Advances in Ionospheric Space Weather by Using FORMOSAT-7/COSMIC-2 GNSS Radio Occultations
Abstract
:1. Introduction
2. Intense GNSS RO Soundings of the Ionosphere
3. Equatorial and Low-Latitude Ionosphere
3.1. Equatorial Ionization Anomaly
3.2. Wavenumber Four and Plasma Depletion Bay
4. Near-Real-Time Global Plasma Bubble Monitoring
Equatorial and Low-Latitude Ionospheric GNSS L-Band S4 Scintillation
5. Ionospheric Space Weather Forecast
5.1. NOAA/SWPC
5.2. CWB/SWOO
6. Discussion and Summary
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De la Torre, A.; Alexander, P.; Llamedo, P.; Hierro, R.; Nava, B.; Radicella, S.; Schmidt, T.; Wickert, J. Wave activity at ionospheric heights above the Andes Mountains detected from FORMOSAT-3/COSMIC GPS radio occultation data. J. Geophys. Res. Space Phys. 2014, 119, 2046–2051. [Google Scholar] [CrossRef] [Green Version]
- Melbourne, W.G.; Davis, E.A.; Duncan, C.B.; Hajj, G.A.; Hardy, K.R.; Kursinski, E.R.; Meehan, T.K.; Young, L.E.; Yunck, T.P. The Application of Spacebourne GPS to Atmospheric Limb Sounding and Global Change Monitoring; Jet Propulsion Laboratory: Pasadena, CA, USA, 1994. [Google Scholar]
- Kursinski, E.R.; Hajj, G.A.; Schofield, J.T.; Linfield, R.P.; Hardy, K.R. Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res. 1997, 102, 23429–23465. [Google Scholar] [CrossRef]
- Tsai, L.-C.; Tsai, W.H.; Schreiner, W.S.; Berkey, F.T.; Liu, J.Y. Comparison of GPS/MET retrieved ionospheric electron density and ground based ionosonde data. Earth Planets Space 2001, 53, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.Z.; Kuo, Y.-H.; Anthes, R.A.; Wu, L. Satellite Constellation Monitors Global and Space Weather. Eos 2006, 87, 166. [Google Scholar] [CrossRef] [Green Version]
- Anthes, R.; Bernhardt, P.; Cucurull, L.; Dymond, K.; Ector, D.; Healy, S.; Ho, S.P.; Hunt, D.; Kuo, Y.; Manning, K.; et al. The COSMIC/Formosat-3 mission: Early results. Bull. Am. Meteorol. Soc. 2006, 89, 313–333. [Google Scholar] [CrossRef]
- Lei, J.; Syndergaard, S.; Burns, A.G.; Solomon, S.; Wang, W.; Zeng, Z.; Roble, R.G.; Wu, Q.; Kuo, Y.-H.; Holt, J.M.; et al. Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results. J. Geophys. Res. 2007, 112, A07308. [Google Scholar] [CrossRef]
- Liu, J.Y.; Lee, C.C.; Yang, J.Y.; Chen, C.-Y.; Reinisch, B.W. Electron density profiles in the equatorial ionosphere observed by the FORMOSAT-3/COSMIC and a digisonde at Jicamarca. GPS Solut 2010, 14, 75–81. [Google Scholar] [CrossRef]
- Chu, Y.H.; Su, C.L.; Ko, H.T. A global survey of COSMIC ionospheric peak electron density and its height: A comparison with ground-based ionosonde measurements. Adv. Space Res. 2010, 46, 431–439. [Google Scholar] [CrossRef]
- Krankowski, A.; Zakharenkova, I.; Krypiak-Gregorczyk, A.; Shagimuratov, I.I.; Wielgosz, P. Ionospheric electron density observed by FORMOSAT-3/COSMIC over the European region and validated by ionosonde data. J. Geod. 2011, 85, 949–964. [Google Scholar] [CrossRef] [Green Version]
- Cherniak, I.V.; Zakharenkova, I.E. Validation of FORMOSAT-3/COSMIC radio occultation electron density profiles by incoherent scatter radar data. Adv. Space Res. 2014, 53, 1304–1312. [Google Scholar] [CrossRef]
- Habarulema, J.B.; Katamzi, Z.T.; Yizengaw, E. A simultaneous study of ionospheric parameters derived from FORMOSAT-3/COSMIC, GRACE, and CHAMP missions over middle, low, and equatorial latitudes: Comparison with ionosonde data. J. Geophys. Res. Space Phys. 2014, 119, 7732–7744. [Google Scholar] [CrossRef]
- Lai, P.-C.; Burke, W.J.; Gentile, L.C. Topside electron density profiles observed at low latitudes by COSMIC and compared with in situ ion densities measured by C/NOFS. J. Geophys. Res. Space Phys. 2013, 118, 2670–2680. [Google Scholar] [CrossRef] [Green Version]
- Pedatella, N.M.; Yue, X.; Schreiner, W.S. Comparison between GPS radio occultation electron densities and in situ satellite observations. Radio Sci. 2015, 50, 518–525. [Google Scholar] [CrossRef]
