A Systematic Review of Drought Indices in Tropical Southeast Asia
Abstract
:1. Introduction
- What are the strengths and limitations of drought indices used in tropical Southeast Asia?
- What future research can be expected?
2. Materials and Methods
2.1. Article Identification
2.2. Article Screening
2.3. Inclusion and Data Synthesis
3. Results
3.1. Overview of the Included Records
3.2. Tropical Asia: Characteristics and Phenomena
3.3. Indices to Represent Drought
- is the rainfall of the selected period during the year ;
- is the mean rainfall (long-term);
- σ is selection period of standard deviation.
- is the timescale (months) of the aggregation;
- is the calculation month.
- for P
- is the probability of exceeding a determined value and is given as:
- while the constants are:
- = 2.515517, = 0.802853, = 0.010328,
- = 1.432788, = 0.189269, = 0.001308.
- is the moisture anomaly index (or the Z index).
4. Discussion
5. Conclusions
- (1)
- Greater emphasis on drought indices, especially in terms of sensitivity that can account for the role of reservoirs, and irrigated and rainfed farmland;
- (2)
- Further analysis of drought and climate indices, not only ENSO, but others such as QBO and SWIO, which may also indicate drought in tropical Asia;
- (3)
- Emphasis on index derivation during critical crop growth periods and dry season peaks using phenological observations; and
- (4)
- Use of modeling to assist in index design considering future hydroclimates.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Caesar, J.; Alexander, L.V.; Trewin, B.; Tse-ring, K.; Sorany, L.; Vuniyayawa, V.; Keosavang, N.; Shimana, A.; Htay, M.M.; Karmacharya, J.; et al. Changes in Temperature and Precipitation Extremes over the Indo-Pacific Region from 1971 to 2005: Changes in CLimate Extremes Over The Indo-Pacific Region. Int. J. Climatol. 2011, 31, 791–801. [Google Scholar] [CrossRef]
- Villafuerte, M.Q.; Matsumoto, J. Significant Influences of Global Mean Temperature and ENSO on Extreme Rainfall in Southeast Asia. J. Clim. 2015, 28, 1905–1919. [Google Scholar] [CrossRef]
- Supari; Tangang, F.; Salimun, E.; Aldrian, E.; Sopaheluwakan, A.; Juneng, L. ENSO Modulation of Seasonal Rainfall and Extremes in Indonesia. Clim. Dyn. 2018, 51, 2559–2580. [Google Scholar] [CrossRef]
- United Nations; Economic and Social Commission for Asia and the Pacific. Ready for the Dry Years: Building Resilience to Drought in South-East Asia: With a Focus on Cambodia, Lao People’s Democratic Republic, Myanmar and Viet Nam; United Nations Publication: Bangkok, Thailand, 2019; ISBN 978-92-1-120787-3. [Google Scholar]
- Suhaila, J.; Deni, S.M.; Wan Zin, W.Z.; Jemain, A.A. Spatial Patterns and Trends of Daily Rainfall Regime in Peninsular Malaysia during the Southwest and Northeast Monsoons: 1975–2004. Meteorol. Atmos. Phys. 2010, 110, 1–18. [Google Scholar] [CrossRef]
- Ministry of Environment. Cambodia’s Initial National Communication under UNFCCC; Ministry of Environment publication: Phnom Penh, Cambodia, 2002. Available online: https://unfccc.int/resource/docs/natc/khmnc1.pdf (accessed on 22 December 2021).
- Lao People’s Democratic Republic. National Adaptation Programme of Action To Climate Change. UNDP, 2009. Available online: https://unfccc.int/resource/docs/napa/laos01.pdf (accessed on 21 December 2021).
