Predicting Atlantic Hurricanes Using Machine Learning
Abstract
:1. Introduction
2. Data and Methods
2.1. Wavelet Spectral Analysis
2.2. Inverse Wavelet Spectral Analysis
2.3. Machine Learning Algorithms for Forecasting Hurricane Activity
2.3.1. Non-Linear Autoregressive eXogenous (NARX) Model
2.3.2. Algorithms for the Estimation of the Following High or Active Phase of Hurricane Activity
- I.
- Use wavelet transform (Equation (2)) to find the periodicities (hurricane activity patterns) for each of the Atlantic hurricane categories analyzed.
- II.
- The decomposition of the hurricane records in time series called “channels” with the periodicities obtained in step (I) can next be obtained using the inverse wavelet (Equation (3)).
- III.
- Selection of lags Q and P in the exogenous input and output data, respectively.
- IV.
- Use a Radial Basis Function (RBF) kernel. The RBF has various forms: (a) Gaussian function, (b) logistic function (or reflected sigmoid function), and (c) inverse quadratic function. We have selected the Gaussian function as RBF. The user may select any of the radial functions and similar results will be obtained.
- V.
- For training, validation, testing and deduction of the hyper-parameters of the model. Use the K-fold cross-validation. Set aside of data. Train the model with the remaining data. Measure the accuracy obtained on the data that we had set aside. K independent training is therefore acquired. The final accuracy will be the average of the previous K accuracies. Note that we are hiding a part of the training set during each iteration. This is applied at the time of training. After these K iterations, we obtain K accuracies that should be similar to each other; this would be an indicator whether the model is working well or not. In this work, we used , but it is possible to vary K between 5 and 10.
- VI.
- Determination of the weight and bias.
- VII.
- Estimation of next high cycle of hurricane activity using Equation (5).
- VIII.
- Computation of a cost function.
- IX.
- Test of the accuracy of the estimate next high cycle of hurricane activity.
- X.
- Test of the cost function. We have used the mean squared error (MSE). If this function was small enough, stop and go to the next step. Otherwise, we change one of the parameters P and/or Q and repeat from step (III) onwards.
- XI.
- Use the wavelet transform to help determine if the periodicities of the estimated high hurricane activity have the same periodicities obtained in step (I). If yes, then with these new data (i.e., with the input data and these new hurricane cycles), go to step (VII) to calculate the next hurricane cycles. Otherwise, repeat step (VI).
2.4. Geospatial Information Mapping
3. Results
3.1. Category 5 Atlantic Hurricanes
3.1.1. Spectral Analysis
3.1.2. Machine Learning Model of Category 5 Atlantic Hurricanes
3.2. Category 4 Atlantic Hurricanes
3.2.1. Spectral Analysis
3.2.2. Machine Learning Model of Category 4 Atlantic Hurricanes
3.3. Category 3 Atlantic Hurricanes
3.3.1. Spectral Analysis
3.3.2. Machine Learning Model of Category 3 Atlantic Hurricanes
3.4. Category 2 Atlantic Hurricanes
3.4.1. Spectral Analysis
3.4.2. Machine Learning Model of Category 2 Atlantic Hurricanes
3.5. Spatial Distribution of Atlantic Hurricanes
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NOAA | National Oceanic and Atmospheric Administration |
ENSO | El Nino-Southern Oscillation |
AMO | Atlantic Multidecadal Oscillation |
WT | wavelet transform |
NARX | Non-linear Autoregressive eXogenous |
LS-SVM | Least-Squares Support-Vector Machines |
ML | Machine Learning |
RBF | radial basis function |
GIS | geographic information system |
GEBCO | General Bathymetric Chart of the Oceans |
NAO | North Atlantic Oscillation |
TSI | total solar irradiance |
References
