Trends of Tropical Cyclone Translation Speed over the Western North Pacific during 1980−2018
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Change of Translation Speed Trends in Two Periods
3.2. TCs’ Intensities Affecting TC Translation Speed
3.3. Environmental Factors Affecting TC Translation Speed
3.4. The Physical Linkage between TC Translation and Intensity
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Emanuel, K.A. Assessing the present and future probability of Hurricane Harvey’s rainfall. Proc. Natl. Acad. Sci. USA 2017, 114, 12681–12684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, I.J.; Kim, S.H.; Chan, J. Climate change and tropical cyclone trend. Nature 2019, 570, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Walsh, K.; Camargo, S.J.; Knutson, T.R.; Kossin, J.P.; Lee, T.C.; Murakami, H.; Patricola, C. Tropical cyclones and climate change. Trop. Cyclone Res. Rev. 2019, 34, 7443–7460. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Chan, J.C.L.; Moon, I.J.; Yoshida, K.; Mizuta, R. Global warming changes tropical cyclone translation speed. Nat. Commun. 2020, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.T.F. Are global tropical cyclones moving slower in a warming climate? Environ. Res. Lett. 2019, 14, 105015. [Google Scholar] [CrossRef]
- Wang, C.; Wu, L.; Lu, J.; Liu, Q.; Cao, J. Interannual variability of the basinwide translation speed of tropical cyclones in the Western North Pacific. J. Clim. 2020, 33, 1–33. [Google Scholar] [CrossRef]
- Kossin, J.P. A global slowdown of tropical-cyclone translation speed. Nature 2018, 558, 104–107. [Google Scholar] [CrossRef]
- Chang, Y.T.; Lin, I.I.; Huang, H.C.; Liao, Y.C.; Lien, C.C. The association of typhoon intensity increase with translation speed increase in the South China Sea. Sustainability 2020, 12, 939. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.C.L. The physics of tropical cyclone motion. Annu. Rev. Fluid. Mech. 2005, 37, 99–128. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, H.; Zheng, J.; Cheng, X.; Chen, D. Changes in tropical-cyclone translation speed over the Western North Pacific. Atmosphere 2020, 11, 93. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Rao, Y.; Tan, Z.M.; Schönemann, D. A statistical analysis of the effects of vertical wind shear on tropical cyclone intensity change over the Western North Pacific. Mon. Weather Rev. 2015, 143, 3434–3453. [Google Scholar] [CrossRef]
- Kossin, J.P.; Emanuel, K.A.; Vecchi, G.A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 2014, 509, 349–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kossin, J.P.; Emanuel, K.A.; Camargo, S.J. Past and projected changes in Western North Pacific tropical cyclone exposure. J. Clim. 2016, 29, 5725–5739. [Google Scholar] [CrossRef]
- Moon, I.J.; Kim, S.H.; Klotzbach, P.J.; Chan, J.C.L. Roles of interbasin frequency changes in the poleward shifts of the maximum intensity location of tropical cyclones. Environ. Res. Lett. 2015, 10, 104004–104012. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Klotzbach, P.J. What has controlled the poleward migration of annual averaged location of tropical cyclone lifetime maximum intensity over the Western North Pacific since 1961? Geophys. Res. Lett. 2018, 45, 1148–1156. [Google Scholar] [CrossRef]
- Sun, J.; Wang, D.; Hu, X.; Ling, Z.; Wang, L. Ongoing poleward migration of tropical cyclone occurrence over the Western North Pacific ocean. Geophys. Res. Lett. 2019, 46, 9110–9117. [Google Scholar] [CrossRef]
- Kossin, J.P.; Olander, T.L.; Knapp, K.R. Trend analysis with a new global record of tropical cyclone intensity. J. Clim. 2013, 26, 9960–9976. [Google Scholar] [CrossRef]
- Schreck, C.J.; Knapp, K.R.; Kossin, J.P. The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS. Mon. Weather Rev. 2014, 142, 3881–3899. [Google Scholar] [CrossRef]
- Bister, M.; Emanuel, K.A. Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J. Geophys. Res. Atmos. 2002, 107, ACL26-1–ACL26-15. [Google Scholar] [CrossRef]
- Mei, W.; Xie, S.P. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nat. Geosci. 2016, 9, 753–757. [Google Scholar] [CrossRef]
- Chu, P.S.; Xin, Z. Bayesian change-point analysis of tropical cyclone activity: The central North Pacific case. J. Clim. 2004, 17, 4893–4901. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Chen, Z.F.; Zhang, W. Impacts of tropical North Atlantic SST on Western North Pacific landfalling tropical cyclones. J. Clim. 2018, 31, 853–862. [Google Scholar] [CrossRef]