- Stojanovic, M.; Liberato, M.L.R.; Sorí, R.; Vázquez, M.; Phan-Van, T.; Duongvan, H.; Hoang Cong, T.; Nguyen, P.N.B.; Nieto, R.; Gimeno, L. Trends and Extremes of Drought Episodes in Vietnam Sub-Regions during 1980–2017 at Different Timescales. Water 2020, 12, 813. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; He, B.; Nover, D.; Fan, J.; Yang, G.; Chen, W.; Meng, H.; Liu, C. Floods and Associated Socioeconomic Damages in China over the Last Century. Nat. Hazards 2016, 82, 401–413. [Google Scholar] [CrossRef]
- Steinemann, A.C.; Cavalcanti, L.F.N. Developing Multiple Indicators and Triggers for Drought Plans. J. Water Resour. Plann. Manag. 2006, 132, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar, B. Water Crisis: From Conflict to Cooperation—An Overview. Hydrol. Sci. J. 2011, 56, 531–552. [Google Scholar] [CrossRef]
- D’Arrigo, R.; Wilson, R. El Niño and Indian Ocean Influences on Indonesian Drought: Implications for Forecasting Rainfall and Crop Productivity. Int. J. Climatol. 2008, 28, 611–616. [Google Scholar] [CrossRef]
- Kusumaningtyas, S.D.A.; Aldrian, E. Impact of the June 2013 Riau Province Sumatera Smoke Haze Event on Regional Air Pollution. Environ. Res. Lett. 2016, 11, 075007. [Google Scholar] [CrossRef]
- Jacox, M.G.; Hazen, E.L.; Zaba, K.D.; Rudnick, D.L.; Edwards, C.A.; Moore, A.M.; Bograd, S.J. Impacts of the 2015–2016 El Niño on the California Current System: Early Assessment and Comparison to Past Events. Geophys. Res. Lett. 2016, 43, 7072–7080. [Google Scholar] [CrossRef]
- Tsegai, D.; Ardakanian, R. Capacity Development to Support National Drought Management Policies for Asia-Pacific Countries; UNW-DPC Publisher: Bonn, Germany, 2015; Available online: https://www.droughtmanagement.info/literature/UNW-DPC_Capacity_Development_to_Support_NDMP_Asia-Pacific_Countries_2015.pdf (accessed on 8 January 2022).
- Awani, A. Farmers in Kelantan to Face RM90mln in Losses Due to Drought. 2014. Available online: https://www.astroawani.com/berita-malaysia/farmers-kelantan-face-rm90mln-losses-due-drought-30159 (accessed on 23 December 2021).
- USDA MALAYSIA: El Nino Takes a Bite Out of 2015/16 Palm Oil Production 2016. Available online: https://ipad.fas.usda.gov/highlights/2016/08/malaysia/index.htm#:~:text=MALAYSIA%3A%20El%20Nino%20Takes%20a,most%20countries%20in%20the%20region (accessed on 23 December 2021).
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Fung, K.F.; Huang, Y.F.; Koo, C.H.; Soh, Y.W. Drought Forecasting: A Review of Modelling Approaches 2007–2017. J. Water Clim. Chang. 2020, 11, 771–799. [Google Scholar] [CrossRef]
- Venkatappa, M.; Sasaki, N. Datasets of Drought and Flood Impact on Croplands in Southeast Asia from 1980 to 2019. Data Brief 2021, 38, 107406. [Google Scholar] [CrossRef]
- He, Q.; Chun, K.P.; Tan, M.L.; Dieppois, B.; Juneng, L.; Klaus, J.; Fournier, M.; Massei, N.; Yetemen, O. Tropical Drought Patterns and Their Linkages to Large-scale Climate Variability over Peninsular Malaysia. Hydrol. Processes 2021, 35, e14356. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 88, 105906. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Allan, R.J.; Gergis, J.; D’Arrigo, R.D. Placing the AD 2014–2016 ‘Protracted’ El Niño Episode into a Long-Term Context. Holocene 2020, 30, 90–105. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [Green Version]
- Oliphant, A.J.; Thenkabail, P.S.; Teluguntla, P.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K. Mapping Cropland Extent of Southeast and Northeast Asia Using Multi-Year Time-Series Landsat 30-m Data Using a Random Forest Classifier on the Google Earth Engine Cloud. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 110–124. [Google Scholar] [CrossRef]
- The Future of Food and Agriculture: Trends and Challenges; FAO (Ed.) Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; ISBN 978-92-5-109551-5. Available online: https://www.fao.org/3/i6583e/i6583e.pdf (accessed on 3 January 2022).
