Odors Emitted from Biological Waste and Wastewater Treatment Plants: A Mini-Review
Abstract
:1. Introduction
2. How to Measure Odors
2.1. Odors Sampling
2.2. Odor Measurement
2.3. Electronic Noses
3. Odor-Producing Chemicals
- Some of the threshold values are extremely low; that is, the human nose is a powerful analytical device.
- Not all the compounds are toxic or, if they are, the concentrations must be very high.
- A common lack of these tables is the absence of a critical property: biodegradability, which is crucial when a biological treatment for the abatement of these compounds is to be applied.
4. Odors from Waste Treatment Plants
4.1. Composting
4.1.1. Food Waste
4.1.2. Sewage Sludge
4.1.3. Manure
4.2. Anaerobic Digestion
5. Odors from Wastewater Treatment Plants
6. Odors Abatement
6.1. Biofilters
6.2. Biotrickling Filters
6.3. Odor Abatement in In-Series Configurations
7. Conclusions
- (1)
- Odors are a very important measure to characterize waste and wastewater treatment plants, sometimes being an indicator of some problems in the performance of the plant.
- (2)
- Odors should be measured by dynamic olfactometry to gauge the real effect that they provoke on society. Other types of measures, such as electronic noses, are in a developmental stage, because of the complex mixtures that constitute odors from waste management plants.
- (3)
- Odors are not synonymous with toxicity. Although the main contributors of odors in waste and wastewater treatment plants are VOCs (especially nitrogen and sulfur compounds), the complete composition must be determined to calculate toxicity values.
- (4)
- Among the available technologies for odor abatement, biological treatments such as biofiltration and modifications are the most sustainable in terms of environmental impact and economic cost.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BTF | Biotrickling filter |
CAPEX | Capital expenditures |
CEC | Contaminants of emerging concern |
GC-MS | Gas chromatography coupled to mass spectrometry |
MSW | Municipal solid waste |
MSWTF | Municipal solid waste treatment facility |
OEF | Odor emission factor |
OFMSW | Organic fraction of municipal solid waste |
OPEX | Operational expenditures |
OUR | Oxygen uptake rate |
VOC | Volatile organic compound |
VSC | Volatile sulfur compound |
WWTP | Wastewater treatment plant |
References
- Grando, R.L.; de Souza Antune, A.M.; da Fonseca, F.V.; Sánchez, A.; Barrena, R.; Font, X. Technology overview of biogas production in anaerobic digestion plants: A European evaluation of research and development. Renew. Sustain. Energy Rev. 2017, 80, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Cerda, A.; Artola, A.; Font, X.; Barrena, R.; Gea, T.; Sánchez, A. Composting of food wastes: Status and challenges. Bioresour. Technol. 2018, 248, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagans, E.; Barrena, R.; Font, X.; Sánchez, A. Ammonia emissions from the composting of different organic wastes. Dependency on process temperature. Chemosphere 2006, 62, 1534–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cáceres, R.; Malińska, K.; Marfà, O. Nitrification within composting: A review. Waste Manag. 2018, 72, 119–137. [Google Scholar] [CrossRef]
- Ermolaev, E.; Sundberg, C.; Pell, M.; Smårs, S.; Jönsson, H. Effects of moisture on emissions of methane, nitrous oxide and carbon dioxide from food and garden waste composting. J. Clean. Prod. 2019, 240, 118165. [Google Scholar] [CrossRef]
- Tsutsui, H.; Fujiwara, T.; Matsukawa, K.; Funamizu, N. Nitrous oxide emission mechanisms during intermittently aerated composting of cattle manure. Bioresour. Technol. 2013, 141, 205–211. [Google Scholar] [CrossRef]
- González, D.; Colón, J.; Sánchez, A.; Gabriel, D. A systematic study on the VOCs characterization and odour emissions in a full-scale sewage sludge composting plant. J. Hazard. Mater. 2019, 373, 733–740. [Google Scholar] [CrossRef]
- Font, X.; Artola, A.; Sánchez, A. Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants. Sensors 2011, 11, 4043–4059. [Google Scholar] [CrossRef] [Green Version]
- Environment Agency. The Categorisation of Volatile Organic Compounds. Available online: http://www.s-t-a.org/Files%20Public%20Area/Documents/The%20Categorisation%20of%20Volatile%20Organic%20Compounds%20HMIP%20(1996).pdf (accessed on 14 March 2022).
