Impact of Stratosphere on Cold Air Outbreak: Observed Evidence by CrIS on SNPP and Its Comparison with Models
Abstract
:1. Introduction
2. Data and Methods
3. Results and Discussion
3.1. Distribution of T and GPH at Different Levels and the CAO Transport Path on 29 January 2019
3.2. Enhancement of O3 along the CAO Transport Path and Its Link to Stratospheric Intrusion
3.3. Upper Warm Center Detected Using CrIS Stratospheric Sounding Channels
3.4. Analysis of Stratospheric Air Downward Transport Using the Cross-Sections of T, RH, and O3
3.5. Comparison of T and RH Profiles from CrIS SFOV with ERA-5 and MERRA-2
3.6. Comparison of TCO from ERA-5, MERRA-2, CrIS SFOV with OMPS
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIRS | Atmospheric Infrared Sounder |
AMSU | Advanced Microwave Sounding Unit |
CAO | Cold Air Outbreak |
CLIMCAPS | Community Long-term Infrared Microwave Coupled Product System |
CrIS | Cross-track Infrared Sounder |
DISORT | Discrete Ordinate Radiative Transfer |
ECMWF | European Centre for Medium-Range Weather Forecasts |
ERA-5 | Fifth generation of ECMWF atmospheric reanalyses of the global climate |
FOR | Field of Regard |
FOV | Field of View |
GPH | geopotential height |
GES DISC | Goddard Earth Sciences Data and Information Services Center |
IASI | Infrared Atmospheric Sounding Interferometer |
JPSS | Joint Polar Satellite System |
MERRA-2 | The Modern-Era Retrospective Analysis for Research and Applications, Version 2 |
NAST-I | National Aircraft Sounding Testbed-Interferometer |
NCAR | National Center for Atmospheric Research |
NCEP | National Center for Environmental Prediction |
NUCAPS | NOAA Unique Combined Atmospheric Processing System |
NOAA | National Oceanic and Atmospheric Administration |
NASA | National Aeronautics and Space Administration |
OMPS | Ozone Mapping and Profiler Suite |
PC | Principal Components |
PCRTM | Principal Component based Radiative Transfer model |
PV | Potential vorticity |
RH | Relative humidity |
SIRS | Satellite Infrared Spectrometer |
SFOV | Single Field of View |
SIPS | Science Investigator-led Processing System |
SNPP | Suomi National Polar-orbiting Partnership |
UTLS | Upper Troposphere and Lower Stratosphere |
WMO | World Meteorological Organization |
WRF | Weather Research and Forecasting model |
References
- Walsh, J.E.; Phillips, A.S.; Portis, D.H.; Chapman, W.L. Extreme cold air outbreaks in the United States and Europe, 1948–1999. J. Clim. 2001, 14, 2642–2658. [Google Scholar] [CrossRef]
- Cellitti, M.P.; Walsh, J.E.; Rauber, R.M.; Portis, D.H. Extreme cold air outbreaks over the U.S., the polar vortex, and the large-scale circulation. J. Geophys. Res. Atmos. 2006, 111, D02114. [Google Scholar] [CrossRef]
- Smith, E.T.; Sheridan, S.C. The characteristics of extreme cold events and cold air outbreaks in the eastern United States. Int. J. Climatol. 2018, 38, e807–e820. [Google Scholar] [CrossRef]
- Vavrus, S.; Walsh, J.E.; Chapman, W.L.; Portis, D. The behavior of extreme cold air outbreaks under greenhouse warming. Int. J. Climatol. 2006, 26, 1133–1147. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Portis, D.H.; Cellitti, M.P.; Chapman, W.L.; Walsh, J.E. Low-frequency variability and evolution of North American cold air outbreaks. Mon. Weather Rev. 2006, 134, 579–597. [Google Scholar] [CrossRef]
- Uppala, S.M.; Kållberg, P.W.; Simmons, A.J.; Andrae, U.; Da Costa Bechtold, V.; Fiorino, M.; Gibson, J.K.; Haseler, J.; Hernandez, A.; Kelly, G.A.; et al. The ERA-40 Re-analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012. [Google Scholar] [CrossRef]
- Wheeler, D.D.; Harvey, V.L.; Atkinson, D.E.; Collins, R.L.; Mills, M.J. A climatology of cold air outbreaks over North America: WACCM and ERA-40 comparison and analysis. J. Geophys. Res. Atmos. 2011, 116, D12107. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Hans, H.; Bill, B.; Paul, B.; Shoji, H.; András, H.; Joaquín, M.S.; Julien, N.; Carole, P.; Raluca, R.; Dinand, S.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Smith, E.T.; Sheridan, S.C. Where do cold air outbreaks occur, and how have they changed over time? Geophys. Res. Lett. 2020, 47, e2020GL086983. [Google Scholar] [CrossRef]
