thesis, China University of Geosciences, Beijing, China, 2016. (In Chinese). [Google Scholar]
- Peng, M. Heavy Metals in Soil-Crop System from Typical High Geological Background Areas, Southwest China: Transfer Characteristics and Controlling Factors. Master’s Thesis, China University of Geosciences, Beijing, China, 2020. (In Chinese). [Google Scholar]
- Zhang, L.; McKinley, J.; Cooper, M.; Peng, M.; Wang, Q.L.; Song, Y.T.; Cheng, H.X. A regional soil and river sediment geochemical study in Baoshan area, Yunnan province, southwest China. J. Geochem. Explor. 2020, 217, 106557. [Google Scholar] [CrossRef]
- Wang, Q.L.; Song, Y.T.; Wang, C.W.; Xu, R.T.; Peng, M.; Zhou, Y.L.; Han, W. Source identification and spatial distribution of soil heavy metals in Western Yunnan. China Environ. Sci. 2021, 41, 3693–3703. (In Chinese) [Google Scholar]
- Wei, B.G.; Yang, L.S. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Cesari, D.; Contini, D.; Genga, A.; Siciliano, M.; Elefante, C.; Baglivi, F.; Daniele, L. Analysis of raw soils and their re-suspended PM10 fractions: Characterisation of source profiles and enrichment factors. Appl. Geochem. 2012, 27, 1238–1246. [Google Scholar] [CrossRef]
- Ho, K.F.; Wu, K.C.; Niu, X.Y.; Wu, Y.F.; Zhu, C.S.; Wu, F.; Cao, J.J.; Shen, Z.X.; Hsiao, T.C.; Chuang, K.J.; et al. Contributions of local pollution emissions to particle bioreactivity in downwind cities in China during Asian dust periods. Environ. Pollut. 2019, 245, 675–683. [Google Scholar] [CrossRef]
- Pan, Y.P.; Tian, S.L.; Li, X.G.; Sun, Y.; Li, Y.; Wentworth, G.R.; Wang, Y.S. Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions. Sci. Total Environ. 2015, 537, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Wang, M.S.; Cao, J.L.; Gui, C.L.; Liu, Y.P.; He, X.D.; He, Y.C.; Liu, Y. Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo, China. Ecotox. Environ. Safe 2020, 191, 110157. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L.; Lee, K. Soil as a Source of Dust and Implications for Human Health. Adv. Agron. 2003, 80, 1–32. [Google Scholar]
- Kuo, C.Y.; Wong, R.H.; Lin, J.Y.; Lai, J.C.; Lee, H. Accumulation of chromium and nickel metals in lung tumors from lung cancer patients in Taiwan. J. Toxicol. Environ. Heal. A 2006, 69, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Bai, K.J.; Ho, S.C.; Tsai, C.Y.; Chen, J.K.; Lee, C.N.; Lee, K.Y.; Chang, C.C.; Chen, T.T.; Feng, P.H.; Chen, K.Y.; et al. Exposure to PM2.5 is associated with malignant pleural effusion in lung cancer patients. Ecotox. Environ. Safe 2021, 208, 111618. [Google Scholar] [CrossRef]
- Peng, X.; Shi, G.; Liu, G.R.; Xu, J.; Tian, Y.Z.; Zhang, Y.F.; Feng, Y.C.; Russell, A.G. Source apportionment and heavy metal health risk (HMHR) quantification from sources in a southern city in China, using an ME2-HMHR model. Environ. Pollut. 2017, 221, 335–342. [Google Scholar] [CrossRef]
- Dong, S.H.; Xie, Y.; Huangpu, Y.Q.; Shi, X.R.; Yi, R.; Shi, G.L.; Feng, Y.C. Source apportionment and heath risk quantification of heavy metals in PM2.5 in Yangzhou, China. Environ. Sci. 2019, 40, 540–547. (In Chinese) [Google Scholar]
- Wu, Y.M.; Wang, Y.F.; Zhou, Y.J.; Jiao, L.J.; Tian, H.Z. An inventory of atmospheric wind erosion dust emissions of China, 1995~2015. China Environ. Sci. 2019, 39, 908–914. (In Chinese) [Google Scholar]
