A Review of Selected Types of Indoor Air Purifiers in Terms of Microbial Air Contamination Reduction
Abstract
:1. Introduction
- Controlling the sources of pollution and undertaking measures to remove or reduce them
- Improving the ventilation system capacity
- Applying technologies for indoor air cleaning
2. Methods
Searching Strategy
3. Efficiency, Effectiveness, Clean Air Delivery Rates (CADR) for Air Cleaners
4. Main Technologies Used in Air Purifiers
4.1. Air Purifiers with Mechanical Air Filtration
4.2. Air Purifiers with Cold Plasma Generators
4.3. Air Purifiers Utilizing Photocatalytic Processes (PCO)
4.4. Air Purifiers Using the UV Light Technology
4.5. Air Purifiers Using Electrostatic Filtration
5. Recommendations of International Organizations
6. Discussion
7. Conclusions and Future Directions
- ➢
- CADR rate;
- ➢
- Intended place of use limiting the possibility of airflow obstruction;
- ➢
- Effectiveness confirmed by results of tests conducted by reliable third entity;
- ➢
- Potential impact of the purifying technology on human health and safety.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fields, B.S.; Benson, R.F.; Besser, R.E. Legionella and Legionnaires’ Disease: 25 years of investigation. Clin. Microbiol. Rev. 2002, 15, 506–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol health effects and exposure assessment: Progress and prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Leung, G.M.; Tang, J.W.; Yang, X.; Chao, C.Y.H.; Lin, J.Z.; Lu, J.W.; Nielsen, P.V.; Niu, J.; Qian, H.; et al. Role of ventilation in airborne transmission of infectious agents in the built environment—A multidisciplinary systematic review. Indoor Air 2007, 17, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Peccia, J.; Milton, D.K.; Reponen, T.; Hill, J. A role for environmental engineering and science in preventing bioaerosol-related disease. Environ. Sci. Technol. 2008, 42, 4631–4637. [Google Scholar] [CrossRef]
- Falkinham, J.O. Surrounded by mycobacteria: Nontuberculous mycobacteria in the human environment. J. Appl. Microbiol. 2009, 107, 356–367. [Google Scholar] [CrossRef]
- Hospodsky, D.; Qian, J.; Nazaroff, W.W.; Yamamoto, N.; Bibby, K.; Rismani-Yazdi, H.; Peccia, J. Human Occupancy as a Source of Indoor Airborne Bacteria. PLoS ONE 2012, 7, e34867. [Google Scholar] [CrossRef] [Green Version]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelman, W.H. The national human activity pattern survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Brasche, S.; Bischof, W. Daily time spent indoors in German homes-Baseline data for the assessment of indoor exposure of German occupants. Int. J. Hyg. Environ. Health 2005, 208, 247–253. [Google Scholar] [CrossRef]
- Yang, W.; Lee, K.; Yoon, C.; Yu, S.; Park, K.; Choi, W. Determinants of residential indoor and transportation activity times in Korea. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Tringe, S.G.; Zhang, T.; Liu, X.; Yu, Y.; Lee, W.H.; Yap, J.; Yao, F.; Suan, S.T.; Ing, S.K.; Haynes, M.; et al. The airborne metagenome in an indoor urban environment. PLoS ONE 2008, 3, e1862. [Google Scholar] [CrossRef]
- Kembel, S.W.; Jones, E.; Kline, J.; Northcutt, D.; Stenson, J.; Womack, A.M.; Bohannan, B.J.; Brown, G.Z.; Green, J.L. Architectural design influences the diversity and structure of the built environment microbiome. ISME J. 2012, 6, 1469–1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rintala, H.; Pitkäranta, M.; Toivola, M.; Paulin, L.; Nevalainen, A. Diversity and seasonal dynamics of bacterial community in indoor environment. BMC Microbiol. 2008, 8, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, R.I.; Miletto, M.; Lindow, S.E.; Taylor, J.W.; Bruns, T.D. Airborne bacterial communities in residences: Similarities and differences with fungi. PLoS ONE 2014, 9, e91283. [Google Scholar] [CrossRef] [PubMed]
