An Observational Analysis of a Persistent Extreme Precipitation Event in the Post-Flood Season over a Tropical Island in China
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.1.1. Rain Gauge Observations from Local Observatory
2.1.2. Radar Observations
2.1.3. Satellite Precipitation Products
2.1.4. Reanalysis Data
2.2. Water Vapor Budget Equations
2.3. Hybrid-Integral Method for Decomposing WVD in a Limited Mesoscale Domain with Complex Flow Fields
3. Synoptic Analysis of a PEP
3.1. Overviews of Synoptic and Convective Environments
3.2. Convective Organization
4. Applications of Decomposed WVD to Precipitation
4.1. Decomposed WVD at Early Stage
4.2. Decomposed WVD at Later Stage
4.3. Signals Associated with the Spatial Evolution of Rain Pattern
5. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf (accessed on 1 August 2021).
- Zhou, T.; Zhang, W.; Zhang, L.; Clark, R.; Qian, C.; Zhang, Q.; Qiu, H.; Jiang, J.; Zhang, X. 2021: A year of unprecedented climate extremes in eastern Asia, North America, and Europe. Adv. Atmos. Sci. 2022. [Google Scholar] [CrossRef]
- Tao, S.Y.; Chen, L.X. A review of recent research on the East Asian summer monsoon in China. In Monsoon Meteorology; Oxford University Press: Oxford, UK, 1987; pp. 60–92. [Google Scholar]
- Zolina, O.; Simmer, C.; Belyaev, K.; Gulev, S.K.; Koltermann, P. Changes in the duration of European wet and dry spells during the last 60 years. J. Clim. 2013, 26, 2022–2047. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Andsager, K.; Easterling, D.R. Longterm trends in extreme precipitation events over the conterminous United States and Canada. J. Clim. 1999, 12, 2515–2527. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.H. Study on the Persistent Heavy Rainfall over the Yangtze River Valley and Huaihe River Basin in 1991; China Meteorological Press: Beijing, China, 1993; 255p. [Google Scholar]
- Chen, Y.; Zhai, P.M. Two types of typical circulation pattern for persistent extreme precipitation in Central–Eastern China. Q. J. R. Meteorol. Soc. 2014, 140, 1467–1478. [Google Scholar] [CrossRef]
- Zou, X.K.; Ren, F.M. Changes in regional heavy rainfall events in China during 1961–2012. Adv. Atmos. Sci. 2015, 32, 704–714. [Google Scholar] [CrossRef]
- Sun, B.; Wang, H.J. Interannual variation of the spring and summer precipitation over the three river source region in China and the associated regimes. J. Clim. 2018, 31, 7441–7457. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P.M.; Liao, Z.; Li, L. Persistent precipitation extremes in the Yangtze River Valley prolonged by opportune configuration among atmospheric teleconnections. Q. J. R. Meteorol. Soc. 2019, 145, 2603–2626. [Google Scholar] [CrossRef]
- Kang, Y.Z.; Peng, X.D.; Wang, S.G.; Dong, C.Q.; Shang, K.Z.; Zhao, Y. Statistical Characteristics and Synoptic Situations of Long-Duration Heavy Rainfall Events Over North China. Earth Space Sci. 2020, 7, e2019EA000923. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.J.; Sun, J.H.; Fu, S.M.; Zhang, Y.C. Typical circulation patterns and associated mechanisms for persistent heavy rainfall events over Yangtze–Huaihe River Valley during 1981–2020. Adv. Atmos. Sci. 2021, 38, 2167–2182. [Google Scholar] [CrossRef]
