Prediction of Emission Reduction Potential from Road Diesel Vehicles in the Beijing–Tianjin–Hebei (BTH) Region, China
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Estimation of Vehicular Emission
3.1.1. Vehicle Category
3.1.2. Vehicle Population and VKT
3.1.3. Emission Factors
3.2. Definition of Scenarios
3.3. Prediction of Future Diesel Vehicular Emissions
4. Results and Discussion
4.1. Prediction of Pollutant Emissions from Diesel Vehicles
4.1.1. Diesel Vehicle Emissions under the BAU Scenario
4.1.2. Diesel Vehicle Emissions under Policy Scenario
4.2. Emission Reduction Potential of Diesel Vehicles in the BTH Region
4.2.1. Emission Reduction Potential under Different Reduction Scenarios
4.2.2. Emission Reduction Potential of Different Types of Vehicles
4.3. Comparison with Other Studies and Uncertainty Analysis
4.3.1. Comparison with Other Studies
4.3.2. Uncertainty Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- China Mobile Source Environmental Management Annual Report. Available online: http://www.mee.gov.cn/hjzl/sthjzk/ydyhjgl/201909/P020190905586230826402.pdf (accessed on 25 February 2022). (In Chinese)
- Song, C.B.; Ma, C.; Zhang, Y.J.; Wang, T.; Wu, L.; Peng, W.; Yan, L.; Li, Q.; Zhang, J.S.; Dai, Q.L.; et al. Heavy-duty diesel vehicles dominate vehicle emissions in a tunnel study in northern China. Sci. Total Environ. 2018, 637, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dallmann, T.R.; May, A.A.; Presto, A. Seasonal and Long-Term Trend of on-Road Gasoline and Diesel Vehicle Emission Factors Measured in Traffic Tunnels. Appl. Sci. 2020, 10, 2458. [Google Scholar] [CrossRef] [Green Version]
- He, Y.X.; Chang, Y.H.; Zhang, H.Y.; Guo, S.X.; Bai, Y.J.; Gao, S.; Guo, Z.B. Emission characteristics of particulate emitted by motor vehicles in Nanjing based on PM2.5 sampling in tunnel. Acta Sci. Circumst. 2021, 41, 4430–4438. (In Chinese) [Google Scholar]
- Chong, H.S.; Park, Y.; Kwon, S. Analysis of real driving gaseous emissions from light-duty diesel vehicles. Transp. Res. Part D 2018, 65, 485–499. [Google Scholar] [CrossRef]
- Yang, Z.W.; Liu, Y.; Wu, L.; Martinet, S.; Zhang, Y.; Andre, M.; Mao, H.J. Real-world gaseous emission characteristics of Euro 6b light-duty gasoline- and diesel-fueled vehicles. Transp. Res. Part D 2020, 78, 102215. [Google Scholar] [CrossRef]
- Shen, X.B.; Lv, T.T.; Zhang, X.; Cao, X.Y.; Li, X.; Wu, B.B.; Yao, X.L.; Shi, Y.; Zhou, Q.; Chen, X.; et al. Real-world emission characteristics of black carbon emitted by on-road China IV and China V diesel trucks. Sci. Total Environ. 2021, 799, 149435. [Google Scholar] [CrossRef]
- McCaffery, C.; Zhu, H.W.; Tang, T.B.; Li, C.G.; Karavalakis, G.; Cao, S.; Oshinuga, A.; Burnette, B.; Johnson, K.C.; Durbin, T.D. Real-world NOX emissions from heavy-duty diesel, natural gas, and diesel hybrid electric vehicles of different vocations on California roadways. Sci. Total Environ. 2021, 784, 147224. [Google Scholar] [CrossRef]
- Huang, Y.H.; Yam, Y.S.; Lee, C.K.; Organ, B.; Zhou, J.L.; Surawski, N.C.; Chan, E.F.; Hong, G. Tackling nitric oxide emissions from dominant diesel vehicle models using on-road remote sensing technology. Environ. Pollut. 2018, 243, 1177–1185. [Google Scholar] [CrossRef]
- Bernard, Y.; Tietge, U.; German, J.; Muncrief, R. Determination of Real-World Emissions from Passenger Vehicles Using Remote Sensing Data; The Real Urban Emissions Initiative: London, UK, 2018. [Google Scholar]