- Chow, J.C.; Watson, J.G.; Houck, J.E.; Pritchett, L.C.; Rogers, C.F.; Frazier, C.A.; Egami, R.T.; Ball, B.M. A laboratory resuspension chamber to measure fugitive dust size distributions and chemical compositions. Atmos. Environ. 1994, 28, 3463–3481. [Google Scholar] [CrossRef]
- Wang, H.B.; Qiao, B.Q.; Zhang, L.M.; Yang, F.M.; Jiang, X. Characteristics and sources of trace elements in PM2.5 in two megacities in Sichuan Basin of southwest China. Environ. Pollut. 2018, 242, 1557–1586. [Google Scholar] [CrossRef]
- Wang, X.F.; He, S.L.; Chen, S.C.; Zhang, Y.L.; Wang, A.L.; Luo, J.B.; Ye, X.L.; Wu, L.Z.; Xu, P.W.; Cai, G.F.; et al. Spatiotemporal Characteristics and Health Risk Assessment of Heavy Metals in PM2.5 in Zhejiang Province. Int. J. Environ. Res. Public Health 2018, 15, 583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.; Teng, M.F.; Luo, Y.; Zhou, X.L.; Zhang, M.; Sun, W.Z.; Li, Q.L. Human activities and the natural environment have induced changes in the PM2.5 concentrations in Yunnan Province, China, over the past 19 years. Environ. Pollut. 2020, 265, 114878. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhang, Z.Y.; Zheng, N.J.; Luo, L.; Xiao, H.Y.; Xiao, H.W. Chemical characterization and source analysis of water-soluble inorganic ions in PM2.5 from a plateau city of Kunming at different seasons. Atmos. Res. 2020, 234, 104687. [Google Scholar] [CrossRef]
- CSP. Statistical Bureau of Yunnan Province. In Yunnan Statistical Yearbook; China Statistics Press: Beijing, China, 2019. [Google Scholar]
- Han, X.Y.; Li, S.; Li, Z.Z.; Pang, X.C.; Bao, Y.Z.; Shi, J.W.; Ning, P. Concentrations, source characteristics, and health risk assessment of toxic heavy metals in PM2.5 in a plateau city (Kunming) in Southwest China. Int. J. Environ. Res. Public Health 2021, 18, 11004. [Google Scholar] [CrossRef]
- Reimann, C.; Caritat, P.D. Intrinsic flaws of element enrichment factor (EFs) in environmental geochemistry. Environ. Sci. Technol. 2000, 34, 5084–5091. [Google Scholar] [CrossRef]
- Wu, F.Q.; Kong, S.F.; Yan, Q.; Wang, W.; Liu, H.B.; Wu, J.; Zheng, H.; Zheng, S.R.; Cheng, Y.; Niu, Z.Z.; et al. Sub-type source profiles of fine particles for fugitive dust and accumulative health risks of heavy metals: A case study in a fast-developing city of China. Environ. Sci. Pollut. Res. 2020, 27, 16554–16573. [Google Scholar] [CrossRef]
- China Environmental Monitoring Station. Background Values of Soil Elements in China; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Zhou, S.Z.; Yuan, Q.; Li, W.J.; Lu, Y.L.; Zhang, Y.M.; Wang, W.X. Trace metals in atmospheric fine particles in one industrial urban city: Spatial variations, sources, and health implications. J. Environ. Sci. 2014, 26, 205–213. [Google Scholar] [CrossRef]
- Li, B.B.; Huan, Y.H.; Bi, X.H.; Liu, L.Y.; Qin, J.P. Localization of soil wind erosion dust emission factor in Beijing. Environ. Sci. 2020, 41, 2609–2616. (In Chinese) [Google Scholar]
- Cowherd, C.; Axetell, K.; Guenther, C.M.; Jutze, G.A. Development of Emission Factors for Fugitive Dust Sources. Triangle Park, North Carolina: U. S. Environmental Protection Agency, 1974. Available online: https://nepis.epa.gov/Adobe/PDF/2000MC6B.PDF (accessed on 28 March 2022).