- Goldenberg, S.B.; Landsea, C.W.; Mestas-Nuez, A.M.; Gray, W.M. The Recent Increase in Atlantic Hurricane Activity: Causes and Implications. Science 2001, 293, 474–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, M.E.; Emanuel, K.A. Atlantic hurricane trends linked to climate change. Eos 2006, 87, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Gray, W.M. Atlantic Seasonal Hurricane Frequency. Part II: Forecasting its Variability. Mon. Weather Rev. 1984, 112, 1669–1683. [Google Scholar] [CrossRef]
- Gray, W.M. Strong Association Between West African Rainfall and U.S. Landfall of Intense Hurricanes. Science 1990, 249, 1251–1256. [Google Scholar] [CrossRef]
- Gray, W.M.; Landsea, C.W.; Mielke, P.W., Jr.; Berry, K.J. Predicting Atlantic Basin Seasonal Tropical Cyclone Activity by 1 August. Weather Forecast. 1993, 8, 73–86. [Google Scholar] [CrossRef]
- Gray, W.M.; Landsea, C.W.; Mielke, P.W., Jr.; Berry, K.J. Predicting Atlantic Basin Seasonal Tropical Cyclone Activity by 1 June. Weather Forecast. 1994, 9, 103–115. [Google Scholar] [CrossRef] [Green Version]
- van den Dool, H.M.; Peng, P.; Johansson, Å.; Chelliah, M.; Shabbar, A.; Saha, S. Seasonal-to-Decadal Predictability and Prediction of North American Climate—The Atlantic Influence. J. Clim. 2006, 19, 6005–6024. [Google Scholar] [CrossRef] [Green Version]
- Klotzbach, P.J.; Gray, W.M. Twenty-five years of Atlantic basin seasonal hurricane forecasts (1984–2008). Geophys. Res. Lett. 2009, 36, L09711. [Google Scholar] [CrossRef] [Green Version]
- Dolan, R.; Davis, R.E. An Intensity Scale for Atlantic Coast Northeast Storms. J. Coast. Res. 1992, 8, 840–853. [Google Scholar]
- Young, I.R.; Zieguer, S.; Babanin, V. Global Trends in Wind Speed and Wave Height. Science 2011, 332, 451–455. [Google Scholar] [CrossRef]
- Cionco, R.G.; Valentin, J.E.; Quaranta, N.E.; Soon, W. Lunar fingerprints in the modulated incoming solar radiation: In situ insolation and latitudinal insolation gradients as two important interpretative metrics for paleoclimatic data records and theoretical climate modeling. New Astron. 2018, 58, 96–106. [Google Scholar] [CrossRef]
- Cionco, R.G.; Soon, W.; Quaranta, N.E. On the calculation of latitudinal insolation gradients throughout the Holocene. Adv. Space Res. 2020, 66, 720–742. [Google Scholar] [CrossRef]
- Fedorov, V.; Frolov, D.; Velasco Herrera, V.M.; Soon, W.; Cionco, R. Role of the Radiation Factor in Global Climatic Events of the Late Holocene. Izv. Atmos. Ocean. Phys. 2021, 57, 1239–1253. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Karl, T.R.; Brooks, H.; Kossin, J.; Lawrimore, J.H.; Arndt, D.; Bosart, L.; Changnon, D.; Cutter, S.L.; Doesken, N.; et al. Monitoring and Understanding Trends in Extreme Storms: State of Knowledge. Bull. Am. Meteorol. Soc. 2012, 94, 499–519. [Google Scholar] [CrossRef]
- Sharma, N.; Ali, M.M. Importance of Ocean Heat Content for Cyclone Studies. Oceanography 2014, 2, 124. [Google Scholar]
- Lin, I.I.; Goni, G.J.; Knaff, J.A.; Forbes, C.; Ali, M.M. Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge. Nat. Hazards 2013, 66, 1481–1500. [Google Scholar] [CrossRef]
- Shay, L.K.; Brewster, J.K. Oceanic heat content variability in the eastern Pacific Ocean for hurricane intensity forecasting. Mon. Weather Rev. 2010, 138, 2110–2131. [Google Scholar] [CrossRef]
- Mainelli, M.; DeMaria, M.; Shay, L.K.; Goni, G. Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Weather Forecast. 2008, 23, 3–16. [Google Scholar] [CrossRef]
- Levitus, S.; Antonov, J.I.; Boyer, T.P.; Baranova, O.K.; García, H.E.; Locarnini, R.A.; Mishonov, A.V.; Reagan, J.R.; Seidov, D.; Yarosh, E.; et al. NCEI Ocean Heat Content, Temperature Anomalies, Salinity Anomalies, Thermosteric Sea Level Anomalies, Halosteric Sea Level Anomalies, and Total Steric Sea Level Anomalies from 1955 to Present Calculated from In Situ Oceanographic Subsurface Profile Data (NCEI Accession 0164586). 2017. Available online: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0164586 (accessed on 12 January 2022). [CrossRef]