- Szyłak-Szydłowski, M. Evaluation of Inoculated Waste Biological Stabilization Degree by Olfactometric Methods. Energies 2021, 14, 1835. [Google Scholar] [CrossRef]
- Colón, J.; Martínez-Blanco, J.; Gabarell, X.; Rieradevall, J.; Font, X.; Artola, A.; Sánchez, A. Performance of an industrial biofilter from a composting plant in the removal of ammonia and VOCs after material replacement. J. Chem. Technol. Biotechnol. 2009, 84, 1111–1117. [Google Scholar] [CrossRef] [Green Version]
- Colón, J.; Alvarez, C.; Vinot, M.; Lafuente, F.J.; Ponsá, S.; Sánchez, A.; Gabriel, D. Characterization of odorous compounds and odor load in indoor air of modern complex MBT facilities. Chem. Eng. J. 2017, 313, 1311–1319. [Google Scholar] [CrossRef] [Green Version]
- Wisniewka, M.; Kulig, A.; Lelicinska-Serafin, K. Odour Emissions of Municipal Waste Biogas Plants—Impact of Technological Factors, Air Temperature and Humidity. Appl. Sci. 2020, 10, 1093. [Google Scholar] [CrossRef] [Green Version]
- Bockreis, A.; Steinberg, I. Measurement of odour with focus on sampling techniques. Waste Manag. 2005, 25, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Defoer, N.; De Bo, I.; Van Langenhove, H.; Dewulf, J.; Van Elst, T. Gas chromatography-mass spectrometry as a tool for estimating odour concentrations of biofilter effluents at aerobic composting and rendering plants. J. Chromatogr. A 2002, 970, 259–273. [Google Scholar] [CrossRef]
- Hudson, N.; McGahan, E.; Casey, K.; Lowe, S.; Galvin, G.; Jeston, P.; Dunlop, M. Odor emissions from anaerobic piggery ponds. Results of a three season, 14-month survey. Bioresour. Technol. 2001, 98, 1877–1887. [Google Scholar] [CrossRef]
- Sironi, S.; Capelli, L.; Céntola, P.; Del Rosso, R.; Il Grande, M. Odour emission factors for the prediction of odour emissions from plants for the mechanical and biological treatment of MSW. Atmos. Environ. 2006, 40, 7632–7643. [Google Scholar] [CrossRef]
- Cadena, E.; Colón, J.; Sánchez, A.; Font, A.; Artola, A. A methodology to develop an inventory of gaseous emissions in a composting plant. Waste Manag. 2009, 29, 2799–2807. [Google Scholar] [CrossRef] [Green Version]
- EN 13725:2022; Stationary Source Emissions—Determination of Odour Concentration by Dynamic Olfactometry. UNE Normalización Española: Madrid, Spain, 2022. Available online: https://www.en.une.org/encuentra-tu-norma/busca-tu-norma/proyecto/?c=P0052169 (accessed on 1 May 2022).
