Monitoring the Water Mass Balance Variability of Small Shallow Lakes by an ERA5-Land Reanalysis and Water Level Measurement-Based Model. An Application to the Trasimeno Lake, Italy
Abstract
:1. Introduction
2. Site Description and Previous Studies
3. Data Sources: Reanalysis and Observations
3.1. Era5l Reanalysis and the Flake Model
3.1.1. Ifs and Era5l
3.1.2. Flake Model and Era5l Fluxes
3.1.3. Selected Era5l Data
3.2. Ground-Based Data
3.3. Satellite Data
4. Methods
4.1. Era5l Data Validation
4.2. Modeling the Lake Level: The Conceptual Model
5. Results
5.1. Lake Temperature and Precipitation Validated Data
5.2. Modeling the Lake Level: Correlation Analysis
5.3. Model Calibration and Verification
6. Discussion
7. Conclusions
- lake surface temperature provided by FLake is in good agreement with the satellite product GloboLakes (i.e., the lake surface water temperature, LSWT) with a Root Mean Square Error RMSE of about 1 °C;
- precipitation provided by ERA5L is in good agreement with the ground-based observations, with a Root Mean Square Error RMSE of about 0.04 m;
- there is a strong link between the observed variation of the lake level, , and the values of the water storage, , evaluated as the difference between precipitation and evaporation, with a Pearson coefficient larger than 70% and a maximum value of 81% when the grid point located over the lake (P1-lake) is considered;
- the series of the observed vs. , from ERA5L, indicate that a linear link can be assumed with an RMSE equal to 0.31 m;
- discrepancies in the linear behavior happen in two periods characterized in Europe by an extreme climate anomaly: the drought 2003–2005 and intense precipitation period 2013–2016, when reanalysis overestimates and underestimates precipitation, respectively, and the groundwater inflow (not considered in the model).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Williamson, C.E.; Saros, J.E.; Vincent, W.F.; Smol, J.P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef]
- Kirillin, G.B.; Shatwell, T.; Wen, L. Ice-Covered Lakes of Tibetan Plateau as Solar Heat Collectors. Geophys. Res. Lett. 2021, 48, e2021GL093429. [Google Scholar] [CrossRef]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 10–773. [Google Scholar] [CrossRef]
- Maberly, S.C.; O’Donnell, R.A.; Woolway, R.I.; Cutler, M.E.; Gong, M.; Jones, I.D.; Merchant, C.J.; Miller, C.A.; Politi, E.; Scott, E.M.; et al. Global lake thermal regions shift under climate change. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Rai, M.R.; Chidthaisong, A.; Ekkawatpanit, C.; Varnakovida, P. Assessing Climate Change Trends and Their Relationships with Alpine Vegetation and Surface Water Dynamics in the Everest Region, Nepal. Atmosphere 2021, 12, 987. [Google Scholar] [CrossRef]
- Sharma, S.; Blagrave, K.; Magnuson, J.J.; O’Reilly, C.M.; Oliver, S.; Batt, R.D.; Magee, M.R.; Straile, D.; Weyhenmeyer, G.A.; Winslow, L.; et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nat. Clim. Chang. 2019, 9, 227–231. [Google Scholar] [CrossRef]
- Magnuson, J.J.; Robertson, D.M.; Benson, B.J.; Wynne, R.H.; Livingstone, D.M.; Arai, T.; Assel, R.A.; Barry, R.G.; Card, V.; Kuusisto, E.; et al. Historical Trends in Lake and River Ice Cover in the Northern Hemisphere. Science 2000, 289, 1743–1746. [Google Scholar] [CrossRef]
- Schneider, P.; Hook, S.J. Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Wang, W.; Lee, X.; Xiao, W.; Liu, S.; Schultz, N.; Wang, Y.; Zhang, M.; Zhao, L. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nat. Geosci. 2018, 11, 410–414. [Google Scholar] [CrossRef]
