Parameter Optimization of Catering Oil Droplet Electrostatic Coalescence under Coupling Field with COMSOL Software
Abstract
:1. Introduction
2. Experiment and Simulation
2.1. Experimental Process
2.2. Geometry Model
2.3. Numerical Methods
2.3.1. Boundary Condition
2.3.2. Mathematical Model
- (1)
- Governing equation of fluid motion
- (2)
- Electric field governing equation
2.3.3. Aggregation State Evaluation
2.3.4. Grid Independence Verification and Model Verification
3. Results and Discussion
3.1. Effect of Physical Field
3.2. Influence of Various Factors on Coalescence Effect
4. Simulation Optimization
4.1. Response Surface Analysis
4.2. Matrix Correlation Analysis
5. Conclusions
- 1.
- The shortest distance between any two tangents on the circles (L), the time of starting coalescence (tsc) and the degree of deformation (D) were used to determine the coalescence effect; compared with experimental results, the module was feasible.
- 2.
- The coupling field of the electric field and flow field was better than that of the single field.
- 3.
- The increase in voltage, flow speed and oil droplet radius promoted the coalescence of oil droplets. There was an optimal range of flow speed and oil droplet radius. When the flow speed exceeded 0.5 m/s, oil droplets were difficult to coalesce. When the radius of oil droplets was in the range of 0–1.5 mm, it was more conducive to the coalescence of oil droplets.
- 4.
- The simulation results were analyzed in detail by the response surface method and Matrix correlation method. The influence degree of each factor was speed > voltage > oil droplet radius. The research results obtained can be applied to device design and process parameter optimization.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Qian, Z.; Zhang, D.; Zhu, T.; Yuan, Q.; Ye, Z. Research progress of cooking fume emission characteristics and purification technologies. Environ. Eng. 2020, 38, 37–41. [Google Scholar]
- Contal, P.; Simao, J.; Thomas, D.; Frising, T.; Callé, S.; Appert-Collin, J.C.; Bémer, D. Clogging of fibre filters by submicron droplets. Phenomena and influence of operating conditions. J. Aerosol Sci. 2004, 35, 263–278. [Google Scholar] [CrossRef]
- Mullins, B.J.; Mead-Hunter, R.; Pitta, R.N.; Kasper, G.; Heikamp, W. Comparative performance of philic and phobic oil-mist filters. AIChE J. 2014, 60, 2976–2984. [Google Scholar] [CrossRef]
- Li, R.; Xu, A.; Zhao, Y.; Chang, H.; Li, X.; Lin, G. Genetic algorithm (GA)—Artificial neural network (ANN) modeling for the emission rates of toxic volatile organic compounds (VOCs) emitted from landfill working surface. J. Environ. Manag. 2022, 305, 114433. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Li, W.; Ma, C.; Wu, Q.; Xu, Z.; Liu, S. Synthesis of Honeycomb-Like Carbon Foam from Larch Sawdust as Efficient Absorbents for Oil Spills Cleanup and Recovery. Materials 2018, 11, 1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Liu, S.; Chen, Q. Particle capture by a rotating disk in a kitchen exhaust hood. Aerosol Sci. Technol. 2020, 54, 929–940. [Google Scholar] [CrossRef]
- Gao, W.; Cao, D.; Lv, K.; Wu, J.; Wang, Y.; Wang, C.; Wang, Y.; Jiang, G. Elimination of short-chain chlorinated paraffins in diet after Chinese traditional cooking-a cooking case study. Environ. Int. 2019, 122, 340–345. [Google Scholar] [CrossRef]
- Li, C.; Bai, L.; He, Z.; Liu, X.; Xu, X. The effect of air purifiers on the reduction in indoor PM2.5 concentrations and population health improvement. Sustain. Cities Soc. 2021, 75, 103298. [Google Scholar] [CrossRef]
- Wang, P.; Jiang, J.; Li, S.; Yang, X.; Luo, X.; Wang, Y.; Thakur, A.K.; Zhao, W. Numerical investigation on the fluid droplet separation performance of corrugated plate gas-liquid separators. Sep. Purif. Technol. 2020, 248, 117027. [Google Scholar] [CrossRef]
- Gao, L.; Lu, Y. Present status and improvement of indoor air purifier. J. Harbin Inst. Technol. 2004, 36, 199–201. [Google Scholar]
