Impact of Vehicle Soot Agglomerates on Snow Albedo
Abstract
:1. Introduction
2. Experimental Campaign
2.1. Site Description
2.2. Experimental Methods
3. Modelling
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Jacobi, H.V.; Lim, S.; Ménégoz, M.; Ginot, P.; Laj, P.; Bonasoni, P.; Stocchi, P.; Marinoni, A.; Arnaud, Y. Black carbon in snow in the upper Himalayan Khumbu Valley, Nepal: Observations and modelling of the impact on the snow albedo, melting and radiative forcing. Cryosphere 2015, 9, 1685–1699. [Google Scholar] [CrossRef] [Green Version]
- Ganot, P.; Dumont, M.; Lim, S.; Patris, N.; Taupin, J.D.; Wagnon, P.; Gilbert, A.; Arnaud, Y.; Marinoni, A.; Bonasoni, P.; et al. A 10 year record of black carbon and dust from a Mera Peak ice core (Nepal): Variability and potential impact on melting of Himalayan glaciers. Cryosphere 2015, 9, 1685–1699. [Google Scholar] [CrossRef] [Green Version]
- Sterle, K.M.; McConnell, J.R.; Dozier, J.; Edwards, R.; Flanner, M.G. Retention and radiative forcing of black carbon in Eastern Sierra Nevada Snow. Cryosphere 2013, 7, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Aoki, T.; Kuchiki, K.; Niwano, M.; Kodama, Y.; Hosaka, M.; Tanaka, T. Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models. J. Geophys. Res. 2011, 116, D11114. [Google Scholar] [CrossRef]
- Dumont, M.; Arnaud, L.; Picard, G.; Libois, Q.; Lejeune, Y.; Nabat, P.; Voisin, P.; Morin, S. In situ continuous visible and near-infrared spectroscopy of an alpine snowpack. Cryosphere 2017, 11, 1091–1110. [Google Scholar] [CrossRef] [Green Version]
- Cereceda-Balic, F.; Vidal, V.; Ruggeri, M.F.; González, H.E. Black carbon pollution in snow and its impact on albedo near the Chilean stations on the Antarctic peninsula: First results. Sci. Total Environ. 2020, 743, 140801. [Google Scholar] [CrossRef]
- Brandt, R.E.; Warren, S.G.; Clarke, A.D. A controlled snowmaking experiment testing the relation between black carbon content and reduction of snow albedo. J. Geophys. Res. 2011, 116, D08109. [Google Scholar] [CrossRef] [Green Version]
- Hadley, O.L.; Kirchstetter, T.W. Black-carbon reduction of snow albedo. Nat. Clim. Chang. 2012, 2, 437–440. [Google Scholar] [CrossRef]
- Lapuerta, M.; Ballesteros, R.; Martos, F. The effect of diesel engine conditions on the size and morphology of soot particles. Int. J. Veh. Des. 2009, 50, 91–106. [Google Scholar] [CrossRef]
- Zhu, C.S.; Qu, Y.; Zhou, Y.; Huang, H.; Liu, H.K.; Yang, L.; Wang, Q.Y.; Hansen, A.D.A.; Cao, J.J. High light absorption and radiative forcing contributions of primary brown carbon and black carbon to urban aerosol. Gondwana Res. 2021, 90, 159–164. [Google Scholar] [CrossRef]
- Cereceda-Balic, F.; Vidal, V.; Moosmüller, H.; Lapuerta, M. Reduction of snow albedo from vehicle emissions at Portillo, Chile. Cold Reg. Sci. Technol. 2018, 146, 43–52. [Google Scholar] [CrossRef]
- Beres, N.D.; Moosmüller, H. Snow surface albedo sensitivity to black carbon: Radiative transfer modelling. Atmosphere 2020, 11, 1077. [Google Scholar] [CrossRef]
- Lapuerta, M.; González-Correa, S.; Ballesteros, R.; Cereceda-Balic, F.; Moosmüller, H. Albedo reduction for snow surfaces contaminated with soot aerosols: Comparison of experimental results and models. Aerosol. Sci. Technol. under review.