- Dokulil, M.T.; de Eyto, E.; Maberly, S.C.; May, L.; Weyhenmeyer, G.A.; Woolway, R.I. Increasing maximum lake surface temperature under climate change. Clim. Chang. 2021, 165, 1–17. [Google Scholar] [CrossRef]
- Woolway, R.I.; Merchant, C.J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 2019, 12, 271–276. [Google Scholar] [CrossRef]
- Kirillin, G. Modeling the impact of global warming on water temperature and seasonal mixing regimes in small temperate lakes. Boreal Environ. Res. Publ. Board 2010, 15, 279–293. [Google Scholar]
- Nowak, B.; Lawniczak-Malińska, A.E. The influence of hydrometeorological conditions on changes in littoral and riparian vegetation of a meromictic lake in the last half-century. Water 2019, 11, 2651. [Google Scholar] [CrossRef]
- Lei, Y.; Zhu, Y.; Wang, B.; Yao, T.; Yang, K.; Zhang, X.; Zhai, J.; Ma, N. Extreme lake level changes on the Tibetan Plateau associated with the 2015/2016 El Niño. Geophys. Res. Lett. 2019, 46, 5889–5898. [Google Scholar] [CrossRef]
- Schulz, S.; Darehshouri, S.; Hassanzadeh, E.; Tajrishy, M.; Schüth, C. Climate change or irrigated agriculture–what drives the water level decline of Lake Urmia. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Kebede, S.; Travi, Y.; Alemayehu, T.; Marc, V. Water balance of lake Tana and its sensitivity to fluctuations in rainfall, Blue Nile basin, Ethiopia. J. Hydrol. 2006, 316, 233–247. [Google Scholar] [CrossRef]
- Gronewold, A.D.; Smith, J.P.; Read, L.K.; Crooks, J.L. Reconciling the water balance of large lake systems. Adv. Water Resour. 2020, 137, 103505. [Google Scholar] [CrossRef]
- Vanderkelen, I.; Van Lipzig, N.P.; Thiery, W. Modelling the water balance of Lake Victoria (East Africa)–part 1: Observational analysis. Hydrol. Earth Syst. Sci. 2018, 22, 5509–5525. [Google Scholar] [CrossRef]
- Cao, Y.; Fu, C.; Wang, X.; Dong, L.; Yao, S.; Xue, B.; Wu, H.; Wu, H. Decoding the dramatic hundred-year water level variations of a typical great lake in semi-arid region of northeastern Asia. Sci. Total. Environ. 2021, 770, 145353. [Google Scholar] [CrossRef]
- Lei, Y.; Yao, T.; Yang, K.; Sheng, Y.; Kleinherenbrink, M.; Yi, S.; Bird, B.W.; Zhang, X.; Zhu, L.; Zhang, G. Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology. Geophys. Res. Lett. 2017, 44, 892–900. [Google Scholar] [CrossRef]
- Smith, J.P.; Gronewold, A.D. Development and analysis of a Bayesian water balance model for large lake systems. arXiv 2017, arXiv:1710.10161. [Google Scholar]
- Lu, J.; Chen, X.; Zhang, L.; Sauvage, S.; Sánchez-Pérez, J.M. Water balance assessment of an ungauged area in Poyang lake watershed using a spatially distributed runoff coefficient model. J. Hydroinform. 2018, 20, 1009–1024. [Google Scholar] [CrossRef]
- Chebud, Y.A.; Melesse, A.M. Modelling lake stage and water balance of lake Tana, Ethiopia. Hydrol. Process. Int. J. 2009, 23, 3534–3544. [Google Scholar] [CrossRef]
- Dessie, M.; Verhoest, N.E.; Pauwels, V.R.; Adgo, E.; Deckers, J.; Poesen, J.; Nyssen, J. Water balance of a lake with floodplain buffering: Lake Tana, Blue Nile basin, Ethiopia. J. Hydrol. 2015, 522, 174–186. [Google Scholar] [CrossRef]
- Lüko, G.; Torma, P.; Weidinger, T. Intra-Seasonal and Intra-Annual Variation of the Latent Heat Flux Transfer Coefficient for a Freshwater Lake. Atmosphere 2022, 13, 352. [Google Scholar] [CrossRef]