- Du, H.; Alexander, L.V.; Donat, M.G.; Lippmann, T.; Srivastava, A.; Salinger, J.; Kruger, A.; Choi, G.; He, H.S.; Fujibe, F.; et al. Precipitation from persistent extremes is increasing in most regions and globally. Geophys. Res. Lett. 2019, 46, 6041–6049. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.X.; Furtado, K.; Wu, P.L.; Zhou, T.J.; Chadwich, R.; Marzin, C.; Rostron, J.; Sexton, D. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 2021, 7, eabf2081. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Zhai, P.M. Changes in summer persistent precipitation over the middle–lower reaches of the Yangtze River and associated atmospheric circulation patterns. J. Meteorol. Res. 2021, 35, 393–401. [Google Scholar] [CrossRef]
- Zhu, L.; Meng, Z.; Zhang, F.; Markowski, P.M. The influence of sea- and land-breeze circulations on the diurnal variability of precipitation over a tropical island. Atmos. Chem. Phys. 2017, 17, 13213–13232. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Chen, X.; Bai, L. Relative Roles of Low-Level Wind Speed and Moisture in the Diurnal Cycle of Rainfall over a Tropical Island Under Monsoonal Flows. Geophys. Res. Lett. 2020, 47, e2020GL087467. [Google Scholar] [CrossRef]
- Feng, W.; Fu, S.H.; Wu, Y. Distribution characteristics of low level jet in north-central South China Sea and its formation mechanism. J. Trop. Meteor. 2015, 31, 247–254. (In Chinese) [Google Scholar]
- Feng, W.; Fu, S.H.; Zhao, F.Z. Circulation of extreme rainstorm and its anomalous characteristics during post-flood period of the last decade in Hainan Island. Meteorol. Mon. 2015, 41, 143–152. (In Chinese) [Google Scholar]
- Feng, W.; Zhou, L.L.; Xiao, C.; Fu, S.H. The spatial and temporal characteristics of the autumn flood season rainfall in Hainan Island and its associated circulation features. J. Trop. Meteorol. 2016, 32, 533–545. (In Chinese) [Google Scholar]
- Ma, X.K.; Fu, J.L.; Cao, D.B. Study on physical mechanism of persistent heavy rainfall event in autumn 2008 over Hainan. Meteorol. Mon. 2012, 38, 795–803. (In Chinese) [Google Scholar]
- Trenberth, K.E.; Guiliemot, C.J. Evaluation of the global atmospheric moisture budget as seen from analyses. J. Clim. 1995, 8, 2255–2272. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.J.; Yu, R.C. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res. 2005, 110, D08104. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.J.; Elliott, W.P. Radiosonde-based Northern Hemisphere tropospheric water vapor trends. J. Clim. 2001, 14, 1602–1611. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.; Smith, L. Trends and variability in column-integrated atmospheric water vapor. Clim. Dyn. 2005, 24, 741–758. [Google Scholar] [CrossRef]
- Zhai, P.; Eskridge, R.E. Atmospheric water vapor over China. J. Clim. 1997, 10, 2643–2652. [Google Scholar] [CrossRef]
- Jiang, Z.; Jiang, S.; Shi, Y.; Liu, Z.; Li, W.; Li, L. Impact of moisture source variation on decadal-scale changes of precipitation in North China from 1951 to 2010. J. Geophys. Res. Atmos. 2017, 122, 600–613. [Google Scholar] [CrossRef]
- Ross, R.J.; Elliott, W.P. Tropospheric water vapor climatology and trends over North America: 1973–1993. J. Clim. 1996, 9, 3561–3574. [Google Scholar] [CrossRef] [Green Version]
- Zveryaev, I.I.; Chu, P.S. Recent Climate Changes in Precipitable Water in the Global Tropics as Revealed in National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis. J. Geophys. Res. Atmos. 2003, 108, 4311. [Google Scholar] [CrossRef]
- Gao, S.; Zhai, S.; Chen, B. Water budget and intensity change of tropical cyclones over the western North Pacific. Mon. Weather Rev. 2017, 145, 3009–3023. [Google Scholar] [CrossRef]
- Zhang, M.R.; Meng, Z.Y. Impact of synoptic-scale factors on rainfall forecast in different stages of a persistent heavy rainfall event in South China. J. Geophys. Res. Atmos. 2018, 123, 3574–3593. [Google Scholar] [CrossRef]