- Hao, L.; Yin, H.; Wang, J.; Wang, X.; Ge, Y. Remote sensing of NO emission from light-duty diesel vehicle. Atmos. Environ. 2020, 242, 117799. [Google Scholar] [CrossRef]
- McDonald, B.C.; McKeen, S.A.; Cui, Y.Y.; Ahmadov, R.; Kim, S.W.; Frost, G.J.; Pollack, I.B.; Peischl, J.; Ryerson, T.B.; Holloway, J.S.; et al. Modeling Ozone in the Eastern U.S. using a Fuel-Based Mobile Source Emissions Inventory. Environ. Sci. Technol. 2018, 52, 7360–7370. [Google Scholar] [CrossRef]
- Singh, N.; Mishra, T.; Banerjee, R. Emission inventory for road transport in India in 2020: Framework and post facto policy impact assessment. Environ. Sci. Pollut. Res. 2021, 29, 20844–20863. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Kim, H. Developing a Traffic Model to Estimate Vehicle Emissions: An Application in Seoul, Korea. Sustainability 2021, 13, 9761. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Y.; Zhao, B.; Wu, X.; Shu, J.; Hao, J. City-specific vehicle emission control strategies to achieve stringent emission reduction targets in China’s Yangtze River Delta region. J. Environ. Sci. 2017, 51, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liu, Z.; You, X.; Huang, Y. Emission and Characteristics of Vehicle Exhausts in Changsha-Zhuzhou-Xiangtan Area of Hunan Province. Environ Sci. Tech. 2016, 39, 167–173. (In Chinese) [Google Scholar]
- Yun, W. Alternative Fuel (Natural Gas) for Motor Vehicles vs. PM2.5 in Guanzhong Area Impact and Emission Reduction Analysis; Chang’an University: Xi’an, China, 2015. (In Chinese) [Google Scholar]
- Gu, X.; Yin, S.; Lu, X.; Zhang, H.; Wang, L.; Bai, L.; Wang, C.; Zhang, R.; Yuan, M. Recent development of a refined multiple air pollutant emission inventory of vehicles in the Central Plains of China. J. Environ. Sci. 2019, 84, 80–96. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lv, C.; Yang, N.; Liu, H.; Liu, Z. A study of high temporal-spatial resolution greenhouse gas emissions inventory for on-road vehicles based on traffic speed-flow model: A case of Beijing. J. Clean. Prod. 2020, 277, 122419. [Google Scholar] [CrossRef]
- Sun, S.; Sun, L.; Liu, G.; Zou, C.; Wang, Y.; Wu, L.; Mao, H. Developing a vehicle emission inventory with high temporal-spatial resolution in Tianjin, China. Sci. Total Environ. 2021, 776, 145873. [Google Scholar] [CrossRef]
- Song, H.; Deng, S.X.; Lu, Z.Z.; Li, J.H.; Ba, L.M.; Wang, J.F.; Sun, Z.G.; Li, G.H.; Jiang, C.; Hao, Y.Z. Scenario analysis of vehicular emission abatement procedures in Xi’an, China. Environ. Pollut. 2021, 269, 116187. [Google Scholar] [CrossRef]
- Li, F.; Zhuang, J.; Cheng, X.; Li, M. Investigation and Prediction of Heavy-Duty Diesel Passenger Bus Emissions in Hainan Using a COPERT Model. Atmosphere 2019, 10, 106. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Tie, X.; Yu, Y.; Zhao, S.; Li, G.; Liu, S.; Zhang, T.; Dai, W. Impact of the Emission Control of Diesel Vehicles on Black Carbon (BC) Concentrations over China. Atmosphere 2020, 11, 696. [Google Scholar] [CrossRef]
- Xue, Y.; Wu, T.; Cui, Y.; Gong, B.; Li, X.; Qin, X.; Cao, X.; Liu, X.; Ai, Y.; Han, J.; et al. Energy consumption and pollutant emission of diesel-fired combustion from 2009 to 2018 in Beijing, China. J. Environ. Manag. 2021, 285, 112137. [Google Scholar] [CrossRef] [PubMed]
- 2019 The China Statistical Yearbook. Available online: http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm (accessed on 25 February 2022). (In Chinese)