- Dragoni, W.; Piscopo, V.; Di Matteo, L.; Gnucci, L.; Leone, A.; Lotti, F.; Melillo, M.; Petitta, M. Risultati del progetto di ricerca PRIN laghi 2003–2005. G. Geol. Appl. 2006, 3, 39–46. (In Italian) [Google Scholar]
- Setegn, S.G.; Rayner, D.; Melesse, A.M.; Dargahi, B.; Srinivasan, R. Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resour. Res. 2011, 47, W04511. [Google Scholar] [CrossRef]
- Syed, T.; Famiglietti, J.; Chen, J.; Rodell, M.; Seneviratne, S.I.; Viterbo, P.; Wilson, C. Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land-atmosphere water balance. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Shum, C.; Yi, S.; Yang, K.; Xie, H.; Feng, W.; Bolch, T.; Wang, L.; Behrangi, A.; et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 2017, 44, 5550–5560. [Google Scholar] [CrossRef]
- Tong, K.; Su, F.; Li, C. Modeling of water fluxes and budget in Nam Co Basin during 1979–2013. J. Hydrometeorol. 2020, 21, 829–844. [Google Scholar] [CrossRef]
- Mahmood, R.; Jia, S.; Mahmood, T.; Mehmood, A. Predicted and projected water resources changes in the chari catchment, the lake Chad basin, Africa. J. Hydrometeorol. 2020, 21, 73–91. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data Discuss. 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Mironov, D.; Heise, E.; Kourzeneva, E.; Ritter, B.; Schneider, N.; Terzhevik, A. Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO. Boreal Environ. Res. Publ. Board 2010, 15, 218–230. [Google Scholar]
- Balsamo, G. Interactive lakes in the integrated forecasting system. ECMWF Newsl. 2013, 137, 30–34. [Google Scholar]
- Vincent, W. Effects of climate change on lakes. Encyclopedia of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Dragoni, W.; Melillo, M.; Giontella, C. Bilancio idrico del lago Trasimeno. Tutela Ambient. Lago Trasimeno 2012, 1. (In Italian) [Google Scholar]
- Ludovisi, A.; Gaino, E. Meteorological and water quality changes in Lake Trasimeno (Umbria, Italy) during the last fifty years. J. Limnol. 2010, 69, 174. [Google Scholar] [CrossRef]
- Downing, J.A. Emerging global role of small lakes and ponds: Little things mean a lot. Limnetica 2010, 29, 9–24. [Google Scholar] [CrossRef]
- Casadei, S.; Pierleoni, A.; Bellezza, M. Integrated water resources management in a lake system: A case study in central Italy. Water 2016, 8, 570. [Google Scholar] [CrossRef]
- Ubertini, L.; Casadei, S.; Pierleoni, A. Lakes Management in Umbria Region, Central Italy. In Proceedings of the Taal 2007: The 12th World Lake Conference, Jaipur, India, 29 October–2 November 2007; pp. 1356–1364. [Google Scholar]
- Thornthwaite, C.; Mather, J. Instructions and tables for computing potential evapotranspiration and the water balance. Publ. Climatol. 1957, 1, 206–208, 230–240. [Google Scholar]
- Vandewiele, G.; Xu, C.Y. Methodology and comparative study of monthly water balance models in Belgium, China and Burma. J. Hydrol. 1992, 134, 315–347. [Google Scholar] [CrossRef]
- Balsamo, G.; Beljaars, A.; Scipal, K.; Viterbo, P.; van den Hurk, B.; Hirschi, M.; Betts, A.K. A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeorol. 2009, 10, 623–643. [Google Scholar] [CrossRef]
- Thiery, W.; Martynov, A.; Darchambeau, F.; Descy, J.P.; Plisnier, P.D.; Sushama, L.; van Lipzig, N.P. Understanding the performance of the FLake model over two African Great Lakes. Geosci. Model Dev. 2014, 7, 317–337. [Google Scholar] [CrossRef]