- Dunn, R.R.; Fierer, N.; Henley, J.B.; Leff, J.W.; Menninger, H.L. Home life: Factors structuring the bacterial diversity found within and between homes. PLoS ONE 2013, 8, e64133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oneț, D.C.; Ilieș, A.; Ilieș, G.V.; Herman, L.; Burtă, F.; Marcu, R.; Buhaș, T.; Caciora, Ș.; Baias, C.; Oneț, M.; et al. Indoor air quality assessment and its perception. Case study-historic wooden church, Romania. Rom. Biotechnol. Lett. 2020, 3, 1547–1551. Available online: https://www.e-repository.org/rbl/vol.25/iss.3/5.pdf (accessed on 15 December 2021). [CrossRef]
- Krzyśko-Łupicka, T. Zagrożenia mikologiczne w budownictwie–problem ogólnoświatowy in: Problemy w ochronie środowiska w województwie opolskim w latach 2010–2020. (ed. K. Oszańca). Opol. Ekoforum. Atmoterm SA 2010, 203–222. [Google Scholar]
- Luengas, A.; Barona, A.; Hort, C.; Gallastegui, G.; Platel, V.; Elias, A. A review of indoor air treatment technologies. Rev. Environ. Sci. Biotechnol. 2015, 14, 499–522. [Google Scholar] [CrossRef]
- EPA 402-F-09-002, July 2018, Residential Air Cleaners, a Technical Summary. Available online: https://www.epa.gov/sites/default/files/2018-07/documents/residential_air_cleaners_-_a_technical_summary_3rd_edition.pdf (accessed on 15 December 2021).
- Janińska, B. Metody oceny skażenia obiektów budowlanych grzybami pleśniowymi. Found. Civ. Environ. Eng. 2002, 3, 47–64. [Google Scholar]
- Augustyńska, D.; Pośniak, M. Czynniki Szkodliwe w Środowisku Pracy Wartości Dopuszczalne; CIOP-PIB: Warsaw, Poland, 2014. [Google Scholar]
- Gołofit-Szymczak, M.; Ławniczek-Wałczyk, A.; Górny, R.L. Bioaerozole w pomieszczeniach pracy-źródła i zagrożenia. Bezp. Pr. Nauka Prakt. 2013, 3, 9–11. [Google Scholar]
- Gołofit-Szymczak, M.; Skowroń, J. Zagrożenia mikrobiologiczne w pomieszczeniach biurowych. Bezp. Pr. Nauka Prakt. 2005, 3, 29–31. [Google Scholar]
- Leung, D.Y.C. Outdoor-indoor air pollution in urban environment: Challenges and opportunity. Front. Environ. Sci. 2015, 2, 69. [Google Scholar] [CrossRef]
- Levin, H. Controlling Sources of Indoor Air Pollution. Chemical, Microbiological, Health and Comfort Aspects of Indoor Air Quality—State of the Art in SBS. In Eurocourses: Chemical and Environmental Science; Knöppel, H., Wolkoff, P., Eds.; Springer: Dordrecht, The Netherlands, 1992; Volume 4. [Google Scholar] [CrossRef]
- González-Martín, J.; Kraakman, N.J.R.; Pérez, C.; Lebrero, R.; Muñoz, R. A state–of–the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere 2021, 262, 128376. [Google Scholar] [CrossRef] [PubMed]
- Zaatari, M.; Nirlo, E.; Jareemit, D.; Crain, N.; Srebric, J.; Siegel, J. Ventilation and indoor air quality in retail stores: A critical review (RP-1596). HVACR Res. 2014, 20, 276–294. [Google Scholar] [CrossRef] [Green Version]
- Basińska, M.; Michałkiewicz, M.; Ratajczak, K. Impact of physical and microbiological parameters on proper indoor air quality in nursery. Environ. Int. 2019, 132, 105098. [Google Scholar] [CrossRef] [PubMed]
- Ilieș, D.C.; Marcu, F.; Caciora, T.; Indrie, L.; Ilieș, A.; Albu, A.; Costea, M.; Burtă, L.; Baias, Ș.; Ilieș, M.; et al. Investigations of Museum Indoor Microclimate and Air Quality. Case Study from Romania. Atmosphere 2021, 12, 286. [Google Scholar] [CrossRef]
- Aditya, R.; Chetan, M.; Sarthak, J.; Naveen, S. A review of general and modern methods of air purification. J. Therm. Eng. 2018, 5, 22–28. [Google Scholar] [CrossRef] [Green Version]
- ASHRAE Position Document on Filtration and Air Cleaning. 2015. Available online: https://www.ashrae.org/file%20library/about/position%20documents/filtration-and-air-cleaning-pd-feb.2.2021.pdf (accessed on 15 December 2021).