- Jia, K.; Yao, Y.J.; Wei, X.Q.; Gao, S.; Jiang, B.; Zhao, X. A review on fractional vegetation cover estimation using remote sensing. Adv. Earth. Sci. 2013, 28, 774–782. (In Chinese) [Google Scholar]
- EPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual; EPA: Washington, DC, USA, 1989. [Google Scholar]
- Musa, A.A.; Hamza, S.M.; Kidak, R. Street dust heavy metal pollution implication on human health in Nicosia, North Cyprus. Environ. Sci. Pollut. Res. 2019, 26, 28993–29002. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, J.S.; Wang, Q.C.; Liang, Z.Z. Heavy metals exposure of children from stairway and sidewalk dust in the smelting district, northeast of China. Atmos. Environ. 2010, 44, 3239–3245. [Google Scholar] [CrossRef]
- Ferreira-Baptista, L.; Miguel, E.D. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.X.; Li, S.S.; Sun, C.Y.; Qi, M.X.; Yu, X.; Zhao, W.J.; Li, X.X. Pollution level and health risk assessment of PM2.5-bound metals in baoding city before and after the heating period. Int. J. Environ. Res. Public Health 2018, 15, 2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, J.J.; Chow, J.J.; Watson, J.G.; Wu, F.; Han, Y.M.; Jin, Z.D.; Shen, Z.X.; An, Z.S. Size-differentiated source profiles for fugitive dust in the Chinese Loess Plateau. Atmos. Environ. 2008, 42, 2261–2275. [Google Scholar] [CrossRef]
- Kong, S.F.; Ji, Y.Q.; Lu, B.; Zhao, X.Y.; Han, B.; Bai, Z.P. Similarities and differences in PM2.5, PM10 and TSP chemical profiles of fugitive dust sources in a coastal oilfield city in China. Aerosol Air Qual. Res. 2014, 14, 2017–2028. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.F.; Lee, S.C.; Chow, J.C.; Watson, J.G. Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong. Atmos. Environ. 2003, 37, 1023–1032. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Kuhns, H.; Etyemezian, V.; Lowenthal, D.H.; Crow, D.; Kohl, S.D.; Engelbrecht, J.P.; Green, M.C. Source profiles for industrial, mobile, and area sources in the Big Bend Regional aerosol visibility and observational study. Chemosphere 2004, 54, 185–208. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Houck, J.E. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 2001, 43, 1141–1151. [Google Scholar] [CrossRef]
- Barcan, V. Nature and origin of multicomponent aerial emissions of the copper-nickel smelter complex. Environ. Int. 2003, 28, 451–456. [Google Scholar] [CrossRef]
- Zhang, J.L.; Qu, M.K.; Chen, J.; Yang, L.F.; Zhao, Y.C.; Huang, B. Meta-analysis of the effects of metal mining on soil heavy metal concentrations in Southwest China. Environ. Sci. 2021, 42, 4414–4421. (In Chinese) [Google Scholar]