- Hawko, C.; Verriele, M.; Hucher, N.; Crunaire, S.; Leger, C.; Locoge, N.; Savary, G. A review of environmental odor quantification and qualification methods: The question of objectivity in sensory analysis. Sci. Total Environ. 2021, 795, 148862. [Google Scholar] [CrossRef]
- Barczak, R.J.; Kulig, A. Comparison of different measurement methods of odour and odorants used in the odour impact assessment of wastewater treatment plants in Poland. Water Sci. Technol. 2017, 75, 944–951. [Google Scholar] [CrossRef]
- Wisniewska, M.; Kulig, A.; Lelicinska-Serafin, K. Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste. Arch. Environ. Prot. 2020, 46, 60–68. [Google Scholar] [CrossRef]
- Damuchali, A.M.; Guo, H. Evaluation of a field olfactometer in odour concentration measurement. Biosyst. Eng. 2019, 187, 239–246. [Google Scholar] [CrossRef]
- Maurer, D.L.; Bragdon, A.M.; Short, B.C.; Ahn, H.; Koziel, J.A. Improving environmental odor measurements: Comparison of lab-based standard method and portable odor measurement technology. Arch. Environ. Prot. 2018, 44, 100–107. [Google Scholar] [CrossRef]
- Littarru, P. Environmental odours assessment from waste treatment plants: Dynamic olfactometry in combination with sensorial analysers “electronic noses”. Waste Manag. 2007, 27, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Jonca, J.; Pawnuk, M.; Arsen, A.; Sówka, I. Electronic Noses and Their Applications for Sensory and Analytical Measurements in the Waste Management Plants—A Review. Sensors 2022, 22, 1510. [Google Scholar] [CrossRef]
- D’Imporzano, G.; Crivelli, F.; Adani, F. Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting. Sci. Total Environ. 2008, 402, 278–284. [Google Scholar] [CrossRef]
- Savand-Roumi, E.; Mohtasebi, S.S.; Rafiee, S.; Ghanavati, H.; Khoshnevisan, B. Introducing new monitoring indices from the headspace of biogas digester via e-nose: A case study. Measurement 2022, 190, 110769. [Google Scholar] [CrossRef]
- López, R.; Cabeza, I.O.; Giráldez, I.; Díaz, M.J. Biofiltration of composting gases using different municipal solid waste-pruning residue composts: Monitoring by using an electronic nose. Bioresour. Technol. 2011, 102, 7984–7993. [Google Scholar] [CrossRef]
- Lucernoni, F.; Capelli, L.; Sironi, S. Comparison of different approaches for the estimation of odour emissions from landfill surfaces. Waste Manag. 2017, 63, 345–353. [Google Scholar] [CrossRef] [Green Version]
- Giungato, P.; de Gennaro, G.; Barbieri, P.; Briguglio, S.; Amodio, M.; de Gennaro, D.; Lasigna, F. Improving recognition of odors in a waste management plant by using electronic noses with different technologies, gas chromatography–mass spectrometry/olfactometry and dynamic olfactometry. J. Clean. Prod. 2016, 133, 1395–1402. [Google Scholar] [CrossRef]
- Mahmodi, K.; Mostafaei, M.; Mirzaee-Ghaleh, E. Detecting the different blends of diesel and biodiesel fuels using electronic nose machine coupled ANN and RSM methods. Sustain. Energy Technol. Assess. 2022, 51, 101914. [Google Scholar] [CrossRef]
- Scottish Environment Protection Agency. Odour Guidance. 2010. Available online: https://www.sepa.org.uk/media/59919/sepa_odour_guidance.pdf (accessed on 15 March 2022).
- Haug, R.T. The Practical Handbook of Compost Engineering; Lewis Publishers: Boca Raton, FL, USA, 1993. [Google Scholar]
- Nagata, Y. Measurement of Odor Threshold by Triangular Odor Bag Method. Ministry of Environment—Government of Japan. Odor Meas. Rev. 2003, 118, s118–s127. [Google Scholar]