- Yang, K.F.; Chu, Y.H.; Su, C.L.; Ko, H.T.; Wang, C.Y. An examination of FORMOSAT-3/COSMIC ionospheric electron density profile: Data quality criteria and comparisons with the IRI model. Terr. Atmos. Ocean. Sci. 2009, 20, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Kakinami, Y.; Liu, J.Y.; Tsai, L.C. A comparison of a model using the FORMOSAT-3/COSMIC data with the IRI model. Earth Planet Space 2012, 64, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Haralambous, H.; Oikonomou, C. Validation and improvement of NeQuick topside ionospheric formulation using COSMIC/FORMOSAT-3 data. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028720. [Google Scholar] [CrossRef]
- Zhang, M.L.; Liu, L.; Wan, W.; Ning, B. An update global model of hmF2 from values estimated from ionosonde and COSMIC/FORMOSAT-3 radio occultation. Adv. Space Res. 2014, 53, 395–402. [Google Scholar] [CrossRef]
- Panda, S.K.; Haralambous, H.; Kavutarapu, V. Global Longitudinal Behavior of IRI Bottomside Profile Parameters from FORMOSAT-3/COSMIC Ionospheric Occultations. J. Geophys. Res. Space Phys. 2018, 123, 7011–7028. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Yue, X.; Schreiner, W.S. An improved inversion for FORMOSAT-3/COSMIC ionosphere electron density profiles. J. Geophys. Res. Space Phys. 2015, 120, 8942–8953. [Google Scholar] [CrossRef] [Green Version]
- Tulasi Ram, S.; Su, S.Y.; Tsai, L.C. A self-contained GIM-aided Abel retrieval method to improve GNSS-Radio Occultation retrieved electron density profiles. GPS Solut. 2016, 20, 825–836. [Google Scholar] [CrossRef]
- Chou, M.Y.; Lin, C.C.H.; Tsai, H.F.; Lin, C.Y. Ionospheric electron density inversion for Global Navigation Satellite Systems radio occultation using aided Abel inversions. J. Geophys. Res. Space Phys. 2017, 122, 1386–1399. [Google Scholar] [CrossRef]
- Liang, M.-C.; Li, K.-F.; Shia, R.-L.; Yung, Y.L. Short-period solar cycle signals in the ionosphere observed by FORMOSAT-3/COSMIC. Geophys. Res. Lett. 2008, 35, L15818. [Google Scholar] [CrossRef] [Green Version]
- Cherniak, I.V.; Zakharenkova, I.E.; Krankowski, A.; Shagimuratov, I.I. Plasmaspheric electron content derived from GPS TEC and FORMOSAT-3/COSMIC measurements: Solar minimum condition. Adv. Space Res. 2012, 50, 427–440. [Google Scholar] [CrossRef]
- Arras, C.; Wickert, J.; Beyerle, G.; Heise, S.; Schmidt, T.; Jacobi, C. A global climatology of ionospheric irregularities derived from GPS radio occultation. Geophys. Res. Lett. 2008, 35, L14809. [Google Scholar] [CrossRef]
- Arras, C. Arras, C. A global survey of sporadic E layers based on GPS radio occultations by CHAMP, GRACE and FORMOSAT–3/COSMIC. In Scientific Technical Report; Deutsches GeoForschungsZentrum GFZ: Potsdam, Germany, 2010. [Google Scholar] [CrossRef]
- Wang, C.Y.; Chu, Y.H.; Su, C.L.; Kuong, R.M.; Chen, H.C.; Chu, F.D. Campaign investigation of ionospheric plasma irregularities in sporadic E region using FORMOSAT-3/COSMIC satellite and Chung-Li 30 MHz coherent radar. Terr. Atmos. Ocean. Sci. 2009, 20, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Tsai, L.C.; Su, S.Y.; Liu, C.H.; Schuh, H.; Wickert, J.; Alizadeh, M.M. Global morphology of ionospheric sporadic E layer from the FormoSat-3/COSMIC GPS radio occultation experiment. GPS Solut. 2018, 22, 118. [Google Scholar] [CrossRef] [Green Version]
- Arras, C.; Wickert, J. Estimation of ionospheric sporadic E intensities from GPS radio occultation measurements. J. Atmos. Sol.-Terr. Phys. 2018, 47, 60–63. [Google Scholar] [CrossRef]
- Qiu, L.; Yu, T.; Yan, X.; Sun, Y.-Y.; Zuo, X.; Yang, N.; Wang, J.; Qi, Y. Altitudinal and latitudinal variations in ionospheric sporadic-E layer obtained from FORMOSAT-3/COSMIC radio occultation. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029454. [Google Scholar] [CrossRef]
- Yeh, W.-H.; Liu, J.-Y.; Huang, C.-Y.; Chen, S.-P. Explanation of the sporadic-E layer formation by comparing FORMOSAT-3/COSMIC data with meteor and wind shear information. J. Geophys. Res. Atmos. 2014, 119, 4568–4579. [Google Scholar] [CrossRef]
- Syndergaard, S. COSMIC S4 Data. 2006. Available online: http://cdaac-www.cosmic.ucar.edu/cdaac/doc/documents/s4_description.pdf (accessed on 1 May 2022).
- Tsai, L.C.; Su, S.Y.; Liu, C.H. Global morphology of ionospheric F-layer scintillations using FS3/COSMIC GPS radio occultation data. GPS Solut. 2017, 21, 1037–1048. [Google Scholar] [CrossRef]
- Kepkar, A.; Arras, C.; Wickert, J.; Schuh, H.; Alizadeh, M.; Tsai, L.-C. Occurrence climatology of equatorial plasma bubbles derived using FormoSat-3 ∕ COSMIC GPS radio occultation data. Ann. Geophys. 2020, 38, 611–623. [Google Scholar] [CrossRef]
- Liu, L.; He, M.; Wan, W.; Zhang, M.-L. Topside ionospheric scale heights retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate radio occultation measurements. J. Geophys. Res. 2008, 113, A10304. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; Xu, X.; Zhang, G.X. Analysis of the ionospheric equivalent slab thickness based on ground-based GPS/TEC and GPS/COSMIC RO measurements. J. Atmos. Sol.-Terr. Phys. 2011, 73, 839–846. [Google Scholar] [CrossRef]
- Huang, Z.; Yuan, H. Climatology of the ionospheric slab thickness along the longitude of 120° E in China and its adjacent region during the solar minimum years of 2007–2009. Ann. Geophys. 2015, 33, 1311–1319. [Google Scholar] [CrossRef]
- Lin, C.H.; Liu, J.Y.; Fang, T.W.; Chang, P.Y.; Tsai, H.F.; Chen, C.H.; Hsiao, C.C. Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC. Geophys. Res. Lett. 2007, 34, L19101. [Google Scholar] [CrossRef]
- Liu, J.Y.; Lin, C.Y.; Lin, C.H.; Tsai, H.F.; Solomon, S.C.; Sun, Y.Y.; Lee, I.T.; Schreiner, W.S.; Kuo, Y.H. Artificial plasma cave in the low-latitude ionosphere results from the radio occultation inversion of the FORMOSAT-3/COSMIC. J. Geophys. Res. 2010, 115, A07319. [Google Scholar] [CrossRef]
- Chang, F.Y.; Liu, J.Y.; Fang, T.W.; Rajesh, P.K.; Lin, C.H. Plasma Depletion Bays in the Equatorial Ionosphere Observed by FORMOSAT-3/COSMIC during 2007–2014. J. Geophys. Res. Space Phys. 2020, 125, e2019JA02750. [Google Scholar] [CrossRef]
- Lin, C.H.; Wang, W.; Hagan, M.E.; Hsiao, C.C.; Immel, T.J.; Hsu, M.L.; Liu, J.Y.; Paxton, L.J.; Fang, T.W.; Liu, C.H. Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: Three-dimensional electron density structures. Geophys. Res. Lett. 2007, 34, L11112. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Hsiao, C.C.; Liu, J.Y.; Liu, C.H. Longitudinal structure of the equatorial ionosphere: Time evolution of the four-peaked EIA structure. J. Geophys. Res. 2007, 112, A12305. [Google Scholar] [CrossRef]
- Balan, N.; Rajesh, P.K.; Sripathi, S.; Tulasiram, S.; Liu, J.Y.; Bailey, G.J. Modeling and observations of the north–south ionospheric asymmetry at low latitudes at long deep solar minimum. Adv. Space Res. 2013, 52, 375–382. [Google Scholar] [CrossRef]
- Tulasi Ram, S.; Su, S.-Y.; Liu, C.H. FORMOSAT-3/COSMIC observations of seasonal and longitudinal variations of equatorial ionization anomaly and its interhemispheric asymmetry during the solar minimum period. J. Geophys. Res. 2009, 114, A06311. [Google Scholar] [CrossRef]
- Gowtam, V.S.; Ram, S.T. Ionospheric winter anomaly and annual anomaly observed from Formosat-3/COSMIC Radio Occultation observations during the ascending phase of solar cycle 24. Adv. Space Res. 2017, 60, 1585–1593. [Google Scholar] [CrossRef]
- Nanan, B.; Chen, C.Y.; Rajesh, P.K.; Liu, J.Y.; Bailey, G.J. Modeling and observations of the low latitude ionosphere-plasmasphere system at long deep solar minimum. J. Geophys. Res. 2012, 117, A08316. [Google Scholar] [CrossRef]
- Lee, I.T.; Wang, W.; Liu, J.Y.; Chen, C.Y.; Lin, C.H. The ionospheric midlatitude trough observed by FORMOSAT-3/COSMIC during solar minimum. J. Geophys. Res. 2011, 116, A06311. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Liu, J.Y.; Cheng, C.Z.; Chen, C.H.; Liu, C.H.; Wang, W.; Burns, A.G. Three-dimensional ionospheric electron density structure of the Weddell Sea anomaly. J. Geophys. Res. 2009, 114, A02312. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Liu, C.H.; Liu, J.Y.; Chen, C.H.; Burns, A.G.; Wang, W. Midlatitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT-3/COSMIC. J. Geophys. Res. 2010, 115, A03308. [Google Scholar] [CrossRef]
- Chang, F.Y.; Liu, J.Y.; Chang, L.C.; Lin, C.H.; Chen, C.H. Three-dimensional electron density along the WSA and MSNA latitudes probed by FORMOSAT-3/COSMIC. Earth Planet. Space 2015, 67, 156. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.Y.; Liu, J.Y.; Lin, C.Y.; Tsai, H.F.; Chang, L.C.; Chen, C.Y.; Chen, C.H. Ionospheric F2 region perturbed by the 25 April 2015 Nepal earthquake. J. Geophys. Res. Space Phys. 2016, 121, 5778–5784. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, C.Y.; Sun, Y.Y.; Lee, I.T.; Chum, J. Fluctuations on vertical profiles of the ionospheric electron density perturbed by the March 11, 2011 M9.0 Tohoku earthquake and tsunami. GPS Solut. 2019, 23, 76. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chen, C.H.; Liu, C.Y.; Chen, C.Y.; Nishihashi, M.; Li, J.Z.; Xia, Y.Q.; Oyama, K.I.; Hattori, K.; et al. Seismo-ionospheric GNSS GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake. J. Geophys. Res. 2009, 114, A04320. [Google Scholar] [CrossRef]
- Li, W.; Yue, J.; Wu, S.; Yang, Y.; Li, Z.; Bi, J.; Zhang, K. Ionospheric responses to typhoons in Australia during 2005–2014 using GNSS and FORMOSAT-3/COSMIC measurements. GPS Solut. 2018, 22, 61. [Google Scholar] [CrossRef]
- Hsiao, C.C.; Liu, J.Y.; Oyama, K.-I.; Yen, N.L.; Wang, Y.H.; Miau, J.J. Ionospheric electron density anomaly prior to the December 26, 2006 M7.0 Pingtung earthquake doublet observed by FORMOSAT-3/COSMIC. Phys. Chem. Earth 2009, 34, 474–478. [Google Scholar] [CrossRef]
- Hsiao, C.C.; Liu, J.Y.; Oyama, K.I.; Yen, N.; Wang, Y.; Miau, J. Seismo-ionospheric precursor of the 2008 Mw7.9 Wenchuan earthquake observed by FORMOSAT-3/COSMIC. GPS Solut. 2010, 14, 83–89. [Google Scholar] [CrossRef]
- Zakharenkova, I.E.; Krankowski, A.; Shagimuratov, I.I.; Cherniak, Y.V.; Krypiak-Gregorczyk, A.; Wielgosz, P.; Lagovsky, A.F. Observation of the ionospheric storm of October 11, 2008 using FORMOSAT-3/COSMIC data. Earth Planet. Space 2012, 64, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Singh, A.K.; Singh, R.P. Ionospheric response to total solar eclipse of 22 July 2009 in different Indian regions. Ann. Geophys. 2013, 31, 1549–1558. [Google Scholar] [CrossRef] [Green Version]
- Limberger, M.; Hernández-Pajares, M.; Aragón-Ángel, A.; Altadill, D.; Dettmering, D. Long-term comparison of the ionospheric F2 layer electron density peak derived from ionosonde data and Formosat-3/COSMIC occultations. J. Space Weather. Space Clim. 2015, 5, A21. [Google Scholar] [CrossRef]
- Tiger Liu, J.Y.; Charles Lin, C.H.; Lin, C.Y.; Lee, I.T.; Sun, Y.Y.; Chen, S.P.; Chang, F.Y.; Rajesh, P.K.; Hsu, C.T.; Matsuo, T.; et al. Retrospect and Prospect of Ionospheric Weather Observed by FORMOSAT-3/COSMIC and FORMOSAT-7/COSMIC-2. Terr. Atmos. Ocean Sci. 2022. [Google Scholar]
- Lin, C.Y.; Matsuo, T.; Liu, J.Y.; Lin, C.H.; Tsai, H.F.; Araujo-Pradere, E.A. Ionospheric assimilation of radio occultation and ground-based GPS data using non-stationary background model error covariance. Atmos. Meas. Tech. 2015, 8, 171–182. [Google Scholar] [CrossRef]
- Lin, C.Y.; Matsuo, T.; Liu, J.Y.; Lin, C.H.; Huba, J.D.; Tsai, H.F.; Chen, C.Y. Data assimilation of ground- based GPS and radio occultation total electron content for global ionospheric specification. J. Geophys. Res. Space Phys. 2017, 122, 10876–10886. [Google Scholar] [CrossRef]
- Chu, C.H.; Huang, C.Y.; Fong, C.J.; Chen, S.Y.; Chen, Y.H.; Yeh, W.H.; Kuo, Y.H. Atmospheric remote sensing using global navigation satellite systems: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2. Terr. Atmos. Ocean. Sci. 2021, 32, 1001–1013. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Charles Lin, C.-H.; Liu, J.-Y.; Rajesh, P.K.; Matsuo, T.; Chou, M.-Y.; Tsai, H.-F.; Yeh, W.-H. The early results and validation of FORMOSAT-7/COSMIC-2 space weather products: Global ionospheric specification and Ne-aided Abel electron density profile. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028028. [Google Scholar] [CrossRef]
- Lee, I.-T.; Huang, J.-Y.; Ho, H.-H.; Yeh, W.-H.; Cheng, M.C.-P. Comprehensive validation of the FORMOSAT-7/COSMIC-2 electron density profiles and its application to space weather. Terr. Atmos. Ocean. Sci. 2021, 32, 1033–1045. [Google Scholar] [CrossRef]
- Lee, P.H.; Liu, J.Y.; Lin, C.Y.; Chang, F.Y. Intensive GNSS radio occultation observations by FORMOSAT-7/COSMIC-2 in the dawn, noon, dusk, and midnight ionosphere. Terr. Atmos. Ocean. Sci. 2022, 32, 989–999. [Google Scholar] [CrossRef]
- Rajesh, P.K.; Lin, C.H.; Lin, J.T.; Lin, C.Y.; Yue, J.; Matsuo, T.; Chen, S.P.; Chen, C.H. Day-to-day Variability of Ionosphere Electron Density During Solar Minimum Derived from FORMOSAT-7/COSMIC-2 Measurements. Terr. Atmos. Ocean. Sci. 2021, 32, 959–975. [Google Scholar] [CrossRef]
- Lin, J.T.; Lin, C.H.; Rajesh, P.K.; Yue, J.; Lin, C.Y.; Matsuo, T. Local-time and vertical characteristics of quasi-6-day oscillation in the ionosphere during the 2019 Antarctic Sudden Stratospheric Warming. Geophys. Res. Lett. 2020, 47, e2020GL090345. [Google Scholar] [CrossRef]
- Rajesh, P.K.; Lin, C.H.; Lin, C.Y.; Chen, C.H.; Liu, J.Y.; Matsuo, T.; Chen, S.-P.; Chen, C.-H. Extreme positive ionosphere storm triggered by a minor magnetic storm in deep solar minimum revealed by FORMOSAT-7/COSMIC-2 and GNSS observations. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028261. [Google Scholar] [CrossRef]
- Chen, S.P.; Lin, C.H.; Rajesh, P.K.; Liu, J.Y.; Eastes, R.; Chou, M.Y.; Choi, J.M. Near real-time global plasma irregularity monitoring by FORMOSAT-7/COSMIC-2. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028339. [Google Scholar] [CrossRef]
- Namba, S.; Maeda, K.-I. Radio Wave Propagation Report; Corona: Tokyo, Japan, 1939; p. 86. [Google Scholar]
- Appleton, E. Two Anomalies in the Ionosphere. Nature 1946, 157, 691. [Google Scholar] [CrossRef]
- Hanson, W.B.; Moffett, R.J. lonization transport effects in the equatorial F region. J. Geophys. Res. 1966, 71, 5559–5572. [Google Scholar] [CrossRef]
- Anderson, D.N. A theoretical study of the ionospheric F region equatorial anomaly–I. Theory. Planet. Space Sci. 1973, 21, 409–419. [Google Scholar] [CrossRef]
- Nishida, A.; Jacobs, J.A. Equatorial enhancement of world-wide changes. J. Geophys. Res. 1962, 67, 4937–4940. [Google Scholar] [CrossRef]
- Richmond, A.D. Gravity wave generation, propagation, and dissipation in the thermosphere. J. Geophys. Res. 1978, 83, 4131–4145. [Google Scholar] [CrossRef]
- Blanc, M.; Richmond, A.D. The ionospheric disturbance dynamo. J. Geophys. Res. 1980, 85, 1669–1686. [Google Scholar] [CrossRef]
- Prölss, G.W. Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes. J. Geophys. Res. 1993, 98, 5981–5991. [Google Scholar] [CrossRef]
- Hines, C.O. Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 1960, 38, 1441. [Google Scholar] [CrossRef]
- Fejer, J.A. Atmospheric tides and associated magnetic effects. Rev. Geophys. 1964, 2, 275–309. [Google Scholar] [CrossRef]
- Lindzen, R.S. Atmospheric Tides. Annu. Rev. Earth Planet. Sci. 1979, 7, 199–225. [Google Scholar] [CrossRef]
- Forbes, J.M. Tidal and Planetary Waves. In The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory; Johnson, R.M., Killeen, T.L., Eds.; American Geophysical Union: Washington, DC, USA, 1995. [Google Scholar] [CrossRef]
- Hagan, M.E.; Chang, J.L.; Avery, S.K. Global-scale wave model estimates of nonmigrating tidal effects. J. Geophys. Res. 1997, 102, 16439–16452. [Google Scholar] [CrossRef]
- Balan, N.; Otsuka, Y.; Bailey, G.J.; Fukao, S. Equinoctial asymmetries in the ionosphere and thermosphere observed by the MU radar. J. Geophys. Res. 1998, 103, 9481–9495. [Google Scholar] [CrossRef]
- Ren, Z.; Wan, W.; Liu, L.; Chen, Y.; Le, H. Equinoctial asymmetry of ionospheric vertical plasma drifts and its effect on F-region plasma density. J. Geophys. Res. 2011, 116, A02308. [Google Scholar] [CrossRef]
- Ren, Z.; Wan, W.; Xiong, J.; Liu, L. Influence of DE3 tide on the equinoctial asymmetry of the zonal mean ionospheric electron density. Earth Planet Space 2014, 66, 117. [Google Scholar] [CrossRef] [Green Version]
- Mehmet, A. North-south asymmetry in the ionospheric equatorial anomaly in the African and the West Asian regions produced by asymmetrical thermospheric winds. J. Atmos. Terr. Phys. 1988, 50, 623–627. [Google Scholar] [CrossRef]
- Rishbeth, H.; Müller-Wodarg, I.C.F. Why is there more ionosphere in January than in July? The annual asymmetry in the F2-layer. Ann. Geophys. 2006, 24, 3293–3311. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.-F.; Liu, J.-Y.; Tsai, W.-H.; Liu, C.-H.; Tseng, C.-L.; Wu, C.-C. Seasonal variations of the ionospheric total electron content in Asian equatorial anomaly regions. J. Geophys. Res. 2001, 106, 30363–30369. [Google Scholar] [CrossRef]
- Sagawa, E.; Immel, T.J.; Frey, H.U.; Mende, S.B. Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. J. Geophys. Res. 2005, 110, A11302. [Google Scholar] [CrossRef]
- Immel, T.J.; Sagawa, E.; England, S.L.; Henderson, S.B.; Hagan, M.E.; Mende, S.B.; Frey, H.U.; Swenson, C.M.; Paxton, L.J. Control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. 2006, 33, L15108. [Google Scholar] [CrossRef]
- Hagan, M.E. Comparative effects of migrating solar sources on tidal signatures in the middle and upper atmosphere. J. Geophys. Res. 1996, 101, 21213–21222. [Google Scholar] [CrossRef]
- Hagan, M.E.; Forbes, J.M. Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. 2002, 107, 4754. [Google Scholar] [CrossRef]
- Hagan, M.E.; Forbes, J.M. Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. 2003, 108, 1062. [Google Scholar] [CrossRef]
- Forbes, J.M.; Zhang, X.; Palo, S.; Russell, J.; Mertens, C.J.; Mlynczak, M. Tidal variability in the ionospheric dynamo region. J. Geophys. Res. 2008, 113, A02310. [Google Scholar] [CrossRef]
- Zhang, X.; Forbes, J.M.; Hagan, M.E.; Russell III, J.M.; Palo, S.E.; Mertens, C.J.; Mlynczak, M.G. Monthly tidal temperatures 20–120 km from TIMED/SABER. J. Geophys. Res. 2006, 111, A10S08. [Google Scholar] [CrossRef]