- Report on Air Quality Status of 74 Cities in April 2018. Available online: http://www.mee.gov.cn/hjzl/dqhj/cskqzlzkyb/201806/P020180608504987081400.pdf (accessed on 25 February 2022). (In Chinese)
- Technical Guide for Compiling Air Pollutant Emission List of Road Motor Vehicles. Available online: http://www.mee.gov.cn/gkml/hbb/bgg/201501/W020150107594587831090.pdf (accessed on 25 February 2022). (In Chinese)
- Technical Specifications for Safety of Power-Driven Vehicles Operating on Roads (GB7258-2017). Available online: http://jtgl.beijing.gov.cn/jgj/resource/cms/2018/02/2018020216122563362.pdf (accessed on 25 February 2022). (In Chinese)
- Road Traffic Management—Types of Motor Vehicles (GA802-2019). Available online: http://jjzd.yiyang.gov.cn/uploadfiles/202003/20200310142619634001.pdf (accessed on 25 February 2022). (In Chinese)
- Qiu, F.M. Energy Conservation and Emission Reduction Potential of Road Transportation Sector and Its Path Based on COPERT Model: A Case Study of Beijing-Tianjin-Hebei Region; Tianjin University: Tianjin, China, 2016. (In Chinese) [Google Scholar]
- Guo, X.R.; Fu, L.W.; Ji, M.S.; Lang, J.L.; Chen, D.S.; Cheng, S.Y. Scenario analysis to vehicular emission reduction in Beijing-Tianjin-Hebei (BTH) region, China. Environ. Pollut. 2016, 216, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Wang, H.; Ouyang, M.; Cheng, F. Vehicle survival patterns in China. Sci. China Technol. Sci. 2011, 54, 625–629. [Google Scholar] [CrossRef]
- Rith, M.; Soliman, J.; Fillone, A.; Biona, J.B.M.; Lopez, N.S. Analysis of Vehicle Survival Rates for Metro-Manila. In Proceedings of the 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Baguio, Philippines, 29 November 2018; pp. 1–4. [Google Scholar]
- Liu, Q. Study on emission characteristics of motor vehicle pollutants in Honghe Prefecture. Environ. Sci. Guide 2020, 39, 79–83. (In Chinses) [Google Scholar]
- Lv, W.; Hu, Y.; Li, E.; Liu, H.; Pan, H.; Ji, S.; Hayat, T.; Alsaedi, A.; Ahmad, B. Evaluation of vehicle emission in Yunnan province from 2003 to 2015. J. Clean. Prod. 2019, 207, 814–825. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Hu, S. Study on characteristics and share rate of Vehicle exhaust emission in Hefei. J. Hefei Univ. Technol. 2018, 41, 539–544. (In Chinese) [Google Scholar]
- Ou, S.; Yu, R.; Lin, Z.; Ren, H.; He, X.; Przesmitzki, S.; Bouchard, J. Intensity and daily pattern of passenger vehicle use by region and class in China: Estimation and implications for energy use and electrification. Mitig. Adapt. Strateg. Glob. Change 2020, 25, 307–327. [Google Scholar] [CrossRef]
- Sun, S.; Jin, J.; Lv, J.; Sun, L.; Zou, C.; Liu, Y.; Liu, G.; Wang, T.; Wang, L.; Mao, H. Establish vehicle emission inventory based on refined annual mileage. China Environ. Sci. 2020, 40, 2018–2029. (In Chinese) [Google Scholar]
- Lang, J.; Cheng, S.; Wei, W.; Zhou, Y.; Wei, X.; Chen, D. A study on the trends of vehicular emissions in the Beijing–Tianjin–Hebei (BTH) region, China. Atmos. Environ. 2012, 62, 605–614. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, F.; Xie, F. Study on Vehicle emission inventory based on COPERT IV model: A case study of Nanjing. Anhui Agric. Sci. Bull. 2017, 23, 96–97. (In Chinese) [Google Scholar]