- Kiev, I. Electrostatic Precipitator. U.S. Patent 20200188932A1, 29 December 2020. [Google Scholar]
- Sarkola, J. An Electrostatic Filter and a Rack for Filter Plates of an Electrostatic Filter. U.S. Patent 20200246808A1, 22 February 2018. [Google Scholar]
- Wang, J.; Wang, X.; Dong, D. Research on Air Pollution Problems and Corresponding Countermeasures in China’s Catering Industry. Environ. Sci. Technol. 2019, 32, 6. [Google Scholar]
- Li, Y.; Li, J.; Li, H. Cooking fume Pollution and Its Purification Technology. Sichuan Chem. Ind. 2018, 21, 13–16. [Google Scholar]
- Qi, L.; Yuan, Y. Characteristics and the behavior in electrostatic precipitators of high-alumina coal fly ash from the Jungar power plant, Inner Mongolia, China. J. Hazard. Mater. 2011, 192, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Ruttanachot, C.; Tirawanichakul, Y.; Tekasakul, P. Application of Electrostatic Precipitator in Collection of Smoke Aerosol Particles from Wood Combustion. Aerosol Air Qualres. 2011, 11, 90–98. [Google Scholar] [CrossRef]
- Adamiak, K. Numerical models in simulating wire-plate electrostatic precipitators: A review. J. Electrost. 2013, 71, 673–680. [Google Scholar] [CrossRef]
- Ni, M.; Yang, G.; Wang, S.; Wang, X.; Xiao, G.; Zheng, G.; Gao, X.; Luo, Z.; Cen, K. Experimental investigation on the characteristics of ash layers in a high-temperature wire-cylinder electrostatic precipitator. Sep. Purif. Technol. 2016, 159, 135–146. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, X.; Chen, W.; Shi, W.; Yan, K. Electrostatic precipitation of fine particles with a bipolar pre-charger. J. Electrost. 2010, 68, 174–178. [Google Scholar] [CrossRef]
- Zhang, X.; Bo, T.L. The effectiveness of electrostatic haze removal scheme and the optimization of electrostatic precipitator based on the charged properties of airborne haze particles: Experiment and simulation. J. Clean. Prod. 2020, 288, 125096. [Google Scholar] [CrossRef]
- Feng, Z.; Cao, S.; Wang, J.; Kumar, P.; Haghighat, F. Indoor airborne disinfection with electrostatic disinfector (ESD): Numerical simulations of ESD performance and reduction of computing time. Build. Environ. 2021, 200, 107956. [Google Scholar] [CrossRef]
- Fan, X. Research on the High Voltage Electrostic Precipitation with DC-AC Alternating Technology; Beijing Jiaotong University: Beijing, China, 2014. [Google Scholar]
- Jaworek, A.; Marchewicz, A.; Krupa, A.; Sobczyk, A.T.; Czech, T.; Antes, T.; Śliwiński, L.; Kurz, M.; Szudyga, M.; Rożnowski, W. Dust particles precipitation in AC/DC electrostatic precipitator. J. Phys. Conf. Ser. 2015, 646, 12031. [Google Scholar] [CrossRef]
- Jaworek, A.; Marchewicz, A.; Sobczyk, A.T.; Krupa, A.; Czech, T. Two-stage electrostatic precipitator with dual-corona particle precharger for PM2.5 particles removal. J. Clean. Prod. 2017, 164, 1645–1664. [Google Scholar] [CrossRef]
- Xiong, H. Design and Research on Efficient Electrostatic Coalescer for Crude Oil Dehydration; Beijing Institute of Petrochemical Technology: Beijing, China, 2016. [Google Scholar]
- Chang, Y. Research on the Droplet Movement in Electrowetting on Dielectric Based Ditigal Microfluidic System; Hebei University of Technology: Tianjing, China, 2018. [Google Scholar]
- Yin, Y. Numerical Simulation and Experimental Study of High Efficiency Electrostatic Coalescence Separation for Crude Oil Dehydration; Hebei University of Technology: Tianjing, China, 2018. [Google Scholar]
- Zhu, Z. Numerical Simulation and Study on Mechanism of Droplet Coalescence under Electrostatic Fields; Jiangsu University: Zhenjiang, China, 2017. [Google Scholar]
- Yu, S.; Jian, L.; Chong, Z. A local and parallel Uzawa finite element method for the generalized Navier–Stokes equations. Appl. Math. Comput. 2019, 8, 124671. [Google Scholar]
- DB11/1488-2018; Emission Standards of Air Pollutants for Catering Industry. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018.