- England, S.L.; Immel, T.J.; Sagawa, E.; Henderson, S.B.; Hagan, M.E.; Mende, S.B.; Frey, H.U.; Swenson, C.M.; Paxton, L.J. Effect of atmospheric tides on the morphology of the quiet time, post-sunset equatorial ionospheric anomaly. J. Geophys. Res. 2006, 111, A10S19. [Google Scholar] [CrossRef]
- Onohara, A.N.; Batista, I.S.; Batista, P.P. Wavenumber-4 structures observed in the low-latitude ionosphere during low and high solar activity periods using FORMOSAT/COSMIC observations. Ann. Geophys. 2018, 36, 459–471. [Google Scholar] [CrossRef] [Green Version]
- Pancheva, D.; Mukhtarov, P. Strong evidence for the tidal control of the longitudinal structure of the ionospheric F-region. Geophys. Res. Lett. 2010, 37, L14105. [Google Scholar] [CrossRef]
- Chang, L.C.; Lin, C.-H.; Yue, J.; Liu, J.-Y.; Lin, J.-T. Stationary planetary wave and nonmigrating tidal signatures in ionospheric wave 3 and wave 4 variations in 2007–2011 FORMOSAT-3/COSMIC observations. J. Geophys. Res. Space Phys. 2013, 118, 6651–6665. [Google Scholar] [CrossRef]
- Chang, L.C.; Lin, C.-H.; Liu, J.-Y.; Balan, N.; Yue, J.; Lin, J.-T. Seasonal and local time variation of ionospheric migrating tides in 2007–2011 FORMOSAT-3/COSMIC and TIE-GCM total electron content. J. Geophys. Res. Space Phys. 2013, 118, 2545–2564. [Google Scholar] [CrossRef]
- England, S.L. Review of the effects of non-migrating atmospheric tides on Earth’s low-latitude ionosphere. Space Sci. Rev. 2012, 168, 211–236. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, S.P.; Yeh, W.H.; Tsai, H.F.; Rajesh, P.K. Worst-case GPS scintillations on the ground estimated from radio occultation observations of FORMOSAT-3/COSMIC during 2007-2014. Surv. Geophys. 2016, 37, 791–809. [Google Scholar] [CrossRef]
- Chen, S.P.; Bilitza, D.; Liu, J.Y.; Caton, R.; Chang, L.C.; Yeh, W.H. An empirical model of L-band scintillation S4 index constructed by using FORMOSAT-3/COSMIC data. Adv. Space Res. 2017, 60, 1015–1028. [Google Scholar] [CrossRef]
- Chang, L.C.; Chiu, P.-Y.; Salinas, C.C.J.H.; Chen, S.-P.; Duann, Y.; Liu, J.-Y.; Lin, C.-H.; Sun, Y.-Y. On the relationship between E region scintillation and ENSO observed by FORMOSAT-3/COSMIC. J. Geophys. Res. Space Phys. 2018, 123, 4053–4065. [Google Scholar] [CrossRef]
- Uma, G.; Liu, J.Y.; Chen, S.P.; Sun, Y.Y.; Brahmanandam, P.S.; Lin, C.H. A comparison of the equatorial spread F derived by the International Reference Ionosphere and the S4 index observed by FORMOSAT-3/COSMIC during the solar minimum period of 2007–2009. Earth Planet Space 2012, 64, 467–471. [Google Scholar] [CrossRef] [Green Version]
- Brahmanandam, P.S.; Uma, G.; Liu, J.Y.; Chu, Y.H.; Latha Devi, N.S.M.P.; Kakinami, Y. Global S4 index variations observed using FORMOSAT-3/COSMIC GPS RO technique during a solar minimum year. J. Geophys. Res. 2012, 117, A09322. [Google Scholar] [CrossRef]
- Chen, S.P.; Liu, J.Y.; Lin, C.H.; Yeh, W.H. A global model for the occurrence probability of L-band scintillation S4-index. Terr. Atmos. Ocean. Sci. 2021, 32, 977–987. [Google Scholar] [CrossRef]
- Burke, W.J.; Huang, C.Y.; Valladares, C.E.; Machuzak, J.S.; Gentile, L.C.; Sultan, P.J. Multipoint observations of equatorial plasma bubbles. J. Geophys. Res. 2003, 108, 1221. [Google Scholar] [CrossRef]
- Caton, R.; Groves, K. Longitudinal correlation of equatorial ionospheric scintillation. Radio Sci. 2006, 41, RS5S22. [Google Scholar] [CrossRef]
- Burke, W.J.; Huang, C.Y.; Gentile, L.C.; Bauer, L. Seasonal-longitudinal variability of equatorial plasma bubbles. Ann. Geophys. 2004, 22, 3089–3098. [Google Scholar] [CrossRef] [Green Version]
- Burke, W.J.; Gentile, L.C.; Huang, C.Y.; Valladares, C.E.; Su, S.Y. Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1. J. Geophys. Res. 2004, 109, A12301. [Google Scholar] [CrossRef]