- Long, Z.J.; Zhu, H.; Bing, H.J.; Tian, X.; Wang, Z.G.; Wang, X.F.; Wu, Y.H. Contamination, sources and health risk of heavy metals in soil and dust from different functional areas in an industrial city of Panzhihua City, Southwest China. J. Hazard. Mater. 2021, 420, 126638. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.Q.; Li, Y.N.; Tang, Z.Z.; Cai, N.N.; Zhang, N.; Liu, J.F. The heavy metals in indoor and outdoor PM2.5 from coal-fired and non-coal-fired area. Urban Clim. 2021, 40, 101000. [Google Scholar] [CrossRef]
- Mitra, A.P.; Morawska, L.; Sharma, C.; Zhang, J. Chapter two: Methodologies for characterisation of combustion sources and for quantification of their emissions. Chemosphere 2002, 49, 903–922. [Google Scholar] [CrossRef]
- Su, Y.L. Discussion on ecological contral model of rocky desertification in Wenshan prefecture. For. Inventory. Plan. 2019, 44, 82–85. (In Chinese) [Google Scholar]
- Cheng, X.; Huang, Y.; Long, Z.J.; Ni, S.J.; Shi, Z.M.; Zhang, C.J. Characteristics, sources and health risk assessment of trace metals in PM10 in Panzhihua, China. Bull. Environ. Contam. Toxicol. 2017, 98, 76–83. [Google Scholar] [CrossRef]
- Harrison, R.M.; Jones, A.M.; Gietl, J.; Yin, J.X; Green, D.C. Estimation of the contribution of brake dust, tyre wear and eesuspension to non-exhaust traffic particles derived from atmospheric measurements. Environ. Sci. Tech. 2012, 46, 6523–6529. [Google Scholar] [CrossRef]
- Fiala, M.; Hwang, H. Influence of highway pavement on metals in road dust: A case study in Houston, Texas. Water Air Soil Pollut. 2021, 232, 185. [Google Scholar] [CrossRef]
- Han, Y.M.; Du, P.X.; Cao, J.J.; Posmentier, E.S. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci. Total Environ. 2006, 355, 176–186. [Google Scholar]
- Sánchez de la Campa, A.M.; de la Rosa, J.D.; González-Castanedo, Y.; Fernández-Camacho, R.; Alastuey, A.; Querol, X.; Pio, C. high concentrations of heavy metals in PM from ceramic factories of Southern Spain. Atmos. Res. 2010, 96, 633–644. [Google Scholar] [CrossRef]
- Taiwo, A.M.; Harrison, R.M.; Shi, Z.B. A review of receptor modelling of industrially emitted particulate matter. Atmos. Environ. 2014, 97, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.W.; Chen, Y.J.; Chao, S.H.; Cao, H.B.; Zhang, A.C; Yang, Y. Emission control priority of PM2.5-bound heavy metals in different seasons: A comprehensive analysis from health risk perspective. Sci. Total Environ. 2018, 644, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Miao, R.Q.; Yan, Y.F.; Bai, Y.; Deng, A. Assessment of heavy metal contamination of soil in Kunming City, China. Earth Environ 2015, 43, 536–539. (In Chinese) [Google Scholar]
- Chen, J.J.; Zhang, N.M.; Qing, L.; Chen, H.Y. Heavy metal pollution and pesticide residues in soils of Kunming area. J. Ecol. Rural Environ. 2004, 20, 37–40. (In Chinese) [Google Scholar]
- Wang, Y.T.; Guo, G.H.; Zhang, D.G.; Lei, M. An integrated method for source apportionment of heavy metal(loid)s in agricultural soils and model uncertainty analysis. Environ. Pollut. 2021, 276, 116666. [Google Scholar] [CrossRef]