- Batterman, S.; Godwin, C.; Jia, C. Long duration tests of room air filters in cigarette smokers’ homes. Environ. Sci. Technol. 2005, 39, 7260–7268. [Google Scholar] [CrossRef]
- Shaughnessy, R.J.; Sextro, R.G. What is an effective portable air cleaning device? A review. J. Occup. Environ. Hyg. 2006, 3, 169–181. [Google Scholar] [CrossRef]
- Ongwandee, M.; Kruewan, A. Evaluation of Portable Household and In-Car Air Cleaners for Air Cleaning Potential and Ozone-Initiated Pollutants. Indoor Built Environ. 2013, 22, 659–668. [Google Scholar] [CrossRef]
- Peck, R.L.; Grinshpun, S.A.; Yermakov, M.; Rao, M.B.; Kim, J.; Reponen, T. Efficiency of portable HEPA air purifiers against traffic related combustion particles. Build. Environ. 2016, 98, 21–29. [Google Scholar] [CrossRef]
- Xu, Z. Fundamentals of Air Cleaning Technology and Its Application in Cleanrooms; Springer: Berlin/Heidelberg, Germany, 2014; pp. 267–288. ISBN 978-3-642-39374-7. [Google Scholar]
- PN-EN 1822-1,2019-05; High-Efficiency Air Filters (EPA, HEPA and ULPA)—Part 1: Classification, Performance Testing, Marking. Polish Committee for Standardization: Warsaw, Poland, 2019.
- Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009, 1–2, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Luo, J.; Menkhaus, T.J.; Varadaraju, H.; Sun, Y.; Fong, H. Antimicrobial nano-fibrous membranes developed from electrospun polyacrylonitrile nanofibers. J. Membr. Sci. 2011, 1–2, 499–505. [Google Scholar] [CrossRef]
- Komaladewi, A.A.I.A.S.; Khoiruddin, K.; Surata, I.W.; Subagia, I.D.G.A.; Wenten, I.G. Recent advances in antimicrobial air filter. E3S Web Conf. 2018, 67, 03016. [Google Scholar] [CrossRef]
- Al-abdalall, A.H.; Al-dakheel, S.A.; Al-Abkari, H.A. Energy-efficient and Sustainable Buildings. In Impact of Air-Conditioning Filters on Microbial Growth and Indoor Air Pollution; IntechOpen: London, UK, 2019; Chapter 1; pp. 1–22. [Google Scholar] [CrossRef] [Green Version]
- Möritz, M.; Peters, H.; Nipko, B.; Rüden, H. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems. Int. J. Hyg. Environ. Health 2001, 203, 401–409. [Google Scholar] [CrossRef]
- Niedźwiedź, I.; Waśko, A.; Pawłat, J.; Polak-Berecka, M. The State of Research on Antimicrobial Activity of Cold Plasma. Pol. J. Microbiol. 2019, 68, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Wu, Y.; Sun, K.; Chen, Q.; Shen, F.; Zhang, J.; Yao, M.; Zhu, T.; Fang, J. Rapid inactivation of biological species in the air using atmospheric pressure nonthermal plasma. Environ. Sci. Technol. 2012, 46, 3360–3368. [Google Scholar] [CrossRef]
- Gallagher, M.J.; Vaze, N.; Gangoli, S.; Vasilets, V.N.; Gutsol, A.F.; Milovanova, T.N.; Anandan, S.; Murasko, D.M.; Fridman, A.A. Rapid inactivation of airborne bacteria using atmospheric pressure dielectric barrier grating discharge. IEEE Trans. Plasma Sci. 2007, 35, 1501–1510. [Google Scholar] [CrossRef]
- Korachi, M.; Turan, Z.; Şentürk, K.; Şahin, F.; Aslan, N. An investigation into the biocidal effect of high voltage AC/DC atmospheric corona discharges on bacteria, yeasts, fungi and algae. J. Electrost. 2009, 67, 678–685. [Google Scholar] [CrossRef]