- Du, H.; Liu, D.; Southworth, F.; Ma, S.; Qiu, F. Pathways for energy conservation and emissions mitigation in road transport up to 2030: A case study of the Jing-Jin-Ji area, China. J. Clean. Prod. 2017, 162, 882–893. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, G.; Wang, T.; Jin, J.; Wang, P.; Lin, Y.; Li, H.; Ying, Q.; Mao, H. Past and future trends of vehicle emissions in Tianjin, China, from 2000 to 2030. Atmos. Environ. 2019, 209, 182–191. [Google Scholar] [CrossRef]
- Action Plan for Tackling the Pollution Control of Diesel Trucks. Available online: http://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/201901/W020190104656772362578.pdf (accessed on 25 February 2022). (In Chinese)
- Liu, Y.-H.; Liao, W.-Y.; Lin, X.-F.; Li, L.; Zeng, X.-L. Assessment of Co-benefits of vehicle emission reduction measures for 2015–2020 in the Pearl River Delta region, China. Environ. Pollut. 2017, 223, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Lin, W.; Liu, Y.; Li, X.; Ma, J. Curve and law of vehicle survival probability in Guangdong Province. J. Sun Yat-Sen Univ. 2019, 58, 65–73. (In Chinese) [Google Scholar]
- Wang, J.; Gui, H.; Chen, J.; Wang, Z.; Sun, S.; Yang, Z.; Zhang, X.; Mao, H. Study on tangshan Motor Vehicle Emission Inventory and economic benefit of emission reduction. Chin. Environ. Sci. 2021, 41, 5114–5124. (In Chinese) [Google Scholar]
- Gong, M.; Yin, S.; Gu, X.; Xu, Y.; Jiang, N.; Zhang, R. Refined 2013-based vehicle emission inventory and its spatial and temporal characteristics in Zhengzhou, China. Sci. Total Environ. 2017, 599–600, 1149–1159. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, Y.; Yang, Y.; Xie, Y.; Xie, F.; Xu, L. Research on air Pollutant Emission Inventory of provincial Motor vehicles based on different methods: A case study of Jiangsu Province. Chin. Sci. Technol. Pap. 2017, 12, 346–353. (In Chinese) [Google Scholar]
- Wang, J. Study on Characteristics and Control Policy Evaluation of Vehicle Pollution Emission in Yangtze River Delta; Zhejiang University: Hangzhou, China, 2018. (In Chinese) [Google Scholar]
- Liu, F. Prediction of Diesel Vehicle Emission and Control Scenarios in Beijing-Tianjin-Hebei Region; Beijing University of Technology: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Dey, S.; Caulfield, B.; Ghosh, B. Modelling uncertainty of vehicular emissions inventory: A case study of Ireland. J. Clean. Prod. 2019, 213, 1115–1126. [Google Scholar] [CrossRef]
- Lang, J.; Zhou, Y.; Cheng, S.; Zhang, Y.; Dong, M.; Li, S.; Wang, G.; Zhang, Y. Unregulated pollutant emissions from on-road vehicles in China, 1999–2014. Sci. Total Environ. 2016, 573, 974–984. [Google Scholar] [CrossRef]
- Song, X.; Hao, Y. Vehicular Emission Inventory and Reduction Scenario Analysis in the Yangtze River Delta, China. Int. J. Envion. Res. Public Health 2019, 16, 4790. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Man, H.; Cui, H.; Wang, Y.; Deng, F.; Wang, Y.; Yang, X.; Xiao, Q.; Zhang, Q.; Ding, Y.; et al. An updated emission inventory of vehicular VOCs and IVOCs in China. Atmos. Chem. Phys. 2017, 17, 12709–12724. [Google Scholar] [CrossRef] [Green Version]
- Cheewaphongphan, P.; Chatani, S.; Saigusa, N. Exploring Gaps between Bottom-Up and Top-Down Emission Estimates Based on Uncertainties in Multiple Emission Inventories: A Case Study on CH4 Emissions in China. Sustainability 2019, 11, 2054. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, L.; Shen, W.; Jin, J.; Wang, T.; Wang, P.; Yang, Y.; Liao, H. Improved gridded ammonia emission inventory in China. Atmos. Chem. Phys. 2021, 21, 15883–15900. [Google Scholar] [CrossRef]