- Shevnina, E.; Kourzeneva, E. Thermal regime and components of water balance of lakes in Antarctica at the Fildes peninsula and the Larsemann Hills. Tellus Dyn. Meteorol. Oceanogr. 2017, 69, 1317202. [Google Scholar] [CrossRef]
- Betts, A.K.; Reid, D.; Crossett, C. Evaluation of the FLake model in ERA5 for Lake Champlain. Front. Environ. Sci. 2020, 8, 250. [Google Scholar] [CrossRef]
- Manrique Suñén, A.; Nordbo, A.; Balsamo, G.; Beljaars, A.; Mammarella, I. Land surface model over forest and lake surfaces in a boreal site-evaluation of the tiling method. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 22–27 April 2012; p. 2392. [Google Scholar]
- Samuelsson, P.; Kourzeneva, E.; Mironov, D. The impact of lakes on the European climate as simulated by a regional climate model. Boreal Environ. Res. Publ. Board 2010, 15, 113–219. [Google Scholar]
- ECMWF. IFS Documentation CY45R1-Part IV: Physical Processes; IFS Documentation; ECMWF: Reading, UK, 2018. [Google Scholar]
- Mironov, D. Parameterization of Lakes in Numerical Weather Prediction. Description of a Lake Model (No. 11); Technical Report, COSMO Technical Report; German Weather Service: Offenbach am Main, Germany, 2008. [Google Scholar]
- Balsamo, G.; Salgado, R.; Dutra, E.; Boussetta, S.; Stockdale, T.; Potes, M. On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model. Tellus Dyn. Meteorol. Oceanogr. 2012, 64, 15829. [Google Scholar] [CrossRef]
- Tiedtke, M. Representation of clouds in large-scale models. Mon. Weather. Rev. 1993, 121, 3040–3061. [Google Scholar] [CrossRef]
- Forbes, R.; Tompkins, A.; Untch, A. A New Prognostic Bulk Microphysics Scheme for the IFS, ECMWF Technical Memoranda; ECMWF: Reading, UK, 2011. [Google Scholar]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather. Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef]
- Bechtold, P.; Semane, N.; Lopez, P.; Chaboureau, J.P.; Beljaars, A.; Bormann, N. Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci. 2014, 71, 734–753. [Google Scholar] [CrossRef]
- Bongioannini Cerlini, P.; Silvestri, L.; Saraceni, M. Quality control and gap-filling methods applied to hourly temperature observations over central Italy. Meteorol. Appl. 2020, 27, e1913. [Google Scholar]
- Silvestri, L.; Saraceni, M.; Bongioannini Cerlini, P. Quality management system and design of an integrated mesoscale meteorological network in Central Italy. Meteorol. Appl. 2022, 29, e2060. [Google Scholar] [CrossRef]
- Braca, G.; Bussettini, M.; Lastoria, B.; Mariani, S.; Piva, F. Il Bilancio Idrologico Gis BAsed a scala Nazionale su Griglia regolare—BIGBANG: Metodologia e stime. Rapp. Sulla Dispon. Nat. Della Risorsa Idrica. Rapp. ISPRA 2021, 339, 1–181. [Google Scholar]
- Colvin, J.; Lazarus, S.; Splitt, M.; Weaver, R.; Taeb, P. Wind driven setup in east central Florida’s Indian River Lagoon: Forcings and parameterizations. Estuar. Coast. Shelf Sci. 2018, 213, 40–48. [Google Scholar] [CrossRef]
- Carrea, L.; Merchant, C. GloboLakes: Lake surface water temperature (LSWT) v4. 0 (1995–2016). Cent. Environ. Data Anal. 2019, 10, 29. [Google Scholar]
- Klimaszyk, P.; Rzymski, P.; Piotrowicz, R.; Joniak, T. Contribution of surface runoff from forested areas to the chemistry of a through-flow lake. Environ. Earth Sci. 2015, 73, 3963–3973. [Google Scholar] [CrossRef]