- Larson, S.; Lee, S.K.; Wang, C.; Chung, E.S.; Enfield, D. Impacts of non-canonical El Niño patterns on Atlantic hurricane activity. Geophys. Res. Lett. 2012, 39, 1481–1500. [Google Scholar] [CrossRef]
- Patricola, C.M.; Chang, P.; Saravanan, R. Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Niño. Nat. Geosci. 2016, 9, 155–160. [Google Scholar] [CrossRef]
- West, R.; Lopez, H.; Lee, S.K.; Mercer, A.E.; Kim, D.; Foltz, G.R.; Balaguru, K. Seasonality of interbasin SST contributions to Atlantic tropical cyclone activity. Geophys. Res. Lett. 2022, 49, e2021GL096712. [Google Scholar] [CrossRef]
- Dunion, J.P.; Velden, C.S. The Impact of the Saharan Air Layer on Atlantic Tropical Cyclone Activity. Bull. Am. Meteorol. Soc. 2004, 84, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Prospero, J.M.; Nees, R.T. Impact of the North African drought and El Niño on mineral dust in the Barbados trade winds. Nature 1986, 320, 735–738. [Google Scholar] [CrossRef]
- Maring, X.; Li, H.; Savoie, D.; Voss, K.; Prospero, J.M. Dominance of mineral dust in aerosol light-scattering in the North Atlantic trade winds. Nature 1996, 380, 416–419. [Google Scholar]
- Kaufman, Y.J.; Koren, I.; Remer, L.A.; Rosenfeld, D.; Rudich, Y. The Effect of Smoke, Dust, and Pollution Aerosol on Shallow Cloud Development over the Atlantic Ocean. Proc. Natl. Acad. Sci. USA 2005, 2, 124. [Google Scholar] [CrossRef] [Green Version]
- Sassen, K.; DeMott, P.J.; Prospero, J.M.; Poellot, M.R. Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results. Geophys. Res. Lett. 2003, 30, L017371. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Lau, K.M.; Kafatos, M. Contrasting the 2007 and 2005 hurricane seasons: Evidence of possible impacts of Saharan dry air and dust on tropical cyclone activity in the Atlantic basin. Geophys. Res. Lett. 2008, 35, L15405. [Google Scholar] [CrossRef] [Green Version]
- Michaels, P.J.; Knappenberger, P.C.; Davis, R.E. Sea-surface temperatures and tropical cyclones in the Atlantic basin. Geophys. Res. Lett. 2006, 33, L09708. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, L.J.; Goldenberg, S.B. Atlantic Sea Surface Temperatures and Tropical Cyclone Formation. J. Clim. 1998, 33, 578–590. [Google Scholar] [CrossRef] [Green Version]
- Landsea, C.W.; Gray, W.M. The Strong Association between Western Sahelian Monsoon Rainfall and Intense Atlantic Hurricanes. J. Clim. 1992, 5, 1528–1534. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Zhang, W.; Wang, X. Machine Learning in Tropical Cyclone Forecast Modeling: A Review. Atmosphere 2020, 11, 676. [Google Scholar] [CrossRef]
- Asthana, T.; Krim, H.; Sun, X.; Roheda, S.; Xie, L. Atlantic Hurricane Activity Prediction: A Machine Learning Approach. Atmosphere 2021, 12, 455. [Google Scholar] [CrossRef]
- Sun, X.; Xie, L.; Shah, S.U.; Shen, X. A Machine Learning Based Ensemble Forecasting Optimization Algorithm for Preseason Prediction of Atlantic Hurricane Activity. Atmosphere 2021, 12, 522. [Google Scholar] [CrossRef]
- Boussioux, L.; Zeng, C.; Guenais, T.; Bertsimas, D. Hurricane Forecasting: A Novel Multimodal Machine Learning Framework. Weather Forecast. 2022; in press. [Google Scholar] [CrossRef]
- Velasco Herrera, V.M.; Mendoza, B.; Velasco Herrera, G. Reconstruction and prediction of the total solar irradiance: From the Medieval Warm Period to the 21st century. New Astron. 2015, 34, 221–233. [Google Scholar] [CrossRef]
- Velasco Herrera, V.M.; Soon, W.; Legates, D.R. Does Machine Learning reconstruct missing sunspots and forecast a new solar minimum? Adv. Space Res. 2021, 68, 1485–1501. [Google Scholar] [CrossRef]
- Velasco Herrera, V.M.; Soon, W.; Hoyt, D.V.; Muraközy, J. Group Sunspot Numbers: A New Reconstruction of Sunspot Activity Variations from Historical Sunspot Records Using Algorithms from Machine Learning. Sol. Phys. 2022, 297, 1485–1501. [Google Scholar] [CrossRef]
- Velasco Herrera, V.M.; Soon, W.; Pérez-Moreno, C.; Velasco Herrera, G.; Martell-Dubois, R.; Rosique-de la Cruz, L.; Fedorov, V.M.; Cerdeira-Estrada, S.; Bongelli, E.; Zúñiga, E. Past and future of wildfires in Northern Hemisphere is boreal forests. For. Ecol. Manag. 2022, 504, 119859. [Google Scholar] [CrossRef]
- Grossmann, A.; Morlet, J. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 1984, 15, 723–736. [Google Scholar] [CrossRef]
- Soon, W.; Velasco Herrera, V.M.; Cionco, R.G.; Qiu, S.; Baliunas, S.; Egeland, R. Covariations of chromospheric and photometric variability of the young Sun analogue HD 30495: Evidence for and interpretation of mid-term periodicities. Mon. Not. R. Astron. Soc. 2019, 483, 2748–2757. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Torrence, C.; Webster, P.J. Interdecadal Changes in the ENSO-Monsoon System. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef] [Green Version]
- Suykens, J.; Gestel, T.; De Brabanter, J.; De Moor, B.; Vandewalle, J. Least Squares Support Vector Machines; World Scientific Publishing Company: Singapore, 2005; 308p. [Google Scholar]
- Bayes, T. An essay towards solving a problem in the doctrine of chances. Philos. Trans. R. Soc. Lond. 1763, 53, 370–418. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Velasco Herrera, V.M.; Mendoza, B. Assessing the relationship between solar activity and some large scale climatic phenomena. Adv. Space Res. 2008, 42, 866–878. [Google Scholar] [CrossRef]
- Soon, W. Solar Arctic-Mediated Climate Variation on Multidecadal to Centennial Timescales: Empirical Evidence, Mechanistic Explanation, and Testable Consequences. Phys. Geogr. 2009, 30, 144–184. [Google Scholar] [CrossRef]
- Mendoza, E.; Velasco Herrera, V.M.; Velasco-Herrera, G.; Martell, R.; Silva, R.; Escudero, M.; Ocampo-Torres, F.J.; Mariño-Tapia, I. Spectral analysis of sea surface elevations produced by big storms: The case of hurricane Wilma. Reg. Stud. Mar. Sci. 2020, 39, 101390. [Google Scholar] [CrossRef]
- Nakamura, J.; Lall, U.; Kushnir, Y.; Rajagopalan, B. HITS: Hurricane intensity and track simulator with North Atlantic Ocean applications for risk assessment. J. Appl. Meteorol. Climatol. 2015, 54, 1620–1636. [Google Scholar] [CrossRef]
- Nakamura, J.; Lall, U.; Kushnir, Y.; Harr, P.A.; McCreery, K. Early Season Hurricane Risk Assessment: Climate-Conditioned HITS Simulation of North Atlantic Tropical Storm Tracks. J. Appl. Meteorol. Climatol. 2021, 60, 559–575. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, V.M.V.; Martell-Dubois, R.; Soon, W.; Velasco Herrera, G.; Cerdeira-Estrada, S.; Zúñiga, E.; Rosique-de la Cruz, L. Predicting Atlantic Hurricanes Using Machine Learning. Atmosphere 2022, 13, 707. https://doi.org/10.3390/atmos13050707
Herrera VMV, Martell-Dubois R, Soon W, Velasco Herrera G, Cerdeira-Estrada S, Zúñiga E, Rosique-de la Cruz L. Predicting Atlantic Hurricanes Using Machine Learning. Atmosphere. 2022; 13(5):707. https://doi.org/10.3390/atmos13050707
Chicago/Turabian StyleHerrera, Victor Manuel Velasco, Raúl Martell-Dubois, Willie Soon, Graciela Velasco Herrera, Sergio Cerdeira-Estrada, Emmanuel Zúñiga, and Laura Rosique-de la Cruz. 2022. "Predicting Atlantic Hurricanes Using Machine Learning" Atmosphere 13, no. 5: 707. https://doi.org/10.3390/atmos13050707
APA StyleHerrera, V. M. V., Martell-Dubois, R., Soon, W., Velasco Herrera, G., Cerdeira-Estrada, S., Zúñiga, E., & Rosique-de la Cruz, L. (2022). Predicting Atlantic Hurricanes Using Machine Learning. Atmosphere, 13(5), 707. https://doi.org/10.3390/atmos13050707