- Lin, C.; Cheruiyot, N.K.; Hoang, H.G.; Le, T.H.; Tran, H.T.; Bui, X.T. Benzophenone biodegradation and characterization of malodorous gas emissions during co-composting of food waste with sawdust and mature compost. Environ. Technol. Innov. 2021, 21, 101351. [Google Scholar] [CrossRef]
- Tran, H.T.; Vu, C.T.; Lin, C.; Bui, X.T.; Huang, W.Y.; Vo, T.D.H.; Hoang, H.G.; Liu, W.Y. Remediation of highly fuel oil-contaminated soil by food waste composting and its volatile organic compound (VOC) emission. Bioresour. Technol. Rep. 2018, 4, 145–152. [Google Scholar] [CrossRef]
- Tran, H.T.; Lin, C.; Bui, X.T.; Ngo, H.H.; Cheruiyot, N.K.; Hoang, H.G.; Vu, C.T. Aerobic composting remediation of petroleum hydrocarbon-contaminated soil. Current and future perspectives. Sci. Total Environ. 2021, 752, 142250. [Google Scholar] [CrossRef]
- Eitzer, B.D. Emissions of volatile organic chemicals from municipal solid waste composting facilities. Environ. Sci. Technol. 1995, 29, 896–902. [Google Scholar] [CrossRef]
- Dorado, D.A.; Husni, S.; Pascual, G.; Puigdellivol, C.; Gabriel, D. Inventory and treatment of compost maturation emissions in a municipal solid waste treatment facility. Waste Manag. 2014, 34, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Schiavon, M.; Martini, L.M.; Corrà, C.; Scapinello, M.; Coller, G.; Tosi, P.; Ragazzi, M. Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices. Environ. Pollut. 2017, 231, 845–853. [Google Scholar] [CrossRef]
- Van Durme, G.P.; McNamara, B.F.; McGinley, C.M. Bench-scale removal of odor and volatile organic compounds at a composting facility. Water Environ. Res. 1992, 64, 19–27. [Google Scholar] [CrossRef]
- 43Mao, I.F.; Tsai, C.J.; Shen, S.H.; Lin, T.F.; Chen, W.K.; Chen, M.L. Critical components of odors in evaluating the performance of food waste composting plants. Sci. Total Environ. 2006, 370, 323–329. [Google Scholar] [CrossRef]
- Zhang, B.; Feifei, F.; Guo, C.; Yu, M.; Zhao, M.; Song, Y.; Li, Y. Evaluation of Maturity and Odor Emissions in the Process of Combined Composting of Kitchen Waste and Garden Waste. Appl. Sci. 2021, 11, 5500. [Google Scholar] [CrossRef]
- Scaglia, B.; Orzi, V.; Artola, A.; Font, X.; Davoli, E.; Sanchez, A.; Adani, F. Odours and volatile organic compounds emitted from municipal solid waste at different stage of decomposition and relationship with biological stability. Bioresour. Technol. 2011, 102, 4638–4645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, M.C.; Siles, J.A.; Diz, J.; Chica, A.F.; Martín, M.A. Modelling of composting process of different organic waste at pilot scale: Biodegradability and odor emissions. Waste Manag. 2017, 59, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Yang, Q.; Zhang, Z.; Li, G.; Luo, W.; Zhang, D. Use of additive and pretreatment to control odors in municipal kitchen waste during aerobic composting. J. Environ. Sci. 2015, 37, 83–90. [Google Scholar] [CrossRef] [PubMed]
- González, D.; Guerra, N.; Colón, J.; Gabriel, D.; Ponsá, S.; Sánchez, A. Filling in sewage sludge biodrying gaps: Greenhouse gases, volatile organic compounds and odour emissions. Bioresour. Technol. 2019, 291, 121857. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Li, Y.; Zhang, H.; Zhang, D.; Chadwick, D.; Li, G.; Wang, G.; Chi, M.; Yang, F. Effects of adding bulking agents on the biodrying of kitchen waste and the odor emissions produced. J. Environ. Sci. 2018, 67, 344–355. [Google Scholar] [CrossRef]
- Toledo, M.; Márquez, P.; Siles, J.A.; Chica, A.F.; Martín, M.A. Co-composting of sewage sludge and eggplant waste at full scale: Feasibility study to valorize eggplant waste and minimize the odoriferous impact of sewage sludge. J. Environ. Manag. 2019, 247, 205–213. [Google Scholar] [CrossRef]