- Yihdego, Y.; Webb, J.A.; Vaheddoost, B. Highlighting the role of groundwater in lake–aquifer interaction to reduce vulnerability and enhance resilience to climate change. Hydrology 2017, 4, 10. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Sun, H.; Su, F.; Yao, T.; He, Z.; Tang, G.; Huang, J.; Zheng, B.; Meng, F.; Ou, T.; Chen, D. General overestimation of ERA5 precipitation in flow simulations for High Mountain Asia basins. Environ. Res. Commun. 2021, 3, 121003. [Google Scholar] [CrossRef]
- Jiao, D.; Xu, N.; Yang, F.; Xu, K. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Muala, E.; Mohamed, Y.A.; Duan, Z.; Van der Zaag, P. Estimation of reservoir discharges from Lake Nasser and Roseires Reservoir in the Nile Basin using satellite altimetry and imagery data. Remote Sens. 2014, 6, 7522–7545. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Yao, J.; Tan, Z.; Liu, X. Assessment of water storage response to surface hydrological connectivity in a large floodplain system (Poyang Lake, China) using hydrodynamic and geostatistical analysis. Stoch. Environ. Res. Risk Assess. 2019, 33, 2071–2088. [Google Scholar] [CrossRef]
- Beniston, M. The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Black, E.; Blackburn, M.; Harrison, G.; Hoskins, B.; Methven, J. Factors contributing to the summer 2003 European heatwave. Weather 2004, 59, 217–223. [Google Scholar] [CrossRef]
- Ferretti, R.; Pichelli, E.; Gentile, S.; Maiello, I.; Cimini, D.; Davolio, S.; Miglietta, M.; Panegrossi, G.; Baldini, L.; Pasi, F.; et al. Overview of the first HyMeX Special Observation Period over Italy: Observations and model results. Hydrol. Earth Syst. Sci. 2014, 18, 1953–1977. [Google Scholar] [CrossRef]
- ISPRA. Gli indicatori del Clima in Italia nel 2019. 20° Rapporto Annuale ISPRA; ISPRA: Roma, Italy, 2020. (In Italian) [Google Scholar]
- Silvestri, L.; Saraceni, M.; Bongioannini Cerlini, P. Links between precipitation, circulation weather types and orography in central Italy. Int. J. Climatol. 2022, 1–19. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, W.; Fan, Z.; He, X.; Sun, W.; Chen, S.; Wen, J.; Gao, J.; Wang, J. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. J. Hydrol. 2021, 595, 125660. [Google Scholar] [CrossRef]
- Xu, J.; Ma, Z.; Yan, S.; Peng, J. Do ERA5 and ERA5-Land precipitation estimates outperform satellite-based precipitation products? A comprehensive comparison between state-of-the-art Model-based and satellite-based precipitation products over mainland China. J. Hydrol. 2021, 605, 127353. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.; Zhang, X.; Zwiers, F.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Moon, H.; Gudmundsson, L.; Seneviratne, S.I. Drought persistence errors in global climate models. J. Geophys. Res. Atmos. 2018, 123, 3483–3496. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Schewe, J.; Gosling, S.N.; Reyer, C.; Zhao, F.; Ciais, P.; Elliott, J.; Francois, L.; Huber, V.; Lotze, H.K.; Seneviratne, S.I.; et al. State-of-the-art global models underestimate impacts from climate extremes. Nat. Commun. 2019, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Schär, C.; Vidale, P.L.; Lüthi, D.; Frei, C.; Häberli, C.; Liniger, M.A.; Appenzeller, C. The role of increasing temperature variability in European summer heatwaves. Nature 2004, 427, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.M.; de Jeu, R.A.; Guichard, F.; Harris, P.P.; Dorigo, W.A. Afternoon rain more likely over drier soils. Nature 2012, 489, 423–426. [Google Scholar] [CrossRef]
- Lee, K.O.; Flamant, C.; Ducrocq, V.; Duffourg, F.; Fourrié, N.; Davolio, S. Convective initiation and maintenance processes of two back-building mesoscale convective systems leading to heavy precipitation events in Southern Italy during HyMeX IOP 13. Q. J. R. Meteorol. Soc. 2016, 142, 2623–2635. [Google Scholar] [CrossRef]