- Apeagyei, E.; Bank, M.S.; Spengler, J.D. Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmos. Environ. 2011, 45, 2310–2323. [Google Scholar] [CrossRef]
- Lin, Y.C.; Li, Y.C.; Amesho, K.T.T.; Shangdiar, S.; Chou, F.F.; Cheng, P.C. Chemical characterization of PM2.5 emissions and atmospheric metallic element concentrations in PM2.5 emitted from mobile source gasoline-fueled vehicles. Sci. Total Environ. 2020, 739, 139942. [Google Scholar] [CrossRef]
- Guo, G.H.; Zhang, D.G.; Wang, Y.T. Source apportionment and source-specific health risk assessment of heavy metals in size-fractionated road dust from a typical mining and smelting area, Gejiu, China. Environ. Sci. Pollut. Res. 2021, 28, 9313–9326. [Google Scholar] [CrossRef]
- Sánchez-Rodas, D.; Sánchez de la Campa, A.M.; de la Rosa, J.D.; Oliveira, V.; Gómez-Ariza, J.L.; Querol, X.; Alastuey, A. Arsenic speciation of atmospheric particulate matter (PM10) in an industrialised urban site in southwestern Spain. Chemosphere 2007, 66, 1485–1493. [Google Scholar] [CrossRef]
- Xu, H.M.; Cao, J.J.; Ho, K.F.; Ding, H.; Han, Y.M.; Wang, G.H.; Chow, J.C.; Watson, J.G.; Khol, S.D.; Qiang, J.; et al. Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in Xi’an, China. Atmos. Environ. 2012, 46, 217–224. [Google Scholar] [CrossRef]
- Zhang, K.; Chai, F.H.; Zheng, Z.L.; Yang, Q.; Zhong, X.C.; Fomba, K.W.; Zhou, G.Z. Size distribution and source of heavy metals in particulate matter on the lead and zinc smelting affected area. J. Environ. Sci. 2018, 71, 188–196. [Google Scholar] [CrossRef]
- Shao, X.; Cheng, H.G.; Li, Q.; Lin, C.Y. Anthropogenic atmospheric emissions of cadmium in China. Atmos. Environ. 2013, 79, 155–160. [Google Scholar] [CrossRef]
- Zhou, X.T.; Strezov, V.; Jiang, Y.J.; Yang, X.X.; Kan, T.; Evans, T. Contamination identification, source apportionment and health risk assessment of trace elements at different fractions of atmospheric particles at iron and steel making areas in China. PLoS ONE 2020, 15, e0230983. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.L.; Sun, T.H.; Han, P.; Li, J. Environmental geochemical mapping and multivariate geostatistical analysis of heavy metals in topsoils of a closed steel smelter: Capital Iron & Steel Factory, Beijing, China. J. Geochem. Explor. 2013, 130, 15–21. [Google Scholar]
- Duan, J.C.; Tan, J.H. Atmospheric heavy metals and arsenic in China: Situation, sources and control policies. Atmos. Environ. 2013, 74, 93–101. [Google Scholar] [CrossRef]
- Xie, J.J.; Yuan, C.G.; Xie, J.; Niu, X.D.; Zhang, X.R.; Zhang, K.G.; Xu, P.Y.; Ma, X.Y.; Lv, X.B. Comparison of arsenic fractions and health risks in PM2.5 before and after coal-gas replacement. Environ. Pollut. 2020, 259, 113881. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.; Xin, J.Y.; Zhang, X.L.; Gong, C.S.; Ma, Y.J.; Wang, Y.S.; Wang, S.G.; Hu, B.; Ren, X.B.; Wang, B.Y. Aerosol optical properties and their impacts on the co–occurrence of surface ozone and particulate matter in Kunming City, on the Yunnan–Guizhou Plateau of China. Atmos. Res. 2022, 266, 105963. [Google Scholar] [CrossRef]