- Gentile, L.C.; Burke, W.J.; Rich, F.J. A climatology of equatorial plasma bubbles from DMSP 1989–2004. Radio Sci. 2006, 41, RS5S21. [Google Scholar] [CrossRef]
- Huang, C.-S.; de La Beaujardiere, O.; Roddy, P.A.; Hunton, D.E.; Liu, J.Y.; Chen, S.P. Occurrence probability and amplitude of equatorial ionospheric irregularities associated with plasma bubbles during low and moderate solar activities (2008–2012). J. Geophys. Res. Space Phys. 2014, 119, 1186–1199. [Google Scholar] [CrossRef]
- Chou, M.-Y.; Wu, Q.; Pedatella, N.M.; Cherniak, I.; Schreiner, W.S.; Braun, J. Climatology of the equatorial plasma bubbles captured by FORMOSAT-3/COSMIC. J. Geophys. Res. Space Phys. 2020, 125, 1–24. [Google Scholar] [CrossRef]
- Mendillo, M.; Papagiannis, M.D.; Klobuchar, J.A. Average behavior of the midlatitude F-region parameters NT, N max, and τ during geomagnetic storms. J. Geophys. Res. 1972, 77, 4891–4895. [Google Scholar] [CrossRef]
- Rishbeth, H.; Mendillo, M. Patterns of F2-layer variability. J. Atmos. Sol. Terr. Phys. 2001, 63, 1661–1680. [Google Scholar] [CrossRef]
- Fang, T.-W.; Akmaev, R.; Fuller-Rowell, T.; Wu, F.; Maruyama, N.; Millward, G. Longitudinal and day-to-day variability in the ionosphere from lower atmosphere tidal forcing. Geophys. Res. Lett. 2013, 40, 2523–2528. [Google Scholar] [CrossRef]
- Liu, H.-L.; Yudin, V.A.; Roble, R.G. Day-to-day ionospheric variability due to lower atmosphere perturbations. Geophys. Res. Lett. 2013, 40, 665–670. [Google Scholar] [CrossRef]
- Fang, T.-W.; Fuller-Rowell, T.; Yudin, V.; Matsuo, T.; Viereck, R. Quantifying the sources of ionosphere day-to-day variability. J. Geophys. Res. Space Phys. 2018, 123, 9682–9696. [Google Scholar] [CrossRef]
- Hsu, C.-T.; Matsuo, T.; Yue, X.; Fang, T.-W.; Fuller-Rowell, T.; Ide, K.; Liu, J.-Y. Assessment of the impact of FORMOSAT-7/COSMIC-2 GNSS RO observations on midlatitude and low-latitude ionosphere specification: Observing system simulation experiments using Ensemble Square Root Filter. J. Geophys. Res. Space Phys. 2018, 123, 2296–2314. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Anderson, J.L. The impact of assimilating COSMIC-2 observations of electron density in WACCMX. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029906. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.-Y.; Lin, C.-H.; Rajesh, P.K.; Lin, C.-Y.; Chang, F.-Y.; Lee, I.-T.; Fang, T.-W.; Fuller-Rowell, D.; Chen, S.-P. Advances in Ionospheric Space Weather by Using FORMOSAT-7/COSMIC-2 GNSS Radio Occultations. Atmosphere 2022, 13, 858. https://doi.org/10.3390/atmos13060858
Liu J-Y, Lin C-H, Rajesh PK, Lin C-Y, Chang F-Y, Lee I-T, Fang T-W, Fuller-Rowell D, Chen S-P. Advances in Ionospheric Space Weather by Using FORMOSAT-7/COSMIC-2 GNSS Radio Occultations. Atmosphere. 2022; 13(6):858. https://doi.org/10.3390/atmos13060858
Chicago/Turabian StyleLiu, Jann-Yenq, Chien-Hung Lin, Panthalingal Krishnanunni Rajesh, Chi-Yen Lin, Fu-Yuan Chang, I-Te Lee, Tzu-Wei Fang, Dominic Fuller-Rowell, and Shih-Ping Chen. 2022. "Advances in Ionospheric Space Weather by Using FORMOSAT-7/COSMIC-2 GNSS Radio Occultations" Atmosphere 13, no. 6: 858. https://doi.org/10.3390/atmos13060858
APA StyleLiu, J. -Y., Lin, C. -H., Rajesh, P. K., Lin, C. -Y., Chang, F. -Y., Lee, I. -T., Fang, T. -W., Fuller-Rowell, D., & Chen, S. -P. (2022). Advances in Ionospheric Space Weather by Using FORMOSAT-7/COSMIC-2 GNSS Radio Occultations. Atmosphere, 13(6), 858. https://doi.org/10.3390/atmos13060858