- Barthlott, C.; Davolio, S. Mechanisms initiating heavy precipitation over Italy during HyMeX Special Observation Period 1: A numerical case study using two mesoscale models. Q. J. R. Meteorol. Soc. 2016, 142, 238–258. [Google Scholar] [CrossRef]
- Hassler, B.; Lauer, A. Comparison of Reanalysis and Observational Precipitation Datasets Including ERA5 and WFDE5. Atmosphere 2021, 12, 1462. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote. Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Ayzel, G.; Izhitskiy, A. Climate change impact assessment on freshwater inflow into the Small Aral Sea. Water 2019, 11, 2377. [Google Scholar] [CrossRef]
- Soja, G.; Züger, J.; Knoflacher, M.; Kinner, P.; Soja, A.M. Climate impacts on water balance of a shallow steppe lake in Eastern Austria (Lake Neusiedl). J. Hydrol. 2013, 480, 115–124. [Google Scholar] [CrossRef]
- Gibson, J. Short-term evaporation and water budget comparisons in shallow Arctic lakes using non-steady isotope mass balance. J. Hydrol. 2002, 264, 242–261. [Google Scholar] [CrossRef]
- Li, X.Y.; Xu, H.Y.; Sun, Y.L.; Zhang, D.S.; Yang, Z.P. Lake-level change and water balance analysis at Lake Qinghai, west China during recent decades. Water Resour. Manag. 2007, 21, 1505–1516. [Google Scholar] [CrossRef]
- Bongioannini Cerlini, P.; Meniconi, S.; Brunone, B. Groundwater supply and climate change management by means of global atmospheric datasets. Preliminary results. Procedia Eng. 2017, 186, 420–427. [Google Scholar] [CrossRef]
- Bongioannini Cerlini, P.; Silvestri, L.; Meniconi, S.; Brunone, B. Simulation of the water table elevation in shallow unconfined aquifers by means of the ERA5 soil moisture dataset: The Umbria Region case study. Earth Interact. 2021, 25, 15–32. [Google Scholar] [CrossRef]
- C3S. ERA5-Land hourly data from 1950 to present. Copernic. Clim. Chang. Serv. 2020. [Google Scholar]
P1-Lake | P2-Tuoro | P3-S. Savino | 3 Points Mean | |
---|---|---|---|---|
0.99 | 0.99 | 0.99 | 0.99 | |
RMSE (°C) | 1.1 | 2.6 | 2.6 | 2.0 |
P1-Lake | P2-Tuoro | P3-S. Savino | |
---|---|---|---|
0.70 | 0.80 | 0.75 | |
RMSE (m/month) | 0.04 | 0.03 | 0.04 |
P1-Lake | P2-Tuoro | P3-S. Savino | 3 Points Mean | |
---|---|---|---|---|
0.81 | 0.79 | 0.70 | 0.79 |
Period | RMSE (m) | KGE |
---|---|---|
1996–2019 | 0.31 | 0.56 |
2002–2005 | 0.30 | 0.55 |
2006–2012 | 0.17 | 0.79 |
2013–2016 | 0.57 | −2.1 |
2017–2019 | 0.18 | 0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bongioannini Cerlini, P.; Saraceni, M.; Silvestri, L.; Meniconi, S.; Brunone, B. Monitoring the Water Mass Balance Variability of Small Shallow Lakes by an ERA5-Land Reanalysis and Water Level Measurement-Based Model. An Application to the Trasimeno Lake, Italy. Atmosphere 2022, 13, 949. https://doi.org/10.3390/atmos13060949
Bongioannini Cerlini P, Saraceni M, Silvestri L, Meniconi S, Brunone B. Monitoring the Water Mass Balance Variability of Small Shallow Lakes by an ERA5-Land Reanalysis and Water Level Measurement-Based Model. An Application to the Trasimeno Lake, Italy. Atmosphere. 2022; 13(6):949. https://doi.org/10.3390/atmos13060949
Chicago/Turabian StyleBongioannini Cerlini, Paolina, Miriam Saraceni, Lorenzo Silvestri, Silvia Meniconi, and Bruno Brunone. 2022. "Monitoring the Water Mass Balance Variability of Small Shallow Lakes by an ERA5-Land Reