Response of Very Small Glaciers to Climate Variations and Change: Examples from the Pirin Mountains, Bulgaria
Abstract
:1. Introduction
1.1. Introduction to the Problem
1.2. Study Area
2. Materials and Methods
2.1. Measurements of Glacieret Size
2.2. Collection of Climatic Data
- –
- Mean monthly temperature.
- –
- Sum of mean daily temperatures for the days with positive average temperature (also mentioned below as sum of positive daily temperatures), calculated by summing mean daily temperatures from all days of the particular hydrological year, in which those temperatures were above 0 °C. The sum of positive daily temperatures is used to evaluate the temperature conditions for ablation during the hydrological cycle of glacierets.
2.3. Data Processing
- –
- Mean annual temperature: average of mean monthly temperatures for the period November–October in the following calendar year.
- –
- Mean temperature for the ablation season: average of mean monthly temperatures for the months November to April.
- –
- Mean summer temperature: average of daily temperatures for the period 16 May–15 September.
- –
- Mean annual precipitation: sum of precipitation for the particular hydrological year (from November to October in the following calendar year).
- –
- Precipitation for the accumulation season, in particular for the winter–early spring: sum of precipitation for the period December–April.
- –
- Precipitation for the ablation season: sum of precipitation for the period May–October.
3. Results
3.1. Glacieret Size
3.2. Climatic Variables
3.3. Climatic Factors Influencing Short-Term and Long-Term Size Variations of Glacierets
3.3.1. General Climate Conditions
3.3.2. Determining Climatic Factors
3.3.3. Variations of Local Climatic Conditions
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zemp, M.; Paul, F.; Hoelzle, M.; Haeberli, W. Glacier fluctuations in the European Alps, 1850–2000: An overview and spatio-temporal analysis of available data. In Zurich Open Repository and Archive; University of Zurich: Zurich, Switzerland, 2008; Chapter 11; pp. 152–167. [Google Scholar]
- Hughes, P.D. Response of a Montenegro glacier to extreme summer heatwaves in 2003 and 2007. Geogr. Ann. 2008, 90, 259–267. [Google Scholar] [CrossRef]
- Hughes, P.D. Twenty first century glaciers in the Prokletije Mountains, Albania. Arct. Antarct. Alp. Res. 2009, 41, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Mehta, M.; Dobhal, D.P.; Bisht, M.P. Change of Tipra Glacier in the Garhwal Himalaya, India, between 1962 and 2008. Prog. Phys. Geogr. 2011, 35, 721–738. [Google Scholar] [CrossRef]
- Huss, M.; Fischer, M. Sensitivity of Very Small Glaciers in the Swiss Alps to Future Climate Change. Front. Earth Sci. 2016, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Grunewald, K.; Scheitchauer, J. Klima- und Landschaftgeschichte Sudosteuropas. In Rekonstruktion Anhand von Geoarchiven im Piringebirge (Bulgarien); Rhombos Verlag: Dresden, Germany, 2008. [Google Scholar]
- Mehta, M.; Kumar, V.; Garg, S.; Shukla, A. Little Ice Age glacier extent and temporal changes in annual mass balance (2016–2019) of Pensilungpa Glacier, Zanskar Himalaya. Reg. Environ. Change 2021, 21, 21–38. [Google Scholar] [CrossRef]
- Gachev, E.; Stoyanov, K.; Gikov, A. Small glaciers on the Balkan Peninsula: State and changes in the last several years. Quat. Int. 2016, 415, 33–54. [Google Scholar] [CrossRef]
- Grunewald, K.; Scheithauer, J. Europe’s southernmost glaciers: Response and adaptation to climate change. J. Glaciol. 2010, 56, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Grunewald, K.; Scheitchauer, J. Landscape Development and Climate Change. In Southwest Bulgaria (the Pirin Mountains); Springer: Berlin/Heidelberg, Germany, 2011; 161p. [Google Scholar]
- Milivojević, M.; Menković, L.; Ćalić, J. Pleistocene glacial relief of the central part of Mt. Prokletije (Albanian Alps). Quat. Int. 2008, 190, 112–122. [Google Scholar] [CrossRef]