- Zhu, C.; Tian, H.; Hao, Y.; Gao, J.; Hao, J.; Wang, Y.; Hua, S.; Wang, K.; Liu, H. A high-resolution emission inventory of anthropogenic trace elements in Beijing-Tianjin-Hebei (BTH) region of China. Atmos. Environ. 2018, 191, 452–462. [Google Scholar] [CrossRef]
Scenario | Description | Specific Definition | Reference |
---|---|---|---|
Business as usual scenario (BAU) | To continue to use the existing emission standards without adding other control measures. | Taking 2018 as the base year and keep the current policy unchanged. | —— |
Old vehicles elimination (OVE) | To eliminate old diesel vehicles with high emissions. | To eliminate all diesel vehicles below the China III standard by the end of 2020. Since then, diesel vehicles have been eliminated year after year, according to the regulations for mandatory scrapping of motor vehicles. | “Plan of Beijing to Further Promote the Elimination and Renewal of Old High-Emission Motor Vehicles (2020–2021)”. “Regulations of Tianjin on Pollution Prevention and Control of Motor Vehicle and Non-Road Mobile Machinery Emissions”. “Regulations of Hebei Province on Pollution Prevention and Control of Motor Vehicle and Non-Road Mobile Machinery Emissions”. “Provisions on Mandatory Scrapping Standards of Motor Vehicles”. |
Emission standards upgrade (ESU) | To update the emission standards for diesel vehicles. | To adopt China VIb standards in 2020 for Beijing; China VIb standards in 2019 for LDV for Tianjin and Hebei; China VIa standards in 2021, and China VIb standards in 2023 for HDV for Tianjin and Hebei, respectively. | “Notice on Beijing’s Implementation of the Sixth Phase of Motor Vehicle Emission Standards (Draft for Comment)”. “Announcement on the implementation of the sixth phase of emission standards for motor vehicles” in Tianjin and Heibei provinces. |
New energy vehicle promotion (NEP) | To promote the use of new energy vehicles. | To increase the sales proportion of new energy vehicles in China by 3% every year since 2019. | “New Energy Automobile Industry Development Plan (2021–2035)”. |
Highway to railway (HTR) | To increase the amount of freight transported by rail. | To increase the total amount of rail freight by 10% every year since 2019. | “Three-year Action Plan for Promoting the Adjustment of Transportation Structure (2018–2020)”. |
Comprehensive scenario (CS) | To combine the above control measures effectively. | To integrate the data in the other four emission reduction scenarios. | —— |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Liu, Y.; Chen, D.; Gong, X. Prediction of Emission Reduction Potential from Road Diesel Vehicles in the Beijing–Tianjin–Hebei (BTH) Region, China. Atmosphere 2022, 13, 776. https://doi.org/10.3390/atmos13050776
Guo X, Liu Y, Chen D, Gong X. Prediction of Emission Reduction Potential from Road Diesel Vehicles in the Beijing–Tianjin–Hebei (BTH) Region, China. Atmosphere. 2022; 13(5):776. https://doi.org/10.3390/atmos13050776
Chicago/Turabian StyleGuo, Xiurui, Yao Liu, Dongsheng Chen, and Xiaoqian Gong. 2022. "Prediction of Emission Reduction Potential from Road Diesel Vehicles in the Beijing–Tianjin–Hebei (BTH) Region, China" Atmosphere 13, no. 5: 776. https://doi.org/10.3390/atmos13050776
APA StyleGuo, X., Liu, Y., Chen, D., & Gong, X. (2022). Prediction of Emission Reduction Potential from Road Diesel Vehicles in the Beijing–Tianjin–Hebei (BTH) Region, China. Atmosphere, 13(5), 776. https://doi.org/10.3390/atmos13050776