- Sun, J.; Wang, G.H.; Zuo, J.C.; Ling, Z.; Liu, D.H. Role of surface warming in the northward shift of tropical cyclone tracks over the South China Sea in November. Acta. Oceanol. Sin. 2017, 36, 67–72. [Google Scholar] [CrossRef]
- Riemer, M.; Montgomery, M.T.; Nicholls, M.E. A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. ACPD 2010, 9, 1635–1642. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.K.; Duan, X.Y.; Raga, G.B.; Klotzbach, P.J. Changes in characteristics of rapidly intensifying Western North Pacific tropical cyclones related to climate regime shifts. J. Clim. 2018, 31, 8163–8179. [Google Scholar] [CrossRef]
- Emanuel, K.A. Thermodynamic control of hurricane intensity. Nature 1999, 401, 665–669. [Google Scholar] [CrossRef]
- Emanuel, K.A. Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908–1958. JAMES 2010, 2, 12. [Google Scholar] [CrossRef]
- Lin, I.I.; D’Asaro, E.A.; Black, P.; Price, J.F.; Wu, C.C. An ocean cooling potential intensity index for tropical cyclones. Geophys. Res. Lett. 2012, 40, 1878–1882. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Soden, B.J. Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 2007, 450, 1066–1070. [Google Scholar] [CrossRef]
- Yang, L.; Huang, X.G.; Fei, J.F.; Cheng, X.P.; Shi, W.L. A statistical comparison of the potential intensity index for tropical cyclones over the Western North Pacific. Atmos. Sci. Lett. 2020, 21, e945–e953. [Google Scholar] [CrossRef]
- Holland, G.J.; Greg, J. The maximum potential intensity of tropical cyclones. J. Atmos. Sci. 1997, 54, 2519–2541. [Google Scholar] [CrossRef]
- Zhao, X.H.; Chan, J.C.L. Changes in tropical cyclone intensity with translation speed and mixed layer depth: Idealized WRF-ROMS coupled model simulations. Q. J. Roy. Meteor. Soc. 2017, 143, 152–163. [Google Scholar] [CrossRef]
- Chan, J.C.L.; Gray, W.M. Tropical cyclone movement and surrounding flow relationships. Mon. Weather Rev. 1982, 110, 1354–1374. [Google Scholar] [CrossRef] [Green Version]
- Kimberlain, B.T.; Breman, M.J. Global Guide to Tropical Cyclone Forecasting National Hurricane Center; NOAA/NWS/NCEP: Miami, FL, USA, 2017.
- Velden, C.S.; Leslie, L.M. The basic relationship between TC intensity and the depth of the environmental steering layer in the Australian region. WAF 1991, 6, 244–253. [Google Scholar]
- Lanzante, J.R. Uncertainties in tropical-cyclone translation speed. Nature 2019, 570, E6–E15. [Google Scholar] [CrossRef]
P1 | year | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | ||
TC number | 21 | 24 | 23 | 22 | 29 | 22 | 21 | 22 | 23 | |||
LMI | 78.3 | 71.9 | 85.0 | 78.2 | 74.0 | 77.5 | 83.1 | 91.1 | 70.7 | |||
year | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1996 | 1996 | 1997 | |||
TC number | 29 | 27 | 27 | 31 | 30 | 30 | 28 | 35 | 27 | |||
LMI | 77.6 | 82.2 | 84.8 | 87.1 | 72.2 | 75.0 | 72.5 | 69.0 | 95.6 | |||
P2 | year | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | |
TC number | 23 | 25 | 29 | 26 | 24 | 20 | 24 | 20 | 22 | 24 | ||
LMI | 63.7 | 50.6 | 66.9 | 80.2 | 76.5 | 87.0 | 93.8 | 86.5 | 78.4 | 73.3 | ||
year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | |
TC number | 20 | 25 | 16 | 20 | 22 | 30 | 16 | 20 | 28 | 27 | 30 | |
LMI | 67.0 | 73.6 | 72.2 | 69.8 | 84.8 | 77.7 | 92.5 | 90.8 | 79.3 | 64.6 | 77.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, D.; Tang, X.; Chan, J.C.L.; Wang, Q. Trends of Tropical Cyclone Translation Speed over the Western North Pacific during 1980−2018. Atmosphere 2022, 13, 896. https://doi.org/10.3390/atmos13060896
Gong D, Tang X, Chan JCL, Wang Q. Trends of Tropical Cyclone Translation Speed over the Western North Pacific during 1980−2018. Atmosphere. 2022; 13(6):896. https://doi.org/10.3390/atmos13060896
Chicago/Turabian StyleGong, Danyi, Xiaodong Tang, Johnny C. L. Chan, and Qiuyun Wang. 2022. "Trends of Tropical Cyclone Translation Speed over the Western North Pacific during 1980−2018" Atmosphere 13, no. 6: 896. https://doi.org/10.3390/atmos13060896
APA StyleGong, D., Tang, X., Chan, J. C. L., & Wang, Q. (2022). Trends of Tropical Cyclone Translation Speed over the Western North Pacific during 1980−2018. Atmosphere, 13(6), 896. https://doi.org/10.3390/atmos13060896