Co-Production System Based on Lean Methane and Biogas for Power Generation in Coal Mines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Coal Mine Methane
2.1.2. Biogas from Biomass
2.2. Co-Production System Description
2.3. Models Calculation
2.3.1. Biogas Energy
2.3.2. Estimation of GHG Reduce Emissions
2.3.3. Determination of Electricity Generation Potential
2.4. Case Studies
3. Results and Discussion
3.1. Case Analysis
3.2. Comprehensive Analysis of Co-Production System
3.2.1. Energy Savings
3.2.2. Economic and Environmental Benefits
3.3. Prospects and Challenges
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, L.; Gao, T.M.; Cheng, X. China’s coal policy since 1979: A brief overview. Energy Policy 2012, 40, 274–281. [Google Scholar]
- China Statistical Year Book. National Bureau of Statistics of China; China Statistics Press: Beijing, China, 2020. Available online: http://www.stats.gov.cn/tjsj/ndsj/2020/indexch.htm (accessed on 18 September 2020).
- Li, Y.; Yang, X.D.; Ran, Q.Y.; Wu, H.T.; Irfan, M.; Ahmad, M. Energy structure, digital economy, and carbon emissions: Evidence from China. Environ. Sci. Pollute. Res. 2021, 28, 64606–64629. [Google Scholar] [CrossRef]
- Wang, J.L.; Feng, L.Y.; Davidsson, S.; Höök, M. Chinese coal supply and future production outlooks. Energy 2013, 60, 204–214. [Google Scholar] [CrossRef] [Green Version]
- IPCC Climate Change 2014. Synthesis Report. Contribution of Working Groups I, II and III, Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151.
- International Energy Agency (IEA). CO2 Emissions from Fuel Combustion 2019-Highlights. 2019. Available online: https://webstore.iea.org/co2-emissions-from-fuel-combustion-2019 (accessed on 19 May 2019).
- Jiang, X.; Mira, D.; Cluff, D.L. The combustion mitigation of methane as a non-CO2 greenhouse gas. Prog. Energy Combust. Sci. 2018, 66, 176–199. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.F.; Shi, X.P.; Qian, X.Y.; Chen, S.; Nie, R. Macroeconomic effect of energy transition to carbon neutrality: Evidence from China’s coal capacity cut policy. Energy Policy 2021, 155, 112374. [Google Scholar] [CrossRef]
- Zhao, P.T.; Shen, Y.F.; Ge, S.F.; Chen, Z.Q.; Yoshikawa, K. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Appl. Energy 2014, 131, 345–367. [Google Scholar] [CrossRef] [Green Version]
- Song, S.M.; Li, T.X.; Liu, P.; Li, Z. The transition pathway of energy supply systems towards carbon neutrality based on a multi-regional energy infrastructure planning approach: A case study of China. Energy 2022, 238, 122037. [Google Scholar] [CrossRef]
- Kerr, R.A. Natural gas from shale bursts onto the scene. Science 2010, 328, 1624–1626. [Google Scholar] [CrossRef]
- Wang, X.X.; Zhou, F.B.; Ling, Y.H.; Xiao, Y.N.; Ma, B.; Ma, X.Z.; Yu, S.B.; Liu, H.; Wei, K.W.; Kang, J.H. Overview and Outlook on Utilization Technologies of Low-Concentration Coal Mine Methane. Energy Fuels 2021, 35, 15398–15423. [Google Scholar] [CrossRef]
- Baris, K. Assessing ventilation air methane (VAM) mitigation and utilization opportunities: A case study at Kozlu Mine, Turkey. Energy Sustain. Dev. 2013, 17, 13–23. [Google Scholar] [CrossRef]
- Chen, H.L.; Wu, Y.F.; Yang, G.M.; Shi, J.; Zhou, W.; Bai, J.P.; Li, S.D.; Shao, Z.P. Direct Power Generation from Low Concentration Coal-Bed Gas by a Catalyst-Modified Solid Oxide Fuel Cell. ChemElectroChem 2018, 5, 1459–1466. [Google Scholar] [CrossRef]
- Farzaneh, H.; Fahimi, M.; Saboohi, Y. Optimal power generation from low concentration coal bed methane in Iran. Energy Sources Part A 2016, 38, 590–596. [Google Scholar] [CrossRef]
- Ramos, A.; Monteiro, E.; Silva, V.; Rouboa, A. Co-gasification and recent developments on waste-to-energy conversion: A review. Renew. Sustain. Energy Rev. 2018, 81, 380–398. [Google Scholar] [CrossRef]
- Asam, Z.U.Z.; Poulsen, T.G.; Nizami, A.-S.; Rafique, R.; Kiely, G.; Murphy, J.D. How can we improve biomethane production per unit of feedstock in biogas plants? Appl. Energy 2011, 88, 2013–2018. [Google Scholar] [CrossRef]
- Sambusiti, C.; Monlau, F.; Ficara, E.; Musatti, A.; Rollini, M.; Barakat, A.; Malpei, F. Comparison of various post-treatments for recovering methane from agricultural digestate. Fuel Process. Technol. 2015, 137, 359–365. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ghanegaonkar, P.M. Methane enrichment of biogas produced from floral waste: A potential energy source for rural India. Energy Sources Part A 2019, 41, 2757–2768. [Google Scholar] [CrossRef]
- Martínez-Ruano, J.A.; Restrepo-Serna, D.L.; Carmona-Garcia, E.; Giraldo, J.A.P.; Aroca, G.; Cardona, C.A. Effect of co-digestion of milk-whey and potato stem on heat and power generation using biogas as an energy vector: Techno-economic assessment. Appl. Energy 2019, 241, 504–518. [Google Scholar] [CrossRef]
- Nzotcha, U.; Kenfack, J. Contribution of the wood-processing industry for sustainable power generation: Viability of biomass-fuelled cogeneration in Sub-Saharan Africa. Biomass Bioenergy 2019, 120, 324–331. [Google Scholar] [CrossRef]
- Madanayake, B.N.; Gan, S.; Eastwick, C.; Ng, H.K. Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques. Fuel Process. Technol. 2017, 159, 287–305. [Google Scholar] [CrossRef]
- National Energy Administration (NEA). Twelfth Five-Year Plan of Biomass Energy Development; National Energy Administration: Beijing, China, 2012.
- China National Renewable Energy Center (CNREC). Renewable Energy Manual; China National Renewable Energy Center: Beijing, China, 2016. [Google Scholar]
- Zhao, X.L.; Cai, Q.; Li, S.J.; Ma, C.B. Public preferences for biomass electricity in China. Renew. Sustain. Energy Rev. 2018, 95, 242–253. [Google Scholar] [CrossRef]
- Singh, J. Overview of electric power potential of surplus agricultural biomass from economic, social, environmental and technical perspective—A case study of Punjab. Renew. Sustain. Energy Rev. 2015, 42, 286–297. [Google Scholar] [CrossRef]
- Susaeta, A.; Alavalapati, J.; Lal, P.; Matta, J.R.; Mercer, E. Assessing public preferences for forest biomass-based energy in the southern United States. Environ. Manag. 2010, 45, 697–710. [Google Scholar] [CrossRef]
- Soliño, M.; Farizo, B.A.; Vázquez, M.X.; Prada, A. Generating electricity with forest biomass: Consistency and payment timeframe effects in choice experiments. Energy Policy 2012, 41, 798–806. [Google Scholar] [CrossRef]
- Kosenius, A.K.; Ollikainen, M. Valuation of environmental and societal trade-offs of renewable energy sources. Energy Policy 2013, 62, 1148–1156. [Google Scholar] [CrossRef]
- Karacan, C.Ö.; Ruiz, F.A.; Cotè, M.; Phipps, S. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. Int. J. Coal Geol. 2011, 86, 121–156. [Google Scholar] [CrossRef]
- Moore, T.A. Coalbed methane: A review. Int. J. Coal Geol. 2012, 101, 36–81. [Google Scholar] [CrossRef]
- Zhou, F.B.; Xia, T.Q.; Wang, X.X.; Zhang, Y.F.; Sun, Y.N.; Liu, J.S. Recent developments in coal mine methane extraction and utilization in China: A review. J. Nat. Gas Sci. Eng. 2016, 31, 437–458. [Google Scholar] [CrossRef]
- Cheng, Y.P.; Wang, L.; Zhang, X.L. Environmental impact of coal mine methane emissions and responding strategies in China. Int. J. Greenh. Gas Control. 2011, 5, 157–166. [Google Scholar] [CrossRef]
- Karakurt, I.; Aydin, G.; Aydiner, K. Mine ventilation air methane as a sustainable energy source. Renew. Sustain. Energy Rev. 2011, 15, 1042–1049. [Google Scholar] [CrossRef]
- Weldemichael, Y.; Assefa, G. Assessing the energy production and GHG (greenhouse gas) emissions mitigation potential of biomass resources for Alberta. J. Clean. Prod. 2016, 112, 4257–4264. [Google Scholar] [CrossRef]
- Feng, D.D.; Wang, S.Z.; Zhang, Y.; Zhao, Y.J.; Sun, S.Z.; Chang, G.Z.; Lai, X.Y.; Tan, H.P.; Qin, Y.K. Review of Carbon Fixation Evaluation and Emission Reduction Effectiveness for Biochar in China. Energy Fuels 2020, 34, 10583–10606. [Google Scholar] [CrossRef]
- Alatzas, S.; Moustakas, K.; Malamis, D.; Vakalis, S. Biomass Potential from Agricultural Waste for Energetic Utilization in Greece. Energies 2019, 12, 1095. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wu, Y.J.; Liu, H.Q.; Ribeiro, A.M.; Li, P.; Yu, J.G.; Rodrigues, A.E. Enrichment of ventilation air methane by adsorption with displacement chromatography technology: Experiment and numerical simulation. Chem. Eng. Sci. 2016, 149, 215–228. [Google Scholar] [CrossRef]
- Rao, P.V.; Baral, S.S.; Dey, R.; Mutnuri, S. Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renew. Sustain. Energy Rev. 2010, 14, 2086–2094. [Google Scholar] [CrossRef]
- Nikkhah, A.; Bagheri, I.; Psomopoulos, C.; Payman, S.H.; Zareiforoush, H.; El Haj Assad, M.; Bakhshipour, A.; Ghnimi, S. Sustainable second-generation biofuel production potential in a developing country case study. Energy Sources Part A 2019, 1–14. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Y.; Cai, L.; Kung, C.-C. A review of economic and environmental consequences from waste-based power generation: Evidence from Taiwan. Energy Explor. Exploit. 2020, 39, 571–589. [Google Scholar] [CrossRef] [Green Version]
- Seglah, P.A.; Wang, Y.J.; Wang, H.Y.; Bi, Y.Y. Estimation and efficient utilization of straw resources in Ghana. Sustainability 2019, 11, 4172. [Google Scholar] [CrossRef] [Green Version]
- Braun, R.; Wellinger, A. Potential of Co-Digestion. IEA Bioenergy.37. 2003. Available online: https://www.ieabioenergy.com/blog/publications/iea-bioenergy-strategic-plan-2003-2006/ (accessed on 11 January 2022).
- Kang, J.; Li, J.P.; Zhen, X.F.; Osman, Y.I.A.; Feng, R.; Si, Z.T. Experimental study on productivity performance of household combined thermal power and biogas system in northwest China. BioMed. Res. Int. 2018, 2018, 7420656. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.J.; Bi, Y.Y.; Gao, C.Y. The assessment and utilization of straw resources in China. Agric. Sci. Chin. 2010, 9, 1807–1815. [Google Scholar] [CrossRef]
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Kyoto, Japan. Available online: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 12 May 2019).
- Singh, A.K.; Sahu, J.N. Coal mine gas: A new fuel utilization technique for India. Int. J. Green Energy 2018, 15, 732–743. [Google Scholar] [CrossRef]
- Cluff, D.L.; Kennedy, G.A.; Bennett, J.G.; Foster, P.J. Capturing energy from ventilation air methane a preliminary design for a new approach. Appl. Therm. Eng. 2015, 90, 1151–1163. [Google Scholar] [CrossRef]
- Burnete, N.V.; Mariasiu, F.; Depcik, C.; Barabas, I.; Moldovanu, D. Review of thermoelectric generation for internal combustion engine waste heat recovery. Prog. Energy Combust. Sci. 2022, 91, 101009. [Google Scholar] [CrossRef]
- IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2. Energy. (Chapter 4): Fugitive Emissions. Intergovernmental Panel on Climate Change. 2006. Available online: http://www.ipccnggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf (accessed on 14 April 2020).
- Tomislav, P.; Paul, L.; Aoife, F.; Natasa, M.; Neven, D. Sustainable development of energy, water and environment systems. Renew. Sust. Energy Rev. 2018, 82, 1685–1690. [Google Scholar] [CrossRef]
Coal Mines | Coal Production /×104 t | IPCC Emission Factors /(m3/t) | Methane Emission /Tg | |
---|---|---|---|---|
DSC | 150 | Mining | 10~25 | 0.010~0.025 |
Post-mining | 0.9~4.0 | 0.001~0.004 | ||
Total | 0.011~0.029 | |||
CC | 800 | Mining | 10~25 | 0.054~0.134 |
Post-mining | 0.9~4.0 | 0.005~0.021 | ||
Total | 0.059~0.155 | |||
JC | 900 | Mining | 10~25 | 0.060~0.151 |
Post-mining | 0.9~4.0 | 0.005~0.024 | ||
Total | 0.065~0.175 |
Parameters | Rate/Production | ||
---|---|---|---|
Coal Mine | DSC | CC | JC |
Gas utilization efficiency (%) | 50 | 3 | 0 |
Lean methane (m3/min) | 10 | 61 | 289 |
Lean methane discharge in one day (m3) | 14,400 | 87,840 | 416,160 |
Lean methane discharge in one year (Mm3) | 5.26 | 32.06 | 151.90 |
Lean methane emitted @ 4% CH4 (v/v) (Mm3) | 0.21 | 1.28 | 6.08 |
Lean methane emitted @ 3% CH4 (v/v) (Mm3) | 0.16 | 0.96 | 4.56 |
Average Lean methane estimate per year (Mm3) | 0.18 | 1.12 | 5.32 |
Quantity of lean methane emission per year (t) | 123 | 752 | 3562 |
Global Warming Potential equivalent CO2 (t) | 3081 | 18,796 | 89,050 |
Coal Mine | CH4 Concentration | Biogas Demand (m3/min) | Straw Demand (Ton/d) | Farmland Area (acre) |
---|---|---|---|---|
DSC | 3% | 23 | 129.9 | 47,402 |
4% | 13 | 73.4 | 26,793 | |
CC | 3% | 140 | 790.6 | 288,536 |
4% | 78 | 440.5 | 160,756 | |
JC | 3% | 640 | 3614.1 | 1,319,021 |
4% | 360 | 2032.9 | 741,949 |
Parameters | Rate/Production | |||||
---|---|---|---|---|---|---|
Coal Mines | DSC | CC | JC | |||
Lean methane emission (m3/min) | 10 | 61 | 289 | |||
Lean methane concentration (%) | 3% | 4% | 3% | 4% | 3% | 4% |
Biogas Demand (m3/min) | 23 | 13 | 140 | 78 | 640 | 360 |
Methane flow (m3/min) | 14 | 8 | 86 | 49 | 393 | 228 |
Methane conversion (%) | 95 | 95 | 95 | 95 | 95 | 95 |
Facilities availability (%) | 85 | 85 | 85 | 85 | 85 | 85 |
Use of methane (t/yr) | 4220.54 | 2454.50 | 25,691.43 | 14,738.97 | 117,537.60 | 68,115.35 |
Use of methane eq. CO2 | 11,606.49 | 6749.87 | 70,651.42 | 40,532.17 | 323,228.39 | 187,317.22 |
CO2 reduction (Kt) | 290.16 | 168.75 | 1766.29 | 1013.30 | 8080.71 | 4682.93 |
Revenue ((Million CNY¥/yr) | 54.06 | 31.44 | 329.10 | 188.80 | 1505.61 | 872.53 |
From electricity | 39.85 | 23.17 | 242.55 | 139.15 | 1109.66 | 643.07 |
From carbon credit | 14.22 | 8.27 | 86.55 | 49.65 | 395.95 | 229.46 |
Total cost (Million CNY¥) | 87.79 | 51.06 | 534.43 | 306.60 | 2444.98 | 1416.92 |
Installed cost (CNY¥/KWH) | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
O&M cost (CNY¥/KWH) | 500 | 500 | 500 | 500 | 500 | 500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, F.; Nie, B.; Wei, Y.; Lin, S. Co-Production System Based on Lean Methane and Biogas for Power Generation in Coal Mines. Atmosphere 2022, 13, 803. https://doi.org/10.3390/atmos13050803
Yin F, Nie B, Wei Y, Lin S. Co-Production System Based on Lean Methane and Biogas for Power Generation in Coal Mines. Atmosphere. 2022; 13(5):803. https://doi.org/10.3390/atmos13050803
Chicago/Turabian StyleYin, Feifei, Baisheng Nie, Yueying Wei, and Shuangshuang Lin. 2022. "Co-Production System Based on Lean Methane and Biogas for Power Generation in Coal Mines" Atmosphere 13, no. 5: 803. https://doi.org/10.3390/atmos13050803
APA StyleYin, F., Nie, B., Wei, Y., & Lin, S. (2022). Co-Production System Based on Lean Methane and Biogas for Power Generation in Coal Mines. Atmosphere, 13(5), 803. https://doi.org/10.3390/atmos13050803