- Farsani, M.H.; Shirmardi, M.; Alavi, N.; Maleki, H.; Sorooshian, A.; Babaei, A.; Asgharnia, H.; Marzouni, B.M.; Goudarzi, G. Evaluation of the relationship between PM10 concentrations and heavy metals during normal and dusty days in Ahvaz, Iran. Aeolian Res. 2018, 33, 12–22. [Google Scholar] [CrossRef]
City | Sample Collection Date | Amount | Sampling Site Type Description |
---|---|---|---|
Baoshan | November 2016 | 12 | Wasteland, farmland, and orchard |
Kunming | May 2014 | 12 | Wasteland, farmland, and orchard |
Wenshan | October 2016 | 11 | Wasteland and farmland |
Honghe | November 2017 | 9 | Bare land, wasteland, and farmland |
Yuxi | May 2015 | 8 | Wasteland and farmland |
Zhaotong | May 2019 | 12 | Wasteland and farmland |
Potentially Toxic Elements | Baoshan | Kunming | Wenshan | Honghe | Yuxi | Zhaotong |
---|---|---|---|---|---|---|
V | 255.02 ± 114.53 | 188.44 ± 132.76 | 232.62 ± 61.58 | 420.17 ± 150.45 | 148.42 ± 25.78 | 85.42 ± 62.23 |
Cr | 113.93 ± 38.11 | 602.30 ± 347.36 | 128.65 ± 31.92 | 84.03 ± 12.11 | 113.71 ± 15.26 | 461.97 ± 206.58 |
Mn | 931.92 ± 373.48 | 790.44 ± 586.79 | 762.45 ± 223.64 | 336.13 ± 180.06 | 1057.54 ± 603.14 | 1050.38 ± 1011.89 |
Co | 43.43 ± 20.43 | 25.26 ± 15.21 | 35.84 ± 15.98 | 84.03 ± 48.09 | 12.98 ± 2.85 | 135.16 ± 62.40 |
Ni | 85.30 ± 45.57 | 395.27 ± 323.92 | 76.51 ± 15.82 | 50.82 ± 18.46 | 12.63 ± 6.32 | 206.10 ± 144.96 |
Cu | 186.23 ± 78.96 | 201.79 ± 168.91 | 244.83 ± 89.24 | 252.10 ± 32.34 | 73.34 ± 10.51 | 173.84 ± 146.66 |
Zn | 304.54 ± 120.25 | 220.31 ± 180.02 | 288.08 ± 69.31 | 2596.64 ± 1223.51 | 357.79 ± 188.40 | 190.51 ± 93.35 |
As | 90.18 ± 47.47 | 61.96 ± 41.24 | 59.01 ± 30.01 | 420.17 ± 213.61 | 12.94 ± 3.59 | 62.89 ± 33.41 |
Cd | 0.75 ± 0.36 | 2.08 ± 1.41 | 0.75 ± 0.21 | 61.62 ± 20.90 | 11.11 ± 7.52 | 28.89 ± 22.73 |
Pb | 63.41 ± 23.69 | 172.54 ± 60.00 | 61.42 ± 11.81 | 2264.71 ± 709.71 | 1617.92 ± 1073.59 | 121.31 ± 70.36 |
City | VCF | C | Iwe (t/hm2·a) | As (km2) | ESi (t/km2) | WSi (t) |
---|---|---|---|---|---|---|
Baoshan | 0.20 ± 0.21 | 0.0044 | 640.21 ± 340.28 | 7675 | 0.0239 ± 0.0297 | 183.51 |
Kunming | 0.42 ± 0.28 | 0.0403 | 681.55 ± 329.77 | 6854 | 0.4866 ± 0.4303 | 3335.00 |
Wenshan | 0.28 ± 0.21 | 0.0033 | 294.80 ± 269.80 | 10,411 | 0.0120 ± 0.0163 | 124.68 |
Honghe | 0.33 ± 0.27 | 0.0325 | 744.22 ± 293.51 | 7979 | 0.3488 ± 0.3230 | 2783.24 |
Yuxi | 0.31 ± 0.26 | 0.0208 | 664.40 ± 326.09 | 3700 | 0.1963 ± 0.1990 | 726.42 |
Zhaotong | 0.24 ± 0.20 | 0.0091 | 674.98 ± 341.81 | 8499 | 0.0650 ± 0.0694 | 552.63 |
All city | 0.29 ± 0.25 | 0.0144 | 593.71 ± 356.07 | 45,118 | 0.1708 ± 0.2887 | 7705.49 |
City | Baoshan | Kunming | Wenshan | Honghe | Yuxi | Zhaotong | All City |