- Liao, X.; Liu, D.; Xiang, Q.; Ahn, J.; Chen, S.; Ye, X.; Ding, T. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control 2017, 75, 83–91. [Google Scholar] [CrossRef]
- Fan, X.; Zhu, T.L.; Wang, M.Y.; Li, X.M. Removal of low-concentration BTX in air using a combined plasma catalysis system. Chemosphere 2009, 75, 1301–1306. [Google Scholar] [CrossRef]
- Ragazzi, M.; Tosi, P.; Rada, E.C.; Torretta, V.; Schiavon, M. Effluents from MBT plants: Plasma techniques for the treatment of VOCs. Waste Manag. 2014, 34, 2400–2406. [Google Scholar] [CrossRef] [PubMed]
- Hoeben, W.F.L.M.; Beckers, F.J.C.M.; Pemen, A.J.M.; Van Heesch, E.J.M.; Kling, W.L. Oxidative degradation of tolueneand limonene in air by pulsed corona technology. J. Phys. Dappl. Phys. 2012, 45, 055202. [Google Scholar] [CrossRef]
- Bahri, M.; Haghighat, F. Plasma-based indoor air cleaning technologies: The state of the art-review. CLEAN: Soil Air Water 2014, 42, 1667–1680. [Google Scholar] [CrossRef]
- Aghighi, A.; Haghighat, F. Evaluation of nano-titanium dioxide (TiO2) catalysts for ultraviolet photocatalytic oxidation air cleaning devices. J. Environ. Chem. Eng. 2015, 3, 1622–1629. [Google Scholar] [CrossRef]
- Hay, S.O.; Obee, T.; Luo, Z.; Jiang, T.; Meng, Y.; He, J.; Murphy, S.C.; Suib, S. The viability of photocatalysis for air purification. Molecules 2015, 20, 1319–1356. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, A.T.; Destaillats, H.; Dullivan, D.P.; Fisk, W.J. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications. Indoor Air 2007, 17, 305–316. [Google Scholar] [CrossRef]
- Zhong, L.; Haghighat, F.; Lee, C.S.; Lakdawala, N. Performance of ultraviolet photocatalytic oxidation for indoor air applications: Systematic experimental evaluation. J. Hazard. Mater. 2013, 261, 130–138. [Google Scholar] [CrossRef]
- Mamaghani, A.H.; Haghighat, F.; Lee, C.-S. Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Appl. Catal. B Environ. 2017, 203, 247–269. [Google Scholar] [CrossRef]
- Baranowska-Wójcik, E.; Szwajgier, D.; Oleszczuk, P. Effects of Titanium Dioxide Nanoparticles Exposure on Human Health—A Review. Biol. Trace Elem. Res. 2020, 193, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Shining a Light on COVID-19. Nat. Photonics 2020, 14, 337. [CrossRef]
- García de Abajo, F.J.; Hernández, R.J.; Kaminer, I.; Meyerhans, A.; Rosell-Llompart, J.; Sanchez-Elsner, T. Back to Normal: An Old Physics Route to Reduce SARS-CoV-2 Transmission in Indoor Spaces. ACS Nano 2020, 14, 7704–7713. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, W. Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Raeiszadeh, M.; Adeli, B. A Critical Review on Ultraviolet Disinfection Systems against COVID-19 Outbreak: Applicability, Validation, and Safety Considerations. ACS Photonics 2020, 7, 2941–2951. [Google Scholar] [CrossRef]
- Bolton, J.R.; Cotton, C.A. The Ultraviolet Disinfection Handbook; American Water Works Association: Denver, CO, USA, 2008; p. 80235. [Google Scholar]
- Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D. UV inactivation of pathogenic and indicator microorganisms. Appl. Environ. Microbiol. 1985, 49, 1361–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riley, R.L.; Knight, M.; Middlebrook, G. Ultraviolet susceptibility of BCG and virulent tubercle bacilli. Am. Rev. Respir. Dis. 1976, 113, 413–418. [Google Scholar] [CrossRef]
- Abshire, R.L.; Dunton, H. Resistance of selected strains of Pseudomonas aeruginosa to low-intensity ultraviolet radiation. Appl. Environ. Microbiol. 1981, 41, 1419–1423. [Google Scholar] [CrossRef] [Green Version]
- Ko, G.; First, M.W.; Burge, H.A. Influence of relative humidity on particle size and UV sensitivity of Serratia marcescens and BCG aerosols. Tuberc. Lung Dis. 2000, 80, 217–228. [Google Scholar] [CrossRef]
- Ultraviolet Radiation Guide, Technical Manual NEHC-TM92-5. In Bureau of Medicine and Surgery; Navy Environmental Health Center: Philadelphia, PA, USA, 1992.
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV Radiation and the Skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [Green Version]
- Van Kuijk, F.J.G.M. Effects of Ultraviolet Light on the Eye: Role of Protective Glasses. Environ. Health Perspect. 1991, 96, 177–184. [Google Scholar] [CrossRef]
- Teska, P.; Dayton, R.; Li, X.; Lamb, J.; Strader, P. Damage to Common Healthcare Polymer Surfaces from UV Exposure. Nano Life 2020, 10, 20500014. [Google Scholar] [CrossRef]
- Holger, C. Ozone Generation by Ultraviolet Lamps. Photochem. Photobiol. 2021, 97, 471–476. [Google Scholar] [CrossRef]
- Nardell, E.; Vincent, R.; Sliney, D.H. Upper-Room Ultraviolet Germicidal Irradiation (UVGI) for Air Disinfection: A Symposium in Print. Photochem. Photobiol. 2013, 89, 4. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Xiao, M.; Zhang, X.; Gal, C.; Chen, X.; Liu, L.; Pan, S.; Wu, J.; Tang, L.; Clements-Croome, D. A review of air filtration technologies for sustainable and healthy building ventilation. Sustain. Cities Soc. 2017, 32, 375–396. [Google Scholar] [CrossRef]
- Jakober, C.; Phillips, T. Evaluation of Ozone Emissions from Portable Indoor Air Cleaners: Electrostatic Precipitators and Ionizers. In Staff Technical Report; California Air Resources Board: Sacramento, CA, USA, 2008. [Google Scholar]
- Lin, W.Y.; Chang, Y.Y.; Lien, C.T.; Kuo, C.W. Separation characteristics of submicron particles in an electrostatic precipitator with alternating electric field Corona charger. Aerosol Sci. Technol. 2011, 45, 393–400. [Google Scholar] [CrossRef]
- ECDC. Heating, Ventilation and Air-Conditioning Systems in the Context of COVID-19. Available online: https://www.ecdc.europa.eu/en/publications-data/heating-ventilation-air-conditioning-systems-covid-19 (accessed on 15 December 2021).
- Chartered Institution of Building Services Engineers (CIBSE). CORONAVIRUS, SARS-COV-2, COVID-19 and HVAC SYSTEMS. 2020. Available online: https://www.cibse.org/coronavirus-(covid-19)/coronavirus-covid-19-and-hvac-systems (accessed on 15 December 2021).
- United States Environmental Protection Agency. Indoor Air in Homes and Coronavirus (COVID-19). 2020. Available online: https://www.epa.gov/coronavirus/indoor-air-homes-and-coronavirus-covid-19 (accessed on 15 December 2021).
- Federation of European Heating Ventilation and Air Conditioning Associations (REHVA). COVID-19 Guidance Document. Available online: https://www.rehva.eu/fileadmin/user_upload/REHVA_COVID-19_guidance_document_V3_03082020.pdf (accessed on 3 August 2020).
- Scientific Advisory Committee on Emergencies Environment and Modelling Group (SAGEEMG). UK, Potential Application of Air Cleaning Devices and Personal Decontamination to Manage Transmission of COVID-19, November 2020. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/939173/S0867_EMG_Potential_application_of_air_cleaning_devices_and_personal_decontamination_to_manage_transmission_of_COVID-19.pdf (accessed on 15 December 2021).
- American Society of Heating Refrigerating and Air-Conditioning Engineers (ASHRAE). ASHRAE Position Document on Infectious Aerosols Atlanta: ASHRAE. 2020. Available online: https://www.ashrae.org/file%20library/about/position%20documents/pd_infectiousaerosols_2020.pdf (accessed on 15 December 2021).
- American Society of Heating Refrigerating and Air-Conditioning Engineers (ASHRAE). Guidance for Building Operations During the COVID-19 Pandemic. ASHRAE Journal, May 2020. Available online: https://www.ashrae.org/file%20library/technical%20resources/ashrae%20journal/2020journaldocuments/72-74_ieq_schoen.pdf (accessed on 15 December 2021).
- Staszowska, A. Assessment of the air purifier effectiveness under model conditions. J. Phys. Conf. Ser. 2021, 1736, 012043. [Google Scholar] [CrossRef]
- Lai, A.C.K.; Cheung, A.C.T.; Wong, M.M.L.; Li, W.S. Evaluation of cold plasma inactivation efficacy against different airborne bacteria in ventilation duct flow. Build. Environ. 2016, 98, 39–46. [Google Scholar] [CrossRef]
- Vohra, A.; Goswami, D.Y.; Deshpande, D.A.; Block, S.S. Enhanced photocatalytic disinfection of indoor air. Appl. Catal. B Environ. 2006, 64, 57–65. [Google Scholar] [CrossRef]
- Mitoraj, D.; Jańczyk, A.; Strus, M.; Kisch, H.; Stochel, G.; Heczko, P.B.; Macyk, W. Visible light inactivation of bacteria and fungi by modified titanium dioxide. Photochem. Photobiol. Sci. 2007, 6, 642–648. [Google Scholar] [CrossRef]
- Sánchez, B.; Sánchez-Muñoz, M.; Muñoz-Vicente, M.; Cobas, G.; Portela, R.; Suárez, S.; González, A.E.; Rodríguez, N.; Amils, R. Photocatalytic elimination of indoor air biological and chemical pollution in realistic conditions. Chemosphere 2012, 87, 625–630. [Google Scholar] [CrossRef]
- Guimera, D.; Trzil, J.; Joyner, J.; Hysmith, M.D. Effectiveness of a shielded ultraviolet C air disinfection system in an inpatient pharmacy of a tertiary care children’s hospital. Am. J. Infect. Control 2018, 46, 223–225. [Google Scholar] [CrossRef] [Green Version]
- Kujundzic, E.; Matalkah, F.; Howard, C.J.; Hernandez, M.; Miller, S.L. UV Air Cleaners and Upper-Room Air Ultraviolet Germicidal Irradiation for Controlling Airborne Bacteria and Fungal Spores. J. Occup. Environ. Hyg. 2006, 3, 536–546. [Google Scholar] [CrossRef]
- Nardell, E.A.; Brickner, P.W. Tuberculosis in New York City: Focal transmission of an often fatal disease. JAMA 1996, 276, 1259–1260. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.-C.; Li, C.-S. Inactivation of Virus-Containing Aerosols by Ultraviolet Germicidal Irradiation. Aerosol Sci. Technol. 2005, 39, 1136–1142. [Google Scholar] [CrossRef]
- Peccia, J.; Werth, H.M.; Miller, S.; Hernandez, M. Effects of Relative Humidity on the Ultraviolet Induced Inactivation of Airborne Bacteria. Aerosol Sci. Technol. 2001, 35, 728–740. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Ma, B.; Lai, X.; Han, L.; Cao, P.; Zhang, J.; Fu, J.; Zhou, Q.; Wei, S.; Wang, Z.; et al. Air and Surface Contamination by SARS-CoV-2 Virus in a Tertiary Hospital in Wuhan, China. Int. J. Infect. Dis. 2020, 99, 3–7. [Google Scholar] [CrossRef] [PubMed]
Air-Cleaning Technology | Advantages | Disadvantages |
---|---|---|
Air purifiers with mechanical air filtration | A simple, widely available, and relatively low-cost technique. High-rated efficiency; excellent extraction capabilities for many particle sizes. No additional emission of by-products. | The effectiveness depends on the flow rate, filter installation (its quality) and appropriate maintenance. Sensory air pollutions/odors. The risk of secondary source of microbiological air contamination. Microorganisms accumulated within the structure of the filter may be released into the air, causing secondary contamination of the indoor area. |
Air purifiers with cold plasma generators | Depending on conditions–relatively high efficiency against microbial air contamination as well as VOC. Possibility to combine with other air cleaning technologies to improve performance and minimize by-product formation. | Production of O3 and other unwanted by-products, such as formaldehyde, carbon monoxide, chloroform, nitrogen oxides. |
Air purifiers utilizing photocatalytic processes | Reduction of a wide array of gaseous pollutants (e.g., aldehydes, aromatics, alkanes, olefins, halogenated hydrocarbons). Possibility to combine with adsorbent media to improve effectiveness. | Production of harmful by-products, such as formaldehyde or acetaldehyde and ozone. Often limited lifespan of the catalyst. No standard test methods for real-life effectiveness of the devices. Possible release of titanium dioxide nanoparticles to the air exhausted to the indoor area during operation. |
Air purifiers using the UV light technology | Effective at high intensity with sufficient contact time. Effective inactivation of microbes on surfaces. | Emission of ozone. The risk of human skin and eye irritation. Inactivation but not removal of microbes. Possibility of damaging and degrading materials due to the direct impact of UV radiation. |
Air purifiers using electrostatic filtration | High efficiency (82–94%)—depending on the ionizing power and filter types. Low pressure drop and minimal impacts on the HVAC systems. Low maintenance requirements. | Generation of ozone (O3) and nitric oxide (NOx). Efficiency typically decreasing with load and plates requiring cleaning. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczotko, M.; Orych, I.; Mąka, Ł.; Solecka, J. A Review of Selected Types of Indoor Air Purifiers in Terms of Microbial Air Contamination Reduction. Atmosphere 2022, 13, 800. https://doi.org/10.3390/atmos13050800
Szczotko M, Orych I, Mąka Ł, Solecka J. A Review of Selected Types of Indoor Air Purifiers in Terms of Microbial Air Contamination Reduction. Atmosphere. 2022; 13(5):800. https://doi.org/10.3390/atmos13050800
Chicago/Turabian StyleSzczotko, Maciej, Izabela Orych, Łukasz Mąka, and Jolanta Solecka. 2022. "A Review of Selected Types of Indoor Air Purifiers in Terms of Microbial Air Contamination Reduction" Atmosphere 13, no. 5: 800. https://doi.org/10.3390/atmos13050800
APA StyleSzczotko, M., Orych, I., Mąka, Ł., & Solecka, J. (2022). A Review of Selected Types of Indoor Air Purifiers in Terms of Microbial Air Contamination Reduction. Atmosphere, 13(5), 800. https://doi.org/10.3390/atmos13050800