- Hughes, P.D. Recent behavior of the Debeli namet glacier, Durmitor, Montenegro. Earth Surf. Processes Landf. 2007, 32, 1593–1602. [Google Scholar] [CrossRef]
- Gachev, E. The unknown southernmost glaciers of Europe. In Glacier Evolution in a Changing World; Godone, C., Ed.; IntechOpen: Zagreb, Croatia, 2017; pp. 77–102. [Google Scholar] [CrossRef] [Green Version]
- Gachev, E. Small glaciers in the Dinaric Mountains after eight years of observation: On the verge of extinction? Acta Geogr. Slov. 2020, 60, 191–211. [Google Scholar] [CrossRef]
- Gachev, E.; Mitkov, I. Small glaciers in Pirin (Bulgaria) and Durmitor (Montenegro) as glacio-karstic features. Similarities and differences in their recent behaviour. Quat. Int. 2019, 504, 153–170. [Google Scholar] [CrossRef]
- Serrano, E.; González-Trueba, J.J.; Sanjosé, J.J.; Del Río, L.M. Ice patch origin, evolution and dynamics in a temperate high mountain environment: The Jou negro, Picos de Europa (NW Spain). Geogr. Ann. Ser. A Phys. Geogr. 2011, 93, 57–70. [Google Scholar] [CrossRef]
- Grunewald, K.; Weber, C.; Scheithauer, J.; Haubold, E. Mikrogletscher als Klimaindikatoren und Umweltarchive in sudosteuropaischen Hochgebirgen?—Untersuchung des Vichrengletschers im Piringebirge (Bulgarien). Zschr. Gletsch. UndGlazialgeol. 2006, 39, 99–114. [Google Scholar]
- Gachev, E.; Gikov, A.; Zlatinova, C.; Blagoev, B. Present state of Bulgarian glacierets. Landf. Anal. 2009, 11, 16–24. [Google Scholar]
- Cogley, J.G.; Hock, R.; Rasmussen, L.A.; Arendt, A.A.; Bauder, A.; Braithwaite, R.J.; Jansson, P.; Kaser, G.; Möller, M.; Nicholson, L.; et al. Glossary of Glacier Mass Balance and Related Terms. IHP-VII Tech. Doc. Hydrol. 2011. Available online: https://wgms.ch/downloads/Cogley_etal_2011.pdf (accessed on 1 March 2022).
- Kanev, D. Geomorphology of Bulgaria; Sofia University Press: Sofia, Bulgaria, 1989; 322p. (In Bulgarian) [Google Scholar]
- Georgiev, M. Physical Geography of Bulgaria; Nauka i izkustvo: Sofia, Bulgaria, 1991; 408p. (In Bulgarian) [Google Scholar]
- Grunewald, K.; Gachev, E.; Kast, G.; Nojarov, P.; Panayotov, M. Meteorological Observations in National Park ‘Pirin’; IÖR Dresden: Dresden, Germany, 2016. [Google Scholar] [CrossRef]
- Velev, S. The Climate of Bulgaria; Heron Press: Sofia, Bulgaria, 2010; 220p. (In Bulgarian) [Google Scholar]
- Rachev, G. Climatology—Questions and Answers. Paradigma: Sofia, Bulgaria, 2018; p. 260. (In Bulgarian) [Google Scholar]
- Kuhlemann, J.; Gachev, E.; Gikov, A.; Nedkov, S.; Krumrei, I.; Kubik, P. Glaciation in the Rila Mountains (Bulgaria) during the Last Glacial Maximum. Quat. Int. 2013, 293, 51–62. [Google Scholar] [CrossRef]
- Georgiev, G. Biogeographical Peculiarities of Bulgaria, Part 1; South-west University Press: Blagoevgrad, Bulgaria, 2000. (In Bulgarian) [Google Scholar]
- Grunewald, K.; Scheithauer, J.; Gikov, A. Microglaciers in Pirin Mountain. Probl. Geogr. 2008, 1–2, 159–174. (In Bulgarian) [Google Scholar]
- Onaca, A.; Gachev, E.; Ardelean, F.; Ardelean, A.; Perșoiu, A.; Hegyi, A. Small is strong: Post-LIA resilience of Europe’s Southernmost glaciers assessed by geophysical methods. Catena 2022, 213, 106143. [Google Scholar] [CrossRef]
- Popov, V. Morphology of the cirque Golemia Kazan—Pirin Mountains. Announc. Inst. Geogr. 1962, 6, 86–99. (In Bulgarian) [Google Scholar]
- Popov, V. Observations on the glacieret in the cirque Golemia kazan, the Pirin Mountains. Announc. Inst. Geogr. 1964, 8, 198–207. (In Bulgarian) [Google Scholar]
- Gachev, E.; Gikov, A. A description and a first measurement of the glacieret in Banski suhodol cirque. Probl. Geogr. Bulg. Acad. Sci. 2010, 3–4, 90–98. (In Bulgarian) [Google Scholar]
- Bulgarian Website for Discussing Weather. Available online: www.stringmeteo.com (accessed on 29 March 2022).