- Huang, W.; He, X.; Yang, Z.; Qiu, T.; Wright, J.S.; Wang, B.; Lin, D. Moisture sources for wintertime extreme precipitation events over South China during 1979–2013. J. Geophys. Res. Atmos. 2018, 123, 6690–6712. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhuge, X.; Wang, Y. The forced secondary circulation of the Mei-yu front. Adv. Atmos. Sci. 2020, 37, 766–780. [Google Scholar] [CrossRef]
- Barnes, S.L. A technique for maximizing details in numerical weather map analysis. J. Appl. Meteorol. Climatol. 1964, 3, 396–409. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Xue, M.; Wang, Y.; Huang, H. Mechanisms of secondary convection within a mei-yu frontal mesoscale convective system in eastern China. J. Geophys. Res. Atmos. 2017, 122, 47–64. [Google Scholar] [CrossRef]
- Xue, M.; Luo, X.; Zhu, K.; Sun, Z.; Fei, J. The controlling role of boundary layer inertial oscillations in Meiyu frontal precipitation and its diurnal cycles over China. J. Geophys. Res. Atmos. 2018, 123, 5090–5115. [Google Scholar] [CrossRef]
- Hoskins, B.J.; McIntyre, M.E.; Robertson, A.W. On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 1985, 111, 877–946. [Google Scholar] [CrossRef]
- Hawkins, H.F.; Rosenthal, S.L. On the computation of stream functions from the wind field. Mon. Weather Rev. 1965, 93, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurti, T.N. A diagnostic balance model for studies of weather systems of low and high latitudes, Rossby number less than 1. Mon. Weather Rev. 1968, 96, 197–207. [Google Scholar] [CrossRef]
- Fu, S.M.; Cao, J.; Jiang, X.W.; Sun, J.H. On the variation of divergent flow: An eddy-flux form equation based on the quasi-geostrophic balance and its application. Adv. Atmos. Sci. 2017, 34, 599–612. [Google Scholar] [CrossRef]
- You, C.; Fung, J. Characteristics of the Sea-Breeze Circulation in the Pearl River Delta Region and Its Dynamical Diagnosis. J. Appl. Meteorol. Climatol. 2019, 58, 741–755. [Google Scholar] [CrossRef]
- Ullah, W.; Guojie, W.; Gao, Z.; Tawia Hagan, D.F.; Bhatti, A.S.; Zhua, C. Observed Linkage between Tibetan Plateau Soil Moisture and South Asian Summer Precipitation and the Possible Mechanism. J. Clim. 2020, 34, 361–377. [Google Scholar] [CrossRef]
- Ullah, W.; Wang, G.; Lou, D.; Ullah, S.; Bhatti, A.S.; Ullah, S.; Karim, A.; Hagan, D.F.T.; Ali, G. Large-scale atmospheric circulation patterns associated with extreme monsoon precipitation in Pakistan during 1981–2018. Atmos. Res. 2021, 232, 105489. [Google Scholar] [CrossRef]
- Daley, R. Atmospheric Data Analysis; Cambridge University Press: Cambridge, UK, 1991; p. 457. [Google Scholar]
- Parrish, D.F.; Derber, J.C. The National Meteorological Center’s spectral statistical interpolation analysis system. Mon. Weather Rev. 1992, 20, 1747–1763. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, S.; Xue, M. Background error covariance functions for vector wind analyses using Doppler radar radial-velocity observations. Q. J. R. Meteorol. Soc. 2006, 132, 2887–2904. [Google Scholar] [CrossRef]
- Xu, Q.; Nai, K.; Wei, L. An innovation method for estimating radar radial-velocity observation error and background wind error covariances. Q. J. R. Meteorol. Soc. 2007, 133, 407–415. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P.P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1979 to Present. 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview (accessed on 16 December 2021).