- Homdee, T.; Pongput, K.; Kanae, S. A Comparative Performance Analysis of Three Standardized Climatic Drought Indices in the Chi River Basin, Thailand. Agric. Nat. Resour. 2016, 50, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Sridhar, V. A near-term drought assessment using hydrological and climate forecasting in the Mekong River Basin. Int. J. Climatol. 2021, 41, E2497–E2516. [Google Scholar] [CrossRef]
- Khadka, D.; Babel, M.S.; Shrestha, S.; Virdis, S.G.P.; Collins, M. Multivariate and Multi-Temporal Analysis of Meteorological Drought in the Northeast of Thailand. Weather Clim. Extrem. 2021, 34, 100399. [Google Scholar] [CrossRef]
- Le, M.-H.; Kim, H.; Moon, H.; Zhang, R.; Lakshmi, V.; Nguyen, L.-B. Assessment of Drought Conditions over Vietnam Using Standardized Precipitation Evapotranspiration Index, MERRA-2 Re-Analysis, and Dynamic Land Cover. J. Hydrol. Reg. Stud. 2020, 32, 100767. [Google Scholar] [CrossRef]
- Hui-Mean, F.; Yusop, Z.; Yusof, F. Drought Analysis and Water Resource Availability Using Standardised Precipitation Evapotranspiration Index. Atmos. Res. 2018, 201, 102–115. [Google Scholar] [CrossRef]
- Tangang, F.; Chung, J.X.; Juneng, L.; Supari; Salimun, E.; Ngai, S.T.; Jamaluddin, A.F.; Mohd, M.S.F.; Cruz, F.; Narisma, G.; et al. Projected Future Changes in Rainfall in Southeast Asia Based on CORDEX–SEA Multi-Model Simulations. Clim. Dyn. 2020, 55, 1247–1267. [Google Scholar] [CrossRef]
- Räsänen, T.A.; Kummu, M. Spatiotemporal Influences of ENSO on Precipitation and Flood Pulse in the Mekong River Basin. J. Hydrol. 2013, 476, 154–168. [Google Scholar] [CrossRef]
- Tran Anh, D.; Van, S.P.; Dang, T.D.; Hoang, L.P. Downscaling Rainfall Using Deep Learning Long Short-term Memory and Feedforward Neural Network. Int. J. Clim. 2019, 39, 4170–4188. [Google Scholar] [CrossRef]
- Fung, K.F.; Huang, Y.F.; Koo, C.H. Coupling Fuzzy–SVR and Boosting–SVR Models with Wavelet Decomposition for Meteorological Drought Prediction. Environ. Earth Sci 2019, 78, 693. [Google Scholar] [CrossRef]
- Suroso; Nadhilah, D.; Ardiansyah; Aldrian, E. Drought Detection in Java Island Based on Standardized Precipitation and Evapotranspiration Index (SPEI). J. Water Clim. Chang. 2021, 12, 2734–2752. [Google Scholar] [CrossRef]
- Stuecker, M.F.; Tigchelaar, M.; Kantar, M.B. Climate Variability Impacts on Rice Production in the Philippines. PLoS ONE 2018, 13, e0201426. [Google Scholar] [CrossRef] [PubMed]
- Daud, N.R.; Akhir, M.F.; Muslim, A.M. Dynamic of ENSO towards Upwelling and Thermal Front Zone in the East Coast of Peninsular Malaysia. Acta Oceanol. Sin. 2019, 38, 48–60. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, H.; Klotzbach, P.J.; Wang, C.; Raga, G.B.; Chen, S. Possible Influence of Tropical Indian Ocean Sea Surface Temperature on the Proportion of Rapidly Intensifying Western North Pacific Tropical Cyclones during the Extended Boreal Summer. J. Clim. 2020, 33, 9129–9143. [Google Scholar] [CrossRef]
- Baldysz, Z.; Nykiel, G.; Latos, B.; Baranowski, D.B.; Figurski, M. Interannual Variability of the GNSS Precipitable Water Vapor in the Global Tropics. Atmosphere 2021, 12, 1698. [Google Scholar] [CrossRef]
- Svoboda, M.D.; Fuchs, B.A.; Integrated Drought Management Programme; World Meteorological Organization; Global Water Partnership; University of Nebraska—Lincoln; National Drought Mitigation Center. Handbook of Drought Indicators and Indices; World Meteorological Organization: Geneva, Switzerland, 2016; ISBN 978-92-63-11173-9. [Google Scholar]
- Daniel, C.E.; Thomas, B.M. Characteristics of 20th Century Drought in the United States at Multiple Time Scales; Atmospheric Science Paper; Climatology Report; Department of Atmospheric Science, Colorado State University: Fort Collins, CO, USA, 1997; Volume 97–2. [Google Scholar]
- Vicente-Serrano, S.M.; Van der Schrier, G.; Beguería, S.; Azorin-Molina, C.; Lopez-Moreno, J.-I. Contribution of Precipitation and Reference Evapotranspiration to Drought Indices under Different Climates. J. Hydrol. 2015, 526, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, E.A.; Uddameri, V. Standardized Precipitation Evaporation Index (SPEI)-Based Drought Assessment in Semi-Arid South Texas. Environ. Earth Sci 2014, 71, 2491–2501. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Function With Formuas, Graphs, and Mathematical Tables; Applied Matematic Series; U.S. Government Printing Office: Washington, DC, USA, 1964.
- Byakatonda, J.; Parida, B.P.; Kenabatho, P.K.; Moalafhi, D.B. Influence of Climate Variability and Length of Rainy Season on Crop Yields in Semiarid Botswana. Agric. For. Meteorol. 2018, 248, 130–144. [Google Scholar] [CrossRef]
- Palmer, W.C. Keeping Track of Crop Moisture Conditions, Nationwide: The New Crop Moisture Index. Weatherwise 1968, 21, 156–161. [Google Scholar] [CrossRef]
- Alley, W.M. The Palmer Drought Severity Index: Limitations and Asumptions. J. Clim. Appl. Meteorl. 1984, 23, 1101–1109. [Google Scholar] [CrossRef] [Green Version]
- Wells, N.; Goddard, S.; Hayes, M.J. A Self-Calibrating Palmer Drought Severity Index. J. Clim. 2004, 17, 17. [Google Scholar] [CrossRef]
- Burke, E.J.; Brown, S.J.; Christidis, N. Modeling the Recent Evolution of Global Drought and Projections for the Twenty-First Century with the Hadley Centre Climate Model. J. Hydrometeorol. 2006, 7, 1113–1125. [Google Scholar] [CrossRef]
- Hayes, M.J.; Svoboda, M.D.; Wilhite, D.A.; Vanyarkho, O.V. Monitoring the 1996 Drought Using the Standardized Precipitation Index. Drought Mitig. Cent. Fac. Publ. 1999, 31, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Meteorological Drought; Research Paper No. 45; U.S. Weather Bureau: Washington, DC, USA, 1965.
- Guttman, N.B. Comparing the Palmer Drought Index and the Standardized Precipitation Index. J. Am. Water Resour. Assoc. 1998, 34, 113–121. [Google Scholar] [CrossRef]
- Yuan, X.; Wood, E.F. Multimodel Seasonal Forecasting of Global Drought Onset. Geophys. Res. Lett. 2013, 40, 4900–4905. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A. A Nonparametric Multivariate Multi-Index Drought Monitoring Framework. J. Hydrometeorol. 2014, 15, 89–101. [Google Scholar] [CrossRef]
- Trenberth, K.E. El Niño Southern Oscillation (ENSO). In Encyclopedia of Ocean Sciences; Elsevier: Amsterdam, The Netherlands, 2019; pp. 420–432. ISBN 978-0-12-813082-7. [Google Scholar]
- Duan, W.; He, B.; Takara, K.; Luo, P.; Hu, M.; Alias, N.E.; Nover, D. Changes of Precipitation Amounts and Extremes over Japan between 1901 and 2012 and Their Connection to Climate Indices. Clim. Dyn. 2015, 45, 2273–2292. [Google Scholar] [CrossRef]
- Zheleznova, I. Atmospheric Circulation Remote Response during Two Types of El Niño in Changing Climate. Geophys. Res. Abstr. 2017, 19, EGU2017-11984. Available online: https://meetingorganizer.copernicus.org/EGU2017/EGU2017-11984.pdf (accessed on 10 January 2022).
- Wang, C.; Deser, C.; Yu, J.-Y.; DiNezio, P.; Clement, A. El Niño and Southern Oscillation (ENSO): A Review. In Coral Reefs of the Eastern Tropical Pacific; Glynn, P.W., Manzello, D.P., Enochs, I.C., Eds.; Coral Reefs of the World; Springer: Dordrecht, The Netherlands, 2017; Volume 8, pp. 85–106. ISBN 978-94-017-7498-7. [Google Scholar]
- Chiang, J.C.H.; Sobel, A.H. Tropical Tropospheric Temperature Variations Caused by ENSO and Their Influence on the Remote Tropical Climate. J. Clim. 2002, 15, 16. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Li, Z.; Yu, J.-Y.; Hu, X.; Dong, W.; He, S. El Niño–Southern Oscillation and Its Impact in the Changing Climate. Natl. Sci. Rev. 2018, 5, 840–857. [Google Scholar] [CrossRef]
- Alexander, M.A. The Atmospheric Bridge: The Influence of ENSO Teleconnections on Air–Sea Interaction over the Global Oceans. J. Clim. 2002, 15, 27. [Google Scholar] [CrossRef]
- Klein, S.A.; Soden, B.J.; Lau, N.-C. Remote Sea Surface Temperature Variations during ENSO: Evidence for a Tropical Atmospheric Bridge. J. Clim. 1999, 12, 16. [Google Scholar] [CrossRef] [Green Version]
- Lau, N.-C.; Leetmaa, A.; Nath, M.J. Attribution of Atmospheric Variations in the 1997–2003 Period to SST Anomalies in the Pacific and Indian Ocean Basins. J. Clim. 2006, 19, 3607–3628. [Google Scholar] [CrossRef]
- Archer, E.; Landman, W.; Malherbe, J.; Tadross, M.; Pretorius, S. South Africa’s Winter Rainfall Region Drought: A Region in Transition? Clim. Risk Manag. 2019, 25, 100188. [Google Scholar] [CrossRef]
- Mbiriri, M.; Mukwada, G.; Manatsa, D. Influence of Altitude on the Spatiotemporal Variations of Meteorological Droughts in Mountain Regions of the Free State Province, South Africa (1960–2013). Adv. Meteorol. 2018, 2018, 5206151. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.; Miller, J.; Künne, A.; Kralisch, S. Using Soil-Moisture Drought Indices to Evaluate Key Indicators of Agricultural Drought in Semi-Arid Mediterranean Southern Africa. Sci. Total Environ. 2022, 812, 152464. [Google Scholar] [CrossRef]
Inclusion | Exclusion |
---|---|
Indexed only in Scopus | Not indexed in Scopus |
Published in 2000–2021 | Published before 2000 or after November 2021 |
Language: English | Language: non-English |
Document type: peer-reviewed journal articles | Review papers; book chapters; editorials; letters; proceedings; unpublished, non-peer-reviewed documents; in press. |
Focused on three drought indices (SPI, SPEI, and PDSI) | Focused on other indices |
No | Country | Number of Publications |
---|---|---|
1 | Viet Nam | 5 |
2 | Malaysia | 4 |
3 | Thailand | 3 |
4 | Indonesia | 2 |
5 | Myanmar, Cambodia, Philippines, Brunei Darussalam, and Lao | 0 |
Drought Category | PDSI Value | SPEI Value | SPI Value |
---|---|---|---|
No drought | >−1 | >−0.5 | −0.99~0.99 |
Mild drought | −1~−2 | −0.5~−1 | 0~−0.99 |
Moderate drought | −2~−3 | −1~−1.5 | −1.00~−1.49 |
Severe drought | −3~−4 | −1.5~−2 | −1.50~−1.99 |
Extreme drought | <−4 | <−2 | <−2 |
Recorded Dry Months | |||
---|---|---|---|
Yes | No | ||
Index indicated dry months | Yes | a (hit) | b (false alarm) |
No | c (missed) | d (corrective negative) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaki, M.K.; Noda, K. A Systematic Review of Drought Indices in Tropical Southeast Asia. Atmosphere 2022, 13, 833. https://doi.org/10.3390/atmos13050833
Zaki MK, Noda K. A Systematic Review of Drought Indices in Tropical Southeast Asia. Atmosphere. 2022; 13(5):833. https://doi.org/10.3390/atmos13050833
Chicago/Turabian StyleZaki, Muhamad Khoiru, and Keigo Noda. 2022. "A Systematic Review of Drought Indices in Tropical Southeast Asia" Atmosphere 13, no. 5: 833. https://doi.org/10.3390/atmos13050833
APA StyleZaki, M. K., & Noda, K. (2022). A Systematic Review of Drought Indices in Tropical Southeast Asia. Atmosphere, 13(5), 833. https://doi.org/10.3390/atmos13050833