- Palma, P.; Oliva, M.; García-Hernández, C.; Gómez Ortiz, A.; Ruiz-Fernández, J.; Salvador-Franch, F.; Catarineuc, M. Spatial characterization of glacial and periglacial landforms in the highlands of Sierra Nevada (Spain). Sci. Total Environ. 2017, 584–585, 1256–1267. [Google Scholar] [CrossRef]
- Meteoblue. Available online: https://www.meteoblue.com/es/tiempo/historyclimate/weatherarchive/estaci%c3%b3n-de-esqu%c3%ad-de-sierra-nevada_espa%c3%b1a_7602397?fcstlength=1m&year=2022&month=3 (accessed on 6 April 2022).
- Donoso, D.; García, D.; Ballesteros, R.; Lapuerta, M.; Canoira, L. Hydrogenated or oxyfunctionalized turpentine: Options for automotive fuel components. RSC Adv. 2021, 11, 18342–18350. [Google Scholar] [CrossRef]
- Calle-Asensio, A.; Hernández, J.J.; Rodríguez-Fernández, J.; Lapuerta, M.; Ramos, A.; Barba, J. Effect of advanced biofuels on WLTC emissions of a Euro 6 diesel vehicle with SCR under different climatic conditions. Int. J. Engine Res. 2021, 22, 3433–3446. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2019, 9, 671–675. [Google Scholar] [CrossRef]
- Cereceda-Balic, F.; Gorena, T.; Soto, C.; Vidal, V.; Lapuerta, M.; Moosmüller, H. Optical determination of black carbon mass concentrations in snow samples: A new analytical method. Sci. Total Environ. 2019, 697, 133934. [Google Scholar] [CrossRef]
- Larue, F.; Picard, G.; Arnaud, L.; Ollivier, I.; Delcourt, C.; Lamare, M.; Tuzet, F.; Revuelto, J.; Dumont, M. Snow albedo sensitivity to macroscopic surface roughness using a new ray-tracing model. Cryosphere 2020, 14, 1651–1672. [Google Scholar] [CrossRef]
- Manninen, T.; Anttila, K.; Jääskeläinen, E.; Riihelä, A.; Peltoniemi, J.; Räisänen, P.; Lahtinen, P.; Siljamo, N.; Thölix, L.; Meinander, O.; et al. Effect of small-scale snow surface roughness on snow albedo and reflectance. Cryosphere 2021, 15, 793–820. [Google Scholar] [CrossRef]
- Wiscombe, S.G.; Warren, W.J. A model for the spectral albedo of snow. I: Pure snow. J. Atmos. Sci. 1980, 37, 2712–2733. [Google Scholar] [CrossRef] [Green Version]
- Warren, S.G.; Brandt, R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res. Atmos. 2008, 113, 1–10. [Google Scholar] [CrossRef]
- Macke, A.; Mueller, J.; Raschke, E. Single scattering properties of atmospheric ice crystals. J. Atmos. Sci. 1996, 53, 2813–2825. [Google Scholar] [CrossRef] [Green Version]
- Joseph, W.J.; Wiscombe, J.H.; Weinman, J.A. The Delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci. 1976, 33, 2452–2459. [Google Scholar] [CrossRef]
- Lorentz, H.A. Versuch Einer Theorie Der Electrischen und Optischen Erscheinungen in Bewegten Körpern; Collected Papers; Springer: Dordrecht, The Netherlands, 1937; Volume V, pp. 1–138. [Google Scholar]
- Irvine, W.M.; Pollack, J.B. Infrared optical properties of water and ice spheres. Icarus 1968, 8, 324–360. [Google Scholar] [CrossRef]
- Bird, R.E.; Riordan, C. Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth’s surface for cloudless atmospheres. J. Appl. Meteorol. Climatol. 1986, 25, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Charalampopoulos, T.T. Determination of the wavelength dependence of refractive indices of flame soot. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1990, 430, 577–591. [Google Scholar] [CrossRef]
- Mountain, R.D.; Mulholland, G.W. Light scattering from simulated smoke agglomerates. Langmuir 1988, 4, 1321–1326. [Google Scholar] [CrossRef]
- Flanner, M.G.; Arnheim, J.B.; Cook, J.M.; Dang, C.; He, C.; Huang, X.; Singh, D.; Skiles, S.M.; Whicker, C.A.; Zender, C.S. SNICAR-ADv3: A community tool for modeling spectral snow albedo. Geosci. Model Dev. 2021, 14, 7673–7704. [Google Scholar] [CrossRef]
- SnowTARTES. Available online: https://snowtartes.pythonanywhere.com/ (accessed on 7 April 2022).