- Han, Z.; Qi, F.; Wang, H.; Liu, B.; Shen, X.; Song, C.; Bao, Z.; Zhao, X.; Xu, Y.; Sun, D. Emission characteristics of volatile sulfur compounds (VSCs) from a municipal sewage sludge aerobic composting plant. Waste Manag. 2018, 77, 593–602. [Google Scholar] [CrossRef]
- Rincón, C.A.; De Guardia, A.; Couvert, A.; Soutrel, I.; Guezel, S.; Le Serrec, C. Odor generation patterns during different operational composting stages of anaerobically digested sewage sludge. Waste Manag. 2019, 95, 661–673. [Google Scholar] [CrossRef]
- González, D.; Colón, J.; Gabriel, D.; Sánchez, A. The effect of the composting time on the gaseous emissions and the compost stability in a full-scale sewage sludge composting plant. Sci. Total Environ. 2019, 654, 311–323. [Google Scholar] [CrossRef]
- González, D.; Guerra, N.; Colón, J.; Gabriel, D.; Ponsá, S.; Sánchez, A. Characterization of the Gaseous and Odour Emissions from the Composting of Conventional Sewage Sludge. Atmosphere 2020, 11, 211. [Google Scholar] [CrossRef] [Green Version]
- Blazy, V.; de Guardia, A.; Benoist, J.C.; Daumoin, M.; Guiziou, F.; Lemasle, M.; Wolbert, D.; Barrington, S. Correlation of chemical composition and odor concentration for emissions from pig slaughterhouse sludge composting and storage. Chem. Eng. J. 2015, 276, 398–409. [Google Scholar] [CrossRef]
- Toledo, M.; Gutiérrez, M.C.; Peña, A.; Siles, J.A.; Martína, M.A. Co-composting of chicken manure, alperujo, olive leaves/pruning and cereal straw at full-scale: Compost quality assessment and odour emission. Process Saf. Environ. Prot. 2020, 139, 362–370. [Google Scholar] [CrossRef]
- Zang, B.; Li, S.; Michel, F., Jr.; Li, G.; Luo, Y.; Zhang, D.; Li, Y. Effects of mix ratio, moisture content and aeration rate on sulfur odor emissions during pig manure composting. Waste Manag. 2016, 56, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, G.; Huda, N.; Zhang, B.; Wang, M.; Luoa, W. Effects of moisture and carbon/nitrogen ratio on gaseous emissions and maturity during direct composting of cornstalks used for filtration of anaerobically digested manure centrate. Bioresour. Technol. 2020, 298, 122503. [Google Scholar] [CrossRef] [PubMed]
- Greff, B.; Szigeti, J.; Nagy, A.; Lakatos, E.; Varga, L. Influence of microbial inoculants on co-composting of lignocellulosic crop residues with farm animal manure: A review. J. Environ. Manag. 2022, 302, 114088. [Google Scholar] [CrossRef]
- Colón, J.; Ponsá, S.; Álvarez, C.; Vinot, M.; Lafuente, F.J.; Gabriel, D.; Sánchez, A. Analysis of MSW full-scale facilities based on anaerobic digestion and/or composting using respiration indices as performance indicators. Bioresour. Technol. 2017, 236, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Gao, X.; Wang, W.; Zheng, L.; Zhou, Y.; Sun, Y. Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction. Renew. Energy 2012, 44, 463–468. [Google Scholar] [CrossRef]
- Wisniewska, M.; Kulig, A.; Lelicinska-Serafin, K. The Impact of Technological Processes on Odorant Emissions at MunicipalWaste Biogas Plants. Sustainability 2020, 12, 5457. [Google Scholar] [CrossRef]
- Wisniewska, M.; Kulig, A.; Lelicinska-Serafin, K. Odour Nuisance at Municipal Waste Biogas Plants and the Effect of Feedstock Modification on the Circular Economy—A Review. Energies 2021, 14, 6470. [Google Scholar] [CrossRef]
- Orzi, V.; Cadena, E.; D’Imporzano, G.; Artola, A.; Davoli, E.; Crivelli, M.; Adani, F. Potential odour emission measurement in organic fraction of municipal solid waste during anaerobic digestion: Relationship with process and biological stability parameters. Bioresour. Technol. 2010, 101, 7330–7337. [Google Scholar] [CrossRef]