---|---|---|---|---|---|---|---|
r | 0.667 * | 0.787 ** | 0.774 ** | 0.825 ** | 0.794 ** | 0.913 ** | 0.524 ** |
City | V | Cr | Mn | Co | Ni | Cu | Zn | As | Cd | Pb | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|
Baoshan | 46.80 | 20.91 | 171.01 | 7.97 | 15.65 | 34.17 | 55.88 | 16.55 | 0.14 | 11.64 | 380.72 |
Kunming | 628.44 | 2008.67 | 2636.12 | 84.23 | 1318.22 | 672.98 | 734.73 | 206.64 | 6.94 | 575.42 | 8872.39 |
Wenshan | 29.00 | 16.04 | 95.06 | 4.47 | 9.54 | 30.53 | 35.92 | 7.36 | 0.09 | 7.66 | 235.67 |
Honghe | 1169.43 | 233.89 | 935.54 | 233.89 | 141.45 | 701.66 | 7227.07 | 1169.43 | 171.52 | 6303.22 | 18,287.10 |
Yuxi | 107.82 | 82.60 | 768.22 | 9.43 | 9.18 | 53.27 | 259.90 | 9.40 | 8.07 | 1175.3 | 2483.19 |
Zhaotong | 47.21 | 255.30 | 580.47 | 74.7 | 113.9 | 96.07 | 105.28 | 34.76 | 15.97 | 67.04 | 1390.70 |
City | Cr | Co | Ni | As | Cd | CR |
---|---|---|---|---|---|---|
Baoshan | 3.08 × 10−7 | 2.97 × 10−8 | 5.18 × 10−9 | 9.81 × 10−8 | 3.31 × 10−10 | 4.42 × 10−7 |
Kunming | 1.77 × 10−6 | 1.75 × 10−8 | 2.59 × 10−8 | 6.83 × 10−8 | 9.61 × 10−10 | 1.88 × 10−6 |
Wenshan | 3.23 × 10−7 | 2.34 × 10−8 | 3.75 × 10−9 | 6.13 × 10−8 | 2.88 × 10−10 | 4.12 × 10−7 |
Honghe | 2.08 × 10−7 | 6.76 × 10−8 | 3.02 × 10−9 | 4.99 × 10−7 | 2.70 × 10−8 | 8.05 × 10−7 |
Yuxi | 2.72 × 10−7 | 7.72 × 10−9 | 7.72 × 10−10 | 1.23 × 10−8 | 5.62 × 10−9 | 2.99 × 10−7 |
Zhaotong | 1.25 × 10−6 | 8.60 × 10−8 | 1.25 × 10−8 | 6.36 × 10−8 | 1.36 × 10−8 | 1.43 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Pang, X.; Bao, Y.; Han, X.; Zhong, Y.; Wang, J.; Zhao, P.; Xiang, F.; Li, S.; Ning, P. The Contents of Potentially Toxic Elements and Emission Characteristics of PM2.5 in Soil Fugitive Dust around Six Cities of the Yunnan-Guizhou Plateau in China. Atmosphere 2022, 13, 678. https://doi.org/10.3390/atmos13050678
Shi J, Pang X, Bao Y, Han X, Zhong Y, Wang J, Zhao P, Xiang F, Li S, Ning P. The Contents of Potentially Toxic Elements and Emission Characteristics of PM2.5 in Soil Fugitive Dust around Six Cities of the Yunnan-Guizhou Plateau in China. Atmosphere. 2022; 13(5):678. https://doi.org/10.3390/atmos13050678
Chicago/Turabian StyleShi, Jianwu, Xiaochen Pang, Yuzhai Bao, Xinyu Han, Yaoqian Zhong, Jianmin Wang, Pingwei Zhao, Feng Xiang, Shuai Li, and Ping Ning. 2022. "The Contents of Potentially Toxic Elements and Emission Characteristics of PM2.5 in Soil Fugitive Dust around Six Cities of the Yunnan-Guizhou Plateau in China" Atmosphere 13, no. 5: 678. https://doi.org/10.3390/atmos13050678
APA StyleShi, J., Pang, X., Bao, Y., Han, X., Zhong, Y., Wang, J., Zhao, P., Xiang, F., Li, S., & Ning, P. (2022). The Contents of Potentially Toxic Elements and Emission Characteristics of PM2.5 in Soil Fugitive Dust around Six Cities of the Yunnan-Guizhou Plateau in China. Atmosphere, 13(5), 678. https://doi.org/10.3390/atmos13050678