- Beres, N.D.; Sengupta, D.; Samburova, V.; Khlystov, A.Y.; Moosmüller, H. Deposition of brown carbon onto snow: Changes in snow optical and radiative properties. Atmos. Chem. Phys. 2020, 20, 6095–6114. [Google Scholar] [CrossRef]
- Dang, C.; Warren, S.G.; Fu, Q.; Doherty, S.J.; Sturm, M.; Su, J. Measurements of light-absorbing particles in snow across the Arctic, North America, and China: Effects on surface albedo. J. Geophys. Res. Atmos. 2017, 122, 10149–10168. [Google Scholar] [CrossRef]
Accelerations | Cenith Angle (°) | Cloudiness (%) | Grain Size (µm) | mg/kg | Humidity (%) |
---|---|---|---|---|---|
0 | 51.3 | 24.0 | 259.6 ± 58.1 | 0.65 | 0 |
30 | 51.9 | 21.0 | 264.9 ± 62.7 * | 2.32 * | 3 * |
60 | 52.4 | 18.1 | 270.2 ± 67.3 * | 3.99 * | 6 * |
90 | 52.7 | 41.9 | 275.6 ± 71.9 * | 5.66 * | 9 * |
120 | 52.8 | 54.9 | 280.9 ± 76.5 * | 7.33 * | 12 * |
150 | 52.9 | 63.9 | 286.2 ± 81.1 | 9.00 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Correa, S.; Gómez-Doménech, D.; Ballesteros, R.; Lapuerta, M.; Pacheco-Ferrada, D.; Flores, R.P.; Castro, L.; Fadic-Ruiz, X.; Cereceda-Balic, F. Impact of Vehicle Soot Agglomerates on Snow Albedo. Atmosphere 2022, 13, 801. https://doi.org/10.3390/atmos13050801
González-Correa S, Gómez-Doménech D, Ballesteros R, Lapuerta M, Pacheco-Ferrada D, Flores RP, Castro L, Fadic-Ruiz X, Cereceda-Balic F. Impact of Vehicle Soot Agglomerates on Snow Albedo. Atmosphere. 2022; 13(5):801. https://doi.org/10.3390/atmos13050801
Chicago/Turabian StyleGonzález-Correa, Sofía, Diego Gómez-Doménech, Rosario Ballesteros, Magín Lapuerta, Diego Pacheco-Ferrada, Raúl P. Flores, Lina Castro, Ximena Fadic-Ruiz, and Francisco Cereceda-Balic. 2022. "Impact of Vehicle Soot Agglomerates on Snow Albedo" Atmosphere 13, no. 5: 801. https://doi.org/10.3390/atmos13050801
APA StyleGonzález-Correa, S., Gómez-Doménech, D., Ballesteros, R., Lapuerta, M., Pacheco-Ferrada, D., Flores, R. P., Castro, L., Fadic-Ruiz, X., & Cereceda-Balic, F. (2022). Impact of Vehicle Soot Agglomerates on Snow Albedo. Atmosphere, 13(5), 801. https://doi.org/10.3390/atmos13050801