- Hartley, D.E.; Villarin, J.T.; Black, R.X.; Davis, C.A. A new perspective on the dynamical link between the stratosphere and troposphere. Nature 1998, 391, 471–474. [Google Scholar] [CrossRef]
- Kidston, J.; Scaife, A.A.; Hardiman, S.C.; Mitchell, D.; Butchart, N.; Baldwin, M.P.; Gray, L. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci. 2015, 8, 433–440. [Google Scholar] [CrossRef]
- Kretschmer, M.; Cohen, J.; Matthias, V.; Runge, J.; Coumou, D. The different stratospheric influence on cold-extremes in Eurasia and North America. NPJ Clim. Atmos. Sci. 2018, 1, 44. [Google Scholar] [CrossRef] [Green Version]
- Kretschmer, M.; Coumou, D.; Agel, L.; Barlow, M.; Tziperman, E.; Cohen, J. More-persistent weak stratospheric polar vortex states linked to cold extremes. Bull. Am. Meteorol. Soc. 2018, 99, 49–60. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Baldwin, M.P.; Wallace, J.M. Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Clim. 2002, 15, 1421–1428. [Google Scholar] [CrossRef]
- Tanaka, H.L.; Milkovich, M.L. A heat budget analysis of the polar troposphere in and around Alaska during the abnormal winter of 1988/1989. Mon. Weather Rev. 1990, 118, 1628–1639. [Google Scholar] [CrossRef] [Green Version]
- Curry, J. The contribution of radiative cooling to the formation of cold-core anticyclones. J. Atmos. Sci. 1987, 44, 2575–2592. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.C.; Curry, J.A. A diagnostic study of the evolution of an intense North American anticyclone during winter 1989. Mon. Weather Rev. 1993, 121, 961–975. [Google Scholar] [CrossRef] [Green Version]
- Colucci, S.J.; Baumhefner, D.P.; Konrad, C.E., II. Numerical prediction of a cold-air outbreak: A case study with ensemble forecasts. Mon. Weather Rev. 1999, 127, 1538–1550. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. Regional climate impacts of the Northern Hemisphere annular mode. Science 2001, 293, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Rogers, J.C.; Rohli, R.V. Florida citrus freezes and polar anticyclones in the Great Plains. J. Clim. 1991, 4, 1103–1113. [Google Scholar] [CrossRef]
- Scaife, A.A.; Knight, J.R.; Vallis, G.K.; Folland, C.K. A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kolstad, E.W.; Breiteig, T.; Scaife, A.A. The association between stratospheric weak polar vortex events and cold air outbreaks in the northern hemisphere. Q. J. R. Meteorol. Soc. 2010, 136, 886–893. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Robinson, W. Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci. 2004, 61, 1711–1725. [Google Scholar] [CrossRef]
- Black, R.X. Stratospheric forcing of surface climate in the Arctic oscillation. J. Clim. 2002, 15, 268–277. [Google Scholar] [CrossRef]
- Kuroda, Y.; Kodera, K. Role of planetary waves in the stratosphere-troposphere coupled variability in the northern hemisphere winter. Geophys. Res. Lett. 1999, 26, 2375–2378. [Google Scholar] [CrossRef]
- Scaife, A.A.; James, I.N. Response of the stratosphere to interannual variability of tropospheric planetary waves. Q. J. R. Meteorol. Soc. 2000, 126, 275–297. [Google Scholar] [CrossRef]
- Robinson, W. Irreversible wave-mean flow interactions in a mechanistic model of the stratosphere. J. Atmos. Sci. 1988, 45, 3413–3430. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, A.; Grose, W.; Pope, V.; MacLean, H.; Swinbank, R. Evolution of the stratosphere during Northern Winter 1991/92 as diagnosed from U.K. Meteorological Office Analyses. J. Atmos. Sci. 1994, 51, 2800–2817. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Revercomb, H.; Cromp, M.; Gu, D.; Johnson, D.; Mooney, D.; Scott, D.; Strow, L.; Bingham, G.; Borg, L.; et al. Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. J. Geophys. Res. Atmos. 2013, 118, 12734–12748. [Google Scholar] [CrossRef]