- Gachev, E. Inter-annual size variation of Snezhnika glacieret (Pirin Mountains, Bulgaria) in the last ten years. Studia Geomorphol. Carpatho-Balc. 2011, 45, 47–68. [Google Scholar]
- Gachev, E. Climatic factors for the inter-annual dynamics of Snezhnika glacieret in Pirin. In Proceedings of the Conference of Bulgarian Geographic Society, Vurshets, Bulgaria, 23–26 September 2016. (In Bulgarian). [Google Scholar]
- Nojarov, P.; Gachev, E. Climatic factors for the changes in the size of the glacieret on Golemia Kazan cirque (the Pirin Mountains). In Proceedings from the Conference of the Union of Scientists in Bulgaria, part 1, vol. 2; Neofit Rilski University Press: Blagoevgrad, Bulgaria, 2007; pp. 399–405, ISBN 978-954-680-529-4. (In Bulgarian). [Google Scholar]
- Penchev, P. General Hydrology; Nauka i izkustvo: Sofia, Bulgarian, 1975; 386p. (In Bulgarian) [Google Scholar]
- Hristova, N. River Waters of Bulgaria. Tiptop Press: Sofia, Bulgarian, 2012; 832p. (In Bulgaria) [Google Scholar]
- Gądek, B. The problem of firn-ice patches in the Polish Tatras as an indicator of climatic fluctuations. Geogr. Pol. 2008, 81, 10–25. [Google Scholar]
- Djurović, P. The Debeli namet glacier from the twentieth century to the present. Acta Geogr. Slov. 2012, 52, 277–301. [Google Scholar] [CrossRef] [Green Version]
- Gachev, E.; Stoyanov, K. Present-day small perennial firn-ice patches in the mountains of the Western Balkan Peninsula. Studia Geomorphol. Carpatho-Balc. 2012, 46, 51–70. [Google Scholar]
- Gabrovec, M.; Hrvatin, M.; Komac, B.; Ortar, J.; Pavšek, M.; Topole, M.; Triglav-Čekada, M.; Zorn, M. Triglavski ledenik; Geografija Slovenije 30: Ljubljana, Slovenija, 2014. [Google Scholar]
- Triglav-Čekada, M.; Zorn, M. thickness and geodetic mass balance changes for the Triglav glacier (Southeastern Alps) from 1952 to 2016. Acta Geogr. Slov. 2020, 60, 155–174. [Google Scholar] [CrossRef]
- De Marco, J.; Carturan, L.; Piermattei, L.; Cucchiaro, S.; Moro, D.; Fontana, G.D.; Cazorzi, F. Minor Imbalance of the Lowermost Italian Glacier from 2006 to 2019. Water 2020, 12, 2503. [Google Scholar] [CrossRef]
- Gellatly, A.; Smiraglia, C.; Grove, J.; Latham, R. Recent variations of Ghiacciaio del Calderone, Abruzzi, Italy. J. Glaciol. 1994, 40, 486–490. [Google Scholar] [CrossRef] [Green Version]
- Pecci, M.; D’Agata, C.; Smiraglia, C. Ghiacciaio del Calderone (Apennines, Italy): The mass balance of a shrinking Mediterranean glacier. Geogr. Fis. E Din. Quat. 2008, 31, 55–62. [Google Scholar]
- Hughes, P.D. Little Ice Age glaciers in the Balkans: Low altitude glaciation enabled by cooler temperatures and local topoclimatic controls. Earth Surf. Processes Landf. 2010, 35, 229–241. [Google Scholar] [CrossRef]
- Carturan, L.; Baldassi, G.A.; Bondesan, A.; Calligaro, S.; Carton, A.; Cazorzi, F.; Fontana, G.D.; Francese, R.; Guarnieri, A.; Milan, N.; et al. Current behaviour and dynamics of the lowermost italian glacier (montasio occidentale, julian alps). Geogr. Ann. Ser. A Phys. Geogr. 2013, 95, 79–96. [Google Scholar] [CrossRef]
- Hohenwarter, G. The Eiskar—115 years of measurements at the southernmost glacier in Austria. Meteorologica 2013, 102, 26–28. [Google Scholar]
- Colucci, R.; Forte, E.; Boccali, C.; Dossi, M.; Lanza, L.; Pipan, M.; Guglielmin, M. Evaluation of internal structure, and mass of glacial bodies by integrated LiDAR and ground penetrating radar surveys: The case study of Canin Eastern Glacieret (Julian Alps, Italy). Surv. Geophys. 2015, 36, 231–252. [Google Scholar] [CrossRef]
- López-Moreno, J.; Revuelto, J.; Rico, I.; Chueca-Cía, J.; Julián, A.; Serreta, A.; Serrano, E.; Vicente-Serrano, S.M.; Azorin-Molina, C.; Alonso-González, A.; et al. Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981. Cryosphere 2016, 10, 681–694. [Google Scholar] [CrossRef] [Green Version]
- Santin, I.; Colucci, R.R.; Žebre, M.; Pavan, M.; Cagnati, A.; Forte, E. Recent evolution of Marmolada glacier (Dolomites, Italy) by means of ground and airborne GPR surveys. Remote Sens. Environ. 2019, 235, 112715. [Google Scholar] [CrossRef]
- Gachev, E. Holocene glaciation in the mountains of Bulgaria. Mediterr. Geosci. Rev. 2020, 2, 103–117. [Google Scholar] [CrossRef]
- Moreno, A.; Bartolomé, M.; López-Moreno, J.I.; Pey, J.; Corella, J.P.; García-Orellana, J.; Sancho, C.; Leunda, M.; Gil-Romera, G.; González-Sampériz, P.; et al. The case of a southern European glacier which survived Roman and medieval warm periods but is disappearing under recent warming. Cryosphere 2021, 15, 1157–1172. [Google Scholar] [CrossRef]
- Colucci, R.; Žebre, M. Late Holocene evolution of glaciers in the southeastern Alps. J. Maps 2016, 12, 289–299. [Google Scholar] [CrossRef]
- Triglav Čekada, M.; Zorn, M.; Colucci, R. Area changes on Canin (Italy) and Triglav glaciers (Slovenia) from 1893 on based on archive imagery and Lidar. Geod. Vestn. 2014, 58, 257–277. [Google Scholar] [CrossRef]
- D’Orefice, M.; Pecci, M.; Smiraglia, C.; Ventura, R. Retreat of Mediterranean glaciers since the Little Ice Age: Case study of Ghiacciaio del Calderone, Central Apennines, Italy. Arct. Antarct. Alp. Res. 2000, 32, 197–201. [Google Scholar] [CrossRef]
- Gonzalez Trueba, J.J.; Moreno, R.M.; Martínez de Pison, E.; Serrano, E. ‘Little Ice Age’ glaciation and current glaciers in the Iberian Peninsula. Holocene 2008, 18, 551–568. [Google Scholar] [CrossRef]
- Campos, N.; Alcal’a-Reygosa, J.; Watson, S.C.; Kougkoulos, I.; Quesada-Roman, A.; Grima, N. Modeling the retreat of the Aneto Glacier (Spanish Pyrenees) since the Little Ice Age, and its accelerated shrinkage over recent decades. Holocene 2021, 31, 1315–1326. [Google Scholar] [CrossRef]
- Colucci, R. Geomorphic influence on small glacier response to post-Little Ice Age climate warming: Julian Alps, Europe. Earth Surf. Process. Landf. 2016, 41, 1227–1240. [Google Scholar] [CrossRef]
- Pavšek, M. Ledenik pod Skuto kod pokazatelj podnebnih sprememb v slovenskem delu Alp. Dela 2007, 28, 207–219. [Google Scholar] [CrossRef]
- Triglav Čekada, M.; Barbo, P.; Pavšek, M.; Zorn, M. Changes in the Skuta Glacier (Southeastern Alps) assessed using non-metric images. Acta Geogr. Slov. 2020, 60, 175–190. [Google Scholar] [CrossRef]
- Scotti, R.; Brardinoni, F. Evaluating millennial to contemporary time scales of glacier change in Val Viola, Central Italian Alps. Geogr. Ann. Ser. A Phys. Geogr. 2018, 100, 319–339. [Google Scholar] [CrossRef]
- Roth von Telegd, L. Das albanisch-montenegrinische Grenzgebiet bei Plav (Mit besonderer Berücksichtigung der Glazialspuren). In Beiträge zur Geologie von Albanien, Neues Jahrbuch für Mineralogie, Geologie und Paläontologie; Nowack, E., Ed.; Schweizerbert: Stuttgart, Germany, 1923; pp. 422–494. [Google Scholar]
- Wilkinson, R. A multi-Proxy Study of Late Holocene Environmental Change in the Prokletije Mountains, Montenegro and Albania. Ph.D. Thesis, University of Manchester, Manchester, UK, 2011. [Google Scholar]
- Milivojević, M. Methodology for Reconstruction of Pleistocene Glaciation on the Example of Dinaric-Prokletije Mountains. Ph.D. Thesis, University of Belgrade, Belgrade, Serbia, 2019. [Google Scholar]
- Colucci, R.; Žebre, M.; Torma, C.Z.; Glasser, N.; Maset, E.; Del Gobbo, C.; Pillon, S. Recent Increases in Winter Snowfall Provide Resilience to Very Small Glaciers in the Julian Alps, Europe. Atmosphere 2021, 12, 263. [Google Scholar] [CrossRef]
- IPCC. Sixth Assessment Report; The Physical Science Basis, Summary for Policymakers: Geneva, Switzerland, 2021. [Google Scholar]
- Nojarov, P.; Gachev, E.; Grunewald, K. Recent behavior and possible future evolution of the glacieret in the cirque Golemiya Kazan in the Pirin Mountains under conditions of climate warming. J. Mt. Sci. 2019, 16, 16–29. [Google Scholar] [CrossRef]
Hydrological Year | T Annual (Nov.–Oct.) | T Abl. Season (May–Oct.) | T Summer (Jun.–Aug.) | P Annual (Nov.–Oct.) | P (Dec.–Apr.) | P (May–Oct.) | Area Snezhnika (ha) | Area Banski Suhodol (ha) |
---|---|---|---|---|---|---|---|---|
2008–2009 | −2.4 | 3.1 | 5.5 | 889 | 573 | 405 | 0.69 | 1.19 |
2009–2010 | −1.9 | 3.3 | 6.2 | 917 | 439 | 459 | 0.69 | 1.43 |
2010–2011 | −1.9 | 3.1 | 5.8 | 602 | 252 | 329 | 0.55 | 1.33 |
2011–2012 | −1.5 | 5.0 | 7.7 | 702 | 449 | 253 | 0.34 | 0.93 |
2012–2013 | −2.0 | 3.2 | 5.0 | 799 | 420 | 370 | 0.65 | 1.42 |
2013–2014 | −1.2 | 2.8 | 5.3 | 886 | 313 | 550 | 0.38 | 1.14 |
2014–2015 | −1.9 | 3.9 | 5.4 | 1020 | 571 | 409 | 0.53 | 1.09 |
2015–2016 | −1.1 | 3.1 | 6.0 | 657 | 305 | 312 | 0.51 | 1.13 |
2016–2017 | −2.1 | 3.4 | 6.5 | 855 | 403 | 428 | 0.33 | 0.97 |
2017–2018 | -1.3 | 3.5 | 5.3 | 892 | 346 | 496 | 0.64 | 1.21 |
2018–2019 | −1.7 | 4.1 | 6.2 | 651 | 375 | 231 | 0.36 | 0.92 |
2019–2020 | −1.0 | 3.9 | 5.7 | 983 | 459 | 474 | 0.30 | 0.90 |
2020–2021 | −1.8 | 3.6 | 6.4 | 864 | 480 | 366 | 0.54 | 1.07 |
Average | −1.7 | 3.5 | 5.9 | 833 | 414 | 391 | 0.50 | 1.13 |
Hydrological Year | T Annual (Nov.–Oct.) | T Abl. Season (May–Oct.) | T Summer (Jun.–Aug.) | P Annual (Nov.–Oct.) | P (Dec.–Apr.) | P (May–Oct.) | Area Snezhnika (ha) | Area Banski Suhodol (ha) |
---|---|---|---|---|---|---|---|---|
2008–2009 | −0.7 | −0.4 | −0.4 | 120 | 138 | 104 | 139 | 105 |
2009–2010 | −0.2 | −0.2 | +0.2 | 110 | 106 | 117 | 139 | 127 |
2010–2011 | −0.3 | −0.4 | −0.2 | 72 | 61 | 84 | 95 | 117 |
2011–2012 | +0.2 | +1.4 | +1.8 | 84 | 108 | 65 | 69 | 80 |
2012–2013 | −0.3 | −0.4 | −1.0 | 96 | 101 | 95 | 131 | 126 |
2013–2014 | +0.5 | −0.7 | −0.6 | 106 | 76 | 141 | 77 | 101 |
2014–2015 | −0.2 | +0.4 | −0.5 | 122 | 138 | 105 | 109 | 96 |
2015–2016 | +0.6 | −0.5 | +0.1 | 79 | 74 | 80 | 103 | 100 |
2016–2017 | −0.5 | −0.1 | +0.6 | 103 | 97 | 109 | 67 | 86 |
2017–2018 | +0.4 | 0.0 | −0.6 | 107 | 84 | 127 | 129 | 107 |
2018–2019 | 0.0 | +0.6 | +0.3 | 78 | 91 | 59 | 73 | 81 |
2019–2020 | +0.6 | +0.3 | −0.2 | 118 | 111 | 121 | 61 | 80 |
2020–2021 | −0.1 | +0.1 | +0.5 | 104 | 116 | 94 | 109 | 95 |
Glacieret | Period (Hydrological Years) | Pearson Correlation Coefficient rxy between Glacieret Area and Climatic Variables: | |||
---|---|---|---|---|---|
Mean Annual Temperature | Summer Temperature (16 May–15 Sep.) | Sum of Positive Daily Temperatures | Annual Number of Days with Positive Daily Mean temp. | ||
Snezhnika | 1993/94–2020/21 | −0.65 | −0.57 | −0.75 | −0.63 |
2007/08–2020/21 | −0.57 | −0.57 | −0.76 | −0.75 | |
2008/09–2020/21 | −0.61 | −0.58 | −0.76 | −0.76 | |
Banski suhodol | 2008/09–2020/21 | −0.47 | −0.65 | −0.73 | −0.60 |
Year of Measurement | Snezhnika Glacieret | Banski Suhodol Glacieret | ||
---|---|---|---|---|
Coefficient D | Difference in D between Consecutive Years | Coefficient D | Difference in D between Consecutive Years | |
1998 | –2.0 | |||
1999 | –0.8 | +1.2 | ||
2000 | +2.0 | +2.8 | ||
2001 | +1.2 | –0.8 | ||
2002 | –1.9 | –3.1 | ||
2003 | –1.1 | +0.8 | ||
2004 | –2.3 | –1.2 | ||
2005 | +2.0 | +4.3 | ||
2006 | +1.7 | –0.3 | ||
2007 | +0.3 | –1.4 | ||
2008 | +1.0 | +0.7 | ||
2009 | +1.6 | +0.6 | –1.7 | |
2010 | +3.1 | +1.5 | +2.0 | +3.7 |
2011 | –1.2 | –4.3 | –0.3 | –2.3 |
2012 | +5.0 | +6.5 | +5.0 | +5.3 |
2013 | –0.1 | –5.1 | 0.0 | –5.0 |
2014 | –0.2 | –0.1 | 0.0 | 0.0 |
2015 | +2.2 | +2.4 | 0.0 | 0.0 |
2016 | –1.9 | –4.1 | –3.2 | –3.2 |
2017 | +1.0 | +2.9 | 0.0 | +3.2 |
2018 | +3.1 | +2.1 | +0.3 | +0.3 |
2019 | –0.3 | –3.4 | –1.6 | –1.9 |
2020 | +0.7 | +1.0 | 0.0 | +1.6 |
2021 | +0.6 | –0.1 | –1.8 | –1.8 |
Year | Accumulation Season | Ablation Season | |||||
---|---|---|---|---|---|---|---|
Dry Cold | Total | Snow Cover | |||||
Dates | Days | Dates | Days | Days | Dates | Days | |
2016–2017 | 28.10–8.11 | 11 | 9.11–16.06 | 220 | 231 | 17.06–8.10 | 114 |
2017–2018 | 9.10–28.10 | 20 | 29.10–12.07 | 257 | 277 | 13.07–6.11 | 117 |
2018–2019 | 7.11–24.11 | 18 | 25.11–1.07 | 219 | 237 | 2.07–14.11 | 136 |
2019–2020 | 15.11–20.11 | 6 | 21.11–23.06 | 216 | 225 | 24.06–7.11 | 137 |
2020–2021 | 8.11–10.12 | 33 | 11.12–7.07 | 208 | 241 | 8.07–7.10 | 92 |
Year | Accumulation Season | Ablation Season | |||||
---|---|---|---|---|---|---|---|
Dry Cold | Snow Cover | Total | |||||
Dates | Days | Dates | Days | Days | Dates | Days | |
2017–2018 | 20.10–10.11 | 22 | 11.11–15.08 | 278 | 300 | 16.08–6.11 | 93 |
2018–2019 | 7.11–24.11 | 18 | 25.11–31.07 | 249 | 267 | 1.08–14.11 | 106 |
Year | Month | Ann. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
XI | XII | I | II | III | IV | V | VI | VII | VIII | IX | X | ||
2015–2016 | 1.1 | - | |||||||||||
2016–2017 | −0.1 | 0.1 | −0.2 | −0.4 | −0.4 | −0.1 | −0.1 | 2.4 | 9.4 | 9.4 | 5.3 | 0.3 | 2.1 |
2017–2018 | 0.1 | 0.2 | 0.2 | 0.1 | 0.0 | −0.1 | −0.1 | −0.1 | 2.9 | 7.4 | 5.1 | 1.4 | 1.4 |
2018–2019 | −1.1 | −0.5 | −0.6 | −0.7 | −0.8 | −0.5 | −0.1 | −0.1 | 5.7 | 9.4 | 6.2 | 2.1 | 1.6 |
2019–2020 | 0.3 | 0.1 | 0.1 | 0.0 | 0.0 | −0.1 | −0.1 | 0.7 | 7.1 | 8.2 | 7.2 | 1.8 | 2.1 |
2020–2021 | −2.4 | −1.4 | −0.4 | −0.3 | −0.3 | −0.4 | −0.1 | −0.1 | 5.4 | 10.2 | 4.9 | (1.4) |
Year | Month | Ann. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
XI | XII | I | II | III | IV | V | VI | VII | VIII | IX | X | ||
2017–2018 | −0.8 | −0.5 | −0.4 | −0.5 | −0.6 | −0.8 | −0.1 | 0.0 | 0.0 | 2.3 | 2.3 | −0.1 | 0.0 |
2018–2019 | −2.0 | −1.0 | −1.2 | −1.5 | −1.6 | −1.6 | −0.6 | 0.0 | 0.1 | 6.2 | 3.9 | (1.9) | 0.2 |
Year | Month | Ann. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
XI | XII | I | II | III | IV | V | VI | VII | VIII | IX | X | ||
2015–2016 | 41 | - | |||||||||||
2016–2017 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 74 | 292 | 293 | 159 | 12 | 838 |
2017–2018 | 3 | 8 | 5 | 3 | 0 | 0 | 0 | 0 | 90 | 231 | 154 | 45 | 539 |
2018–2019 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 177 | 290 | 186 | 67 | 731 |
2019–2020 | 13 | 4 | 3 | 1 | 0 | 0 | 0 | 22 | 220 | 253 | 217 | 60 | 793 |
2020–2021 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 167 | 315 | 148 | (634) |
Year | Month | Ann. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
XI | XII | I | II | III | IV | V | VI | VII | VIII | IX | X | ||
2017–2018 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 73 | 77 | 13 | 163 |
2018–2019 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 193 | 116 | (32) | 353 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gachev, E.M. Response of Very Small Glaciers to Climate Variations and Change: Examples from the Pirin Mountains, Bulgaria. Atmosphere 2022, 13, 859. https://doi.org/10.3390/atmos13060859
Gachev EM. Response of Very Small Glaciers to Climate Variations and Change: Examples from the Pirin Mountains, Bulgaria. Atmosphere. 2022; 13(6):859. https://doi.org/10.3390/atmos13060859
Chicago/Turabian StyleGachev, Emil M. 2022. "Response of Very Small Glaciers to Climate Variations and Change: Examples from the Pirin Mountains, Bulgaria" Atmosphere 13, no. 6: 859. https://doi.org/10.3390/atmos13060859
APA StyleGachev, E. M. (2022). Response of Very Small Glaciers to Climate Variations and Change: Examples from the Pirin Mountains, Bulgaria. Atmosphere, 13(6), 859. https://doi.org/10.3390/atmos13060859