- Di, Y.; Liu, J.; Liu, J.; Liu, S.; Yan, L. Characteristic analysis for odor gas emitted from food waste anaerobic fermentation in the pretreatment workshop. J. Air Waste Manag. Assoc. 2013, 63, 1173–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, D.; Colón, J.; Sánchez, A.; Gabriel, D. Multipoint characterization of the emission of odour, volatile organic compounds and greenhouse gases from a full-scale membrane-based municipal WWTP. J. Environ. Manag. 2022, 313, 115002. [Google Scholar] [CrossRef] [PubMed]
- Capelli, L.; Sironi, S.; Del Rosso, R.; Céntola, P. Predicting odour emissions from wastewater treatment plants by means of odour emission factors. Water Res. 2009, 43, 1977–1985. [Google Scholar] [CrossRef] [PubMed]
- Carrera-Chapela, F.; Donoso-Bravo, A.; Souto, J.A.; Ruiz-Filippi, G. Modelling the odor generation in WWTP: An integrated approach review. Water Air Soil Pollut. 2014, 225, 1932. [Google Scholar] [CrossRef] [Green Version]
- Dinçer, F.; Dinçer, F.K.; Sari, D.; Ceylan, Ö.; Ercan, Ö. Dispersion modelling and air quality measurements to evaluate the odor impact of a wastewater treatment plant in Izmir. Atmos. Pollut. Res. 2020, 11, 2119–2125. [Google Scholar] [CrossRef]
- De Sanctis, M.; Murgolo, S.; Altieri, V.G.; De Gennaro, L.; Amodio, M.; Mascolo, G.; Di Iaconi, C. An innovative biofilter techonlogy for reducing environmental spreading of emerging pollutants and odour emissions during municipal sewage treatment. Sci. Total Environ. 2022, 803, 149966. [Google Scholar] [CrossRef]
- Burgués, J.; Esclapez, M.D.; Doñate, S.; Pastor, L.; Marco, S. Aerial Mapping of odorous gases in a wastewater treatment plant using a small drone. Remote Sens. 2021, 13, 1757. [Google Scholar] [CrossRef]
- Burgués, J.; Esclapez, M.D.; Doñate, S.; Marco, S. RHINOS: A lightweight portable electronic nose for real-time odor quantification in wastewater treatment plants. iScience 2021, 24, 103371. [Google Scholar] [CrossRef]
- Naddeo, V.; Zarra, T.; Oliva, G.; Kubo, A.; Ukida, N.; Higuchi, T. Odour measurement in wastewater treatment plant by a new prototype of e.Nose: Correlation and comparison study with reference to both European and Japanese approaches. Chem. Eng. Trans. 2016, 54, 85–90. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S.; Del Rosso, R.; Guillot, J.M. Measuring odours in the environment vs. dispersion modelling: A review. Atmos. Environ. 2013, 79, 731–743. [Google Scholar] [CrossRef]
- Onofrio, M.; Spataro, R.; Botta, S. A review on the use of air dispersion models for odour assessment. Int. J. Environ. Pollut. 2020, 67, 108358. [Google Scholar] [CrossRef]
- Varela-Bruce, C.; Antileo, C. Assessment of odour emissions by the use of a dispersion model in the context of the proposed new law in Chile. J. Environ. Manag. 2021, 298, 113208. [Google Scholar] [CrossRef] [PubMed]
- Zarra, T.; Belgiorno, V.; Naddeo, V. Environmental odour nuisance assessment in urbanized area: Analysis and comparison of different and integrated approaches. Atmosphere 2021, 12, 690. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kurade, M.B.; Jeon, B.-H.; Kim, J.; Zheng, Y.; Salama, E.-S. Water condition in biotrickling filtration for the efficient removal of gaseous contaminants. Crit. Rev. Biotechnol. 2021, 41, 1279–1296. [Google Scholar] [CrossRef] [PubMed]
- Shammay, A.; Evanson, I.E.J.; Stuetz, R.W. Selection framework for the treatment of sewer network emissions. J. Environ. Manag. 2019, 249, 109305. [Google Scholar] [CrossRef]
- Beniwal, D.; Taylor-Edmonds, L.; Armour, J.; Andrews, R.C. Ozone/peroxide advanced oxidation in combination with biofiltration for taste and odour control and organics removal. Chemosphere 2018, 212, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, S.; Neerackal, G.; Buyuksonmez, F. Removal of beta-pinene and limonene using compost biofilter. J. Air Waste Manag. Assoc. 2013, 63, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Zheng, T.; Li, L.; Chai, F.; Wang, Y. Factors impacting the performance and microbial populations of three biofilters for co-treatment of H2S and NH3 in a domestic waste landfill site. Process Saf. Environ. Prot. 2021, 149, 410–421. [Google Scholar] [CrossRef]
- Márquez, P.; Herruzo-Ruiz, A.M.; Siles, J.A.; Alham, J.; Michán, C.; Martín, M.A. Influence of packing material on the biofiltration of butyric acid: A comparative study from a physico-chemical, olfactometric and microbiological perspective. J. Environ. Manag. 2021, 294, 113044. [Google Scholar] [CrossRef]
- Barbusinski, K.; Kalemba, K.; Kasperczyk, D.; Urbaniec, K.; Kozik, V. Biological methods for odor treatment—A review. J. Clean. Prod. 2017, 152, 223–241. [Google Scholar] [CrossRef]
- Marycz, M.; Brillowska-Dąbrowska, A.; Muñoz, R.; Gębicki, J. A state of the art review on the use of fungi in biofiltration to remove volatile hydrophobic pollutants. Rev. Environ. Sci. Biotechnol. 2022, 21, 225–246. [Google Scholar] [CrossRef]
- Liu, J.; Yue, P.; Zang, N.; Lu, C.; Chen, X. Removal of odors and VOCs in municipal solid waste comprehensive treatment plants using a novel three-stage integrated biofilter: Performance and bioaerosol emissions. Front. Environ. Sci. Eng. 2021, 15, 48. [Google Scholar] [CrossRef] [PubMed]
- López, M.E.; Rene, E.R.; Boger, Z.; Veiga, M.C.; Kennes, C. Modelling the removal of volatile pollutants under transient conditions in a two-stage bioreactor using artificial neural networks. J. Hazard. Mater. 2017, 324, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.-Z.; Chu, Y.-X.; Wang, C.; Li, H.J.; Kang, Y.-R.; He, R. Enhanced removal of methanethiol and its conversion products in the presence of methane in biofilters. J. Clean. Prod. 2019, 215, 75–83. [Google Scholar] [CrossRef]
- Yun, J.; Jung, H.; Ryu, H.W.; Oh, K.-C.; Jeon, J.-M.; Cho, K.-S. Odor mitigation and bacterial community dynamics in on-site biocovers at a sanitary landfill in South Korea. Environ. Res. 2018, 166, 516–528. [Google Scholar] [CrossRef]
- Gabriel, D.; Deshusses, M.A. Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. Proc. Natl. Acad. Sci. USA 2003, 100, 6308–6312. [Google Scholar] [CrossRef] [Green Version]
- Bua, H.; Carvalho, G.; Huang, C.; Sharma, K.R.; Yuan, Z.; Song, Y.; Bond, P.; Keller, J.; Yu, M.; Jiang, G. Evaluation of continuous and intermittent trickling strategies for the removal of hydrogen sulfide in a biotrickling filter. Chemosphere 2022, 291, 132723. [Google Scholar] [CrossRef]
- You, J.; Chen, J.; Sun, Y.; Fang, J.; Cheng, Z.; Ye, J.; Chen, D. Treatment of mixed waste-gas containing H2S, dichloromethane and tetrahydrofuran by a multi-layer biotrickling filter. J. Clean. Prod. 2021, 319, 128630. [Google Scholar] [CrossRef]
- Caicedo, F.; Estrada, J.M.; Silva, J.P.; Muñoz, R.; Lebrero, R. Effect of packing material configuration and liquid recirculation rate on the performance of a biotrickling filter treating VOCs. J. Chem. Technol. Biotechnol. 2018, 93, 2299–2306. [Google Scholar] [CrossRef]
- Andraskar, J.; Yadav, S.; Kapley, A. Challenges and Control Strategies of Odor Emission from Composting Operation. Appl. Biochem. Biotechnol. 2021, 193, 2331–2356. [Google Scholar] [CrossRef]
- Prado, O.J.; Gabriel, D.; Lafuente, J. Economical assessment of the design, construction and operation of open-bed biofilters for waste gas treatment. J. Environ. Manag. 2009, 90, 2515–2523. [Google Scholar] [CrossRef] [PubMed]
- Helbich, S.; Dobslaw, D.; Schulz, A.; Engesser, K.-H. Styrene and Bioaerosol Removal from Waste Air with a Combined Biotrickling Filter and DBD-Plasma System. Sustainability 2020, 12, 9240. [Google Scholar] [CrossRef]
- Santos-Clotas, E.; Cabrera-Codony, A.; Martin, M.J. Coupling adsorption with biotechnologies for siloxane abatement from biogas. Renew. Energy 2020, 153, 314–323. [Google Scholar] [CrossRef]
- Prado, O.J.; Redondo, R.M.; Lafuente, J.; Gabriel, D. Retrofitting of an Industrial Chemical Scrubber into a Biotrickling Filter: Performance at a Gas Contact Time below 1 s. J. Environ. Eng. 2009, 135, 359–366. [Google Scholar] [CrossRef]
- Sun, S.; Jia, T.; Chen, K.; Peng, Y.; Zhang, L. Simultaneous removal of hydrogen sulfide and volatile organic sulfur compounds in off-gas mixture from a wastewater treatment plant using a two-stage bio-trickling filter system. Front. Environ. Sci. Eng. 2019, 13, 60. [Google Scholar] [CrossRef]
Compound | Detection Threshold (ppmV) * | Type of Odor |
---|---|---|
Ammonia | 0.039 | Stringent |
Hydrogen sulfide | 0.00047 | Rotten eggs |
Methyl mercaptan | 0.0011 | Rotten cabbage |
Ethylamine | 0.026 | Fishy, bitter |
Dimethyl amine | 0.047 | Fishy, pungent |
Acetaldehyde | 0.004 | Fruity |
Ethyl mercaptan | 0.002 | Rotten cabbage |
Dimethyl sulfide | 0.001 | Rotten vegetables |
Dimethyl disulfide | 0.001 | Garlic-like |
Diethyl sulfide | 0.0008 | Garlic-like |
Butyl mercaptan | 0.0005 | Garlic-like |
Acetic acid | 0.008 | Vinegar, acidic |
Propionic acid | 0.0057 | Rancid, acidic |
α-pinene | 0.011 | Herbal |
Limonene | 0.038 | Orange |
Butyric acid | 0.00019 | Sweat |
Skatole (3-methylindole) | 0.012 | Feces |
Waste Type | Location | Main Odorant Families | Main Odorants (Concentrations, ppmv) | Ref. |
---|---|---|---|---|
MSW | Composting | aromatic HC aliphatic HC ketones terpenes | 2-butanone (1.46–4.90) Toluene (0.19–1.04) Limonene (0.22–1.01) | [39] |
MSW | Compost maturation | ketones terpens alcohols | n-butanol (3.47) Methyl ethyl ketone (0.8) Limonene (1.93) | [40] |
MSW | Indoor air composting hall | aromatic HC, aliphatic HC, terpenes S compounds | Decane (0.47–0.60) Toluene (0.38–0.72) Limonene (1.87–3.11) H2S (0.8–0.9) DMS (0.11–0.30) | [12] |
Sewage sludge | Dynamic windrows | aldehydes ketones S compounds carboxylic acids | Isovaleraldehyde (0.04) 2-butanone (0.46–0.52) DMS (0.55–1.15) DMDS (0.40–1.39) Butyric acid (0.09–15) | [41] |
Sewage sludge | Composting | S-compounds terpens esters | Pinenes (α and β) (0.1–2.8) Limonene (0.01–10) DMS (0.08–1.2) DMDS (0.3–18) Ethyl isovalerate (0.1–2.8) | [7] |
Sewage sludge | Composting | S compounds terpenes | DMS (NA) DMDS (NA) Limonene (NA) α-pinene (NA) | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, D.; Gabriel, D.; Sánchez, A. Odors Emitted from Biological Waste and Wastewater Treatment Plants: A Mini-Review. Atmosphere 2022, 13, 798. https://doi.org/10.3390/atmos13050798
González D, Gabriel D, Sánchez A. Odors Emitted from Biological Waste and Wastewater Treatment Plants: A Mini-Review. Atmosphere. 2022; 13(5):798. https://doi.org/10.3390/atmos13050798
Chicago/Turabian StyleGonzález, Daniel, David Gabriel, and Antoni Sánchez. 2022. "Odors Emitted from Biological Waste and Wastewater Treatment Plants: A Mini-Review" Atmosphere 13, no. 5: 798. https://doi.org/10.3390/atmos13050798
APA StyleGonzález, D., Gabriel, D., & Sánchez, A. (2022). Odors Emitted from Biological Waste and Wastewater Treatment Plants: A Mini-Review. Atmosphere, 13(5), 798. https://doi.org/10.3390/atmos13050798