- Chakraborty, A.; Warrior, H.V. Study of turbulent flow past a square cylinder using partially-averaged Navier-Stokes method in Open FOAM. Arch. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234, 2821–2832. [Google Scholar] [CrossRef]
- Schreyer, L.; Hilliard, Z. Derivation of generalized Cahn-Hilliard equation for two-phase flow in porous media using hybrid mixture theory. Adv. Water Resour. 2021, 149, 103839. [Google Scholar] [CrossRef]
- Ren, H.; Zhuang, X.; Trung, N.T.; Rabczuk, T. Nonlocal operator method for the Cahn-Hilliard phase field model. Commun. Nonlinear Sci. Numer. Simul. 2020, 96, 105687. [Google Scholar] [CrossRef]
- Fu, G. A divergence-free HDG scheme for the Cahn-Hilliard phase-field model for two-phase incompressible flow. J. Comput. Phys. 2020, 419, 109671. [Google Scholar] [CrossRef]
- Stefański, T.; Gulgowski, J. Fundamental properties of solutions to fractional-order Maxwell's equations. J. Electromagn. Waves Appl. 2020, 34, 1955–1976. [Google Scholar] [CrossRef]
- He, B.; Yang, W.; Wang, H. Convergence analysis of adaptive edge finite element method for variable coefficient time-harmonic Maxwell’s equations. J. Comput. Appl. Math. 2020, 376, 112860. [Google Scholar] [CrossRef]
- Cheng, M.; Hua, J.; Lou, J. Simulation of bubble–bubble interaction using a lattice Boltzmann method. Comput. Fluids 2010, 39, 260–270. [Google Scholar] [CrossRef]
- Wang, X. Experimental and Simulation Study on Oil Droplet Upward Movement in Water; Hebei University of Technology: Tianjing, China, 2017. [Google Scholar]
- Feng, J. Electrohydrodynamic behaviour of a drop subjected to a steady uniform electric field at finite electric Reynolds number. Proc. R. Soc. A Math. Phys. Eng. Sci. 1999, 455, 2245–2269. [Google Scholar] [CrossRef]
- Basaran, O.A.; Scriven, L.E. Axisymmetric shapes and stability of charged drops in an external electric field. Phys. Fluids A Fluid Dyn. 1989, 1, 799–809. [Google Scholar] [CrossRef]
Medium | Viscosity (Pa·s) | Density (kg/m3) | Dielectric Constant (C2/N·m2) |
---|---|---|---|
Air | 0.1808 × 10−3 | 1.29 | 1 |
Oil | 0.474 | 884 | 2.2 |
Average Inlet Velocity (m/s) | Approximate Maximum Speed (m/s) | Surface Tension Coefficient (N/m) | Temperature (K) |
---|---|---|---|
0.05 | 0.075 | 0.031 | 293.15 |
Factor | Code | Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Oil Droplet radius (mm) | A | 1.4 | 1.5 | 1.6 |
Voltage (kV) | B | 1 | 6.5 | 12 |
Speed (mm/ms) | C | 40 | 110 | 180 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Zhu, L.; Yang, Z.; Gao, J.; Jin, M. Parameter Optimization of Catering Oil Droplet Electrostatic Coalescence under Coupling Field with COMSOL Software. Atmosphere 2022, 13, 780. https://doi.org/10.3390/atmos13050780
Xu D, Zhu L, Yang Z, Gao J, Jin M. Parameter Optimization of Catering Oil Droplet Electrostatic Coalescence under Coupling Field with COMSOL Software. Atmosphere. 2022; 13(5):780. https://doi.org/10.3390/atmos13050780
Chicago/Turabian StyleXu, Danyun, Ling Zhu, Ziyu Yang, Jiale Gao, and Man Jin. 2022. "Parameter Optimization of Catering Oil Droplet Electrostatic Coalescence under Coupling Field with COMSOL Software" Atmosphere 13, no. 5: 780. https://doi.org/10.3390/atmos13050780
APA StyleXu, D., Zhu, L., Yang, Z., Gao, J., & Jin, M. (2022). Parameter Optimization of Catering Oil Droplet Electrostatic Coalescence under Coupling Field with COMSOL Software. Atmosphere, 13(5), 780. https://doi.org/10.3390/atmos13050780