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, D.P.; et al. The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Yanai, M.; Esbensen, S.; Chu, J.H. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci. 1973, 30, 611–627. [Google Scholar] [CrossRef]
- Ninomiya, K.; Kobayashi, C. Precipitation and moisture balance of the Asian summer monsoon in 1991. Part 2: Moisture transport and moisture balance. J. Meteorol. Soc. Jpn. 1999, 77, 77–99. [Google Scholar] [CrossRef] [Green Version]
- Murakami, T. The general circulation and water-vapor balance over the Far East during the rainy season. Geophys. Mag. 1959, 29, 131–171. [Google Scholar]
- Ninomiya, K.; Akiyama, T. The development of the medium-scale disturbance in the Baiu front. J. Meteorol. Soc. Jpn. 1971, 49, 663–672. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air-sea fluxes: Updates and verification for theCOARE3.0 algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Cao, J.; Xu, Q.; Ma, S.; Chen, H. Hybrid Methods for Computing Streamfunction and Velocity Potential for Complex Flow Fields over Mesoscale Domains. Adv. Atmos. Sci. 2021; in press. [Google Scholar] [CrossRef]
- Dimego, G.; Bosart, L. The transformation of tropical storm Agnes into an extratropical cyclone. Part II: Moisture, vorticity and kinetic energy budgets. Mon. Weather Rev. 1982, 110, 412–433. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Cao, J.; Zhao, H.; Zhou, X.; Ran, L. Decomposition of water vapor flux divergence and its application to a blizzard event over Ili Valley in Central Asia during 30 Nov to 1 Dec 2018. Atmos. Res. 2022, 270, 106079. [Google Scholar] [CrossRef]
ERA5 (0.25° × 0.25°) | S-Band Doppler Radar Stations | Key Rain Gauge Stations and Areas | ||||
---|---|---|---|---|---|---|
Variable Name in Product | Temporal Resolution | Name | Location | Name | Location/Domain | |
Precipitation | LSP (Large scale precipitation) | 1 h | Haikou | 110.245° E, 19.9960° N | Haikou | 109.59° E, 18.22° N |
CP (convective precipitation) | 1 h | Sanya | 109.5910° E, 18.228° N | Sanya | 109.59° E, 18.22° N | |
Divergence | d | 1 h | Dongfang | 108.731° E, 19.215° N | the southeast coast | 110–111° E, 18.0–19.0° N |
Geopotential | z | 1 h | Xisha | 112.333° E, 16.833° N | ||
Specific humidity | q | 1 h | Zhanjiang | 110.526° E, 21.012° N | the south coast | 109.5–110° E, 17.5–18.5° N |
Temperature | t | 1 h | Yangjiang | 111.979° E, 105.7656° N | ||
U component of wind | u | 1 h | ||||
V component of wind | V | 1 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Cao, J.; Zhao, W.; Ke, Y.; Li, X. An Observational Analysis of a Persistent Extreme Precipitation Event in the Post-Flood Season over a Tropical Island in China. Atmosphere 2022, 13, 679. https://doi.org/10.3390/atmos13050679
Wu Z, Cao J, Zhao W, Ke Y, Li X. An Observational Analysis of a Persistent Extreme Precipitation Event in the Post-Flood Season over a Tropical Island in China. Atmosphere. 2022; 13(5):679. https://doi.org/10.3390/atmos13050679
Chicago/Turabian StyleWu, Zhiyan, Jie Cao, Wei Zhao, Yuanhui Ke, and Xun Li. 2022. "An Observational Analysis of a Persistent Extreme Precipitation Event in the Post-Flood Season over a Tropical Island in China" Atmosphere 13, no. 5: 679. https://doi.org/10.3390/atmos13050679
APA StyleWu, Z., Cao, J., Zhao, W., Ke, Y., & Li, X. (2022). An Observational Analysis of a Persistent Extreme Precipitation Event in the Post-Flood Season over a Tropical Island in China. Atmosphere, 13(5), 679. https://doi.org/10.3390/atmos13050679