- Han, Y.; Suwinski, L.; Tobin, D.; Chen, Y. Effect of self-apodization correction on Cross-track Infrared Sounder radiance noise. Appl. Opt. 2015, 54, 10114–10122. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, D.K.; Larar, A.M.; Smith, W.L.; Mango, S.A. Case-study of a principal- component-based radiative transfer forward model and retrieval algorithm using EAQUATE data. Q. J. R. Meteorol. Soc. 2007, 133, 243–256. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, D.K.; Larar, A.M.; Smith, W.L.; Schluessel, P.; Newman, S.M.; Taylor, J.P.; Wu, W. Retrieval of atmospheric profiles and cloud properties from IASI spectra using super-channels. Atmos. Chem. Phys. 2009, 9, 9121–9142. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Liu, X.; Zhou, D.K.; Larar, A.; Yang, Q.; Kizer, S.; Liu, Q. The Application of PCRTM Physical Retrieval Methodology for IASI Cloudy Scene Analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5042–5056. [Google Scholar] [CrossRef]
- Wu, W.; Liu, X.; Yang, Q.; Zhou, D.K.; Larar, A.M.; Zhao, M.; Zhou, L. All Sky Single Field of View Retrieval System for Hyperspectral Sounding. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 7560–7563. [Google Scholar]
- Xiong, X.; Liu, X.; Wu, W.; Knowland, K.E.; Yang, Q.; Welsh, J.; Zhou, D.K. Satellite observation of stratospheric intrusions and ozone transport using CrIS on SNPP. Atmos. Environ. 2022, 273, 118956. [Google Scholar] [CrossRef]
- Nalli, N.R.; Gambacorta, A.; Liu, Q.; Barnet, C.D.; Tan, C.; Iturbide-Sanchez, F.; Reale, T.; Sun, B.; Wilson, M.; Borg, L.; et al. Validation of Atmospheric Profile Retrievals from the SNPP NOAA-Unique Combined Atmospheric Processing System. Part 1: Temperature and Moisture. IEEE Trans. Geosci. Remote Sens. 2018, 56, 180–190. [Google Scholar] [CrossRef]
- Smith, N.; Barnet, C.D. Uncertainty Characterization and Propagation in the Community Long-Term Infrared Microwave Combined Atmospheric Product System (CLIMCAPS). Remote Sens. 2019, 11, 1227. [Google Scholar] [CrossRef] [Green Version]
- Smith, N.; Barnet, C.D. CLIMCAPS observing capability for temperature, moisture, and trace gases from AIRS/AMSU and CrIS/ATMS. Atmos. Meas. Tech. 2020, 13, 4437–4459. [Google Scholar] [CrossRef]
- Susskind, J.; Christopher, D.B.; John, M.B. Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. Geosci. Remote Sens. IEEE Trans. 2003, 41, 390–409. [Google Scholar] [CrossRef]
- Susskind, J.; Blaisdell, J.M.; Iredell, L. Improved methodology for surface and atmospheric soundings, error estimates, and quality control procedures: The atmospheric infrared sounder science team version-6 retrieval algorithm. J. Appl. Remote Sens. 2014, 8, 084994. [Google Scholar] [CrossRef]
- Cousins, D.; Smith, W.L. National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I). Proc. SPIE Int. Soc. Opt. Eng. 1997, 3127, 323–331. [Google Scholar]
- Stamnes, K.; Tsay, S.-C.; Wiscombe, W.; Jayaweera, K. Numericallystablealgorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting media. Appl. Opt. 1988, 27, 2502–2509. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.K.; Smith, W.L.; Liu, X.; Larar, A.M.; Huang, H.-L.A.; Li, J.; McGill, M.J.; Mango, S.A. Thermodynamic and cloud parameters retrieval using infrared spectral data. Geophys. Res. Lett. 2005, 32, L15805. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.K.; Smith, W.L., Sr.; Liu, X.; Larar, A.M.; Mango, S.A.; Huang, H.-L. Physical retrieving cloud and thermodynamic parameters from ultraspectral IR measurements. J. Atmos. Sci. 2007, 64, 969–982. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Smith, W.L.; Zhou, D.K.; Larar, A. Principal component-based radiative transfer model for hyperspectral sensors: Theoretical concept. Appl. Opt. 2006, 45, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, Q.; Li, H.; Jin, Z.; Wu, W.; Kizer, S.; Zhou, D.K.; Yang, P. Development of a fast and accurate PCRTM radiative transfer model in the solar spectral region. Appl. Opt. 2016, 55, 8236–8247. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Holton, J.R.; Haynes, P.H.; McIntyre, M.E.; Douglass, A.R.; Rood, R.B.; Pfister, L. Stratosphere-troposphere exchange. Rev. Geophys. 1995, 33, 403. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Manual on Codes: International Codes. Volume I.1, Part A, WMO–No. 306, Geneva. 1995. Available online: http://www.wmo.int/pages/prog/www/WMOCodes/Manual/WMO306_Vol-I-1-PartA.pdf (accessed on 10 January 2021).
- Reichler, T.; Dameris, M.; Sausen, R. Determining the tropopause height from gridded data. Geophys. Res. Lett. 2003, 30, GL018240. [Google Scholar] [CrossRef] [Green Version]
- Flynn, L.; Long, C.; Wu, X.; Evans, R.; Beck, C.T.; Petropavlovskikh, I.; McConville, G.; Yu, W.; Zhang, Z.; Niu, J.; et al. Performance of the ozone Mapping and Profiler Suite (OMPS) products. J. Geophys. Res. Atmos. 2014, 119, 6181–6195. [Google Scholar] [CrossRef]
- Jaross, G. OMPS-NPP L2 NM Ozone (O3) Total Column Swath Orbital V2; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2017. [CrossRef]
- McPeters, R.; Frith, S.; Kramarova, N.; Ziemke, J.; Labow, G. Trend quality ozone from NPP OMPS: The version 2 processing. Atmos. Meas. Tech. 2019, 12, 977–985. [Google Scholar] [CrossRef] [Green Version]
- Wikipedia. Available online: https://en.wikipedia.org/wiki/January%E2%80%93February_2019_North_American_cold_wave (accessed on 10 January 2022).
- Ghazi, A. Nimbus 4 Observations of Changes in Total Ozone and Stratospheric Temperature during a Sudden Warming. J. Atmos. Sci. 1974, 31, 2197–2206. [Google Scholar] [CrossRef] [Green Version]
- Madhu, V. Effects of Sudden Stratospheric Warming Events on the Distribution of Total Column Ozone over Polar and Middle Latitude Regions. Open J. Mar. Sci. 2016, 6, 302–316. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.; Zhang, J.; Zhang, X. The Role of Stratosphere Vortex Downward Intrusion in a Long-lasting Late-summer Arctic Storm. Q. J. R. Meteorol. Soc. 2017, 143, 1953–1966. [Google Scholar] [CrossRef]
- Knowland, K.E.; Ott, L.E.; Duncan, B.N.; Wargan, K. Stratospheric intrusion influenced ozone air quality exceedances investigated in the NASA MERRA-2 Reanalysis. Geophys. Res. Lett. 2017, 44, 10691–10701. [Google Scholar] [CrossRef]
- Knowland, K.E.; Doherty, R.M.; Hodges, K.I. The effects of springtime mid-latitude storms on trace gas composition determined from the MACC reanalysis. Atmos. Chem. Phys. 2015, 15, 3605–3628. [Google Scholar] [CrossRef] [Green Version]
- Knowland, K.E.; Doherty, R.M.; Hodges, K.I.; Ott, L.E. The influence of mid-latitude cyclones on European background surface ozone. Atmos. Chem. Phys. 2017, 17, 12421–12447. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Reale, A.; Tilley, F.H.; Pettey, M.; Nalli, N.R.; Barnet, C.D. Assessment of NUCAPS S-NPP CrIS/ATMS sounding products using reference and conventional radiosonde observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 30, 2961–2988. [Google Scholar] [CrossRef]
- Wargan, K.; Labow, G.; Frith, S.; Pawson, S.; Livesey, N.; Partyka, G. Evaluation of the ozone fields in NASA’s MERRA-2 reanalysis. J. Clim. 2017, 30, 2961–2988. [Google Scholar] [CrossRef] [Green Version]
- Prather, M.J.; Zhu, X.; Tang, Q.; Hsu, J.; Neu, J.L. An atmospheric chemist in search of the tropopause. J. Geophys. Res. 2011, 116, D04306. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, X.; Liu, X.; Wu, W.; Knowland, K.E.; Yang, F.; Yang, Q.; Zhou, D.K. Impact of Stratosphere on Cold Air Outbreak: Observed Evidence by CrIS on SNPP and Its Comparison with Models. Atmosphere 2022, 13, 876. https://doi.org/10.3390/atmos13060876
Xiong X, Liu X, Wu W, Knowland KE, Yang F, Yang Q, Zhou DK. Impact of Stratosphere on Cold Air Outbreak: Observed Evidence by CrIS on SNPP and Its Comparison with Models. Atmosphere. 2022; 13(6):876. https://doi.org/10.3390/atmos13060876
Chicago/Turabian StyleXiong, Xiaozhen, Xu Liu, Wan Wu, K. Emma Knowland, Fanglin Yang, Qiguang Yang, and Daniel K. Zhou. 2022. "Impact of Stratosphere on Cold Air Outbreak: Observed Evidence by CrIS on SNPP and Its Comparison with Models" Atmosphere 13, no. 6: 876. https://doi.org/10.3390/atmos13060876
APA StyleXiong, X., Liu, X., Wu, W., Knowland, K. E., Yang, F., Yang, Q., & Zhou, D. K. (2022). Impact of Stratosphere on Cold Air Outbreak: Observed Evidence by CrIS on SNPP and Its Comparison with Models. Atmosphere, 13(6), 876. https://doi.org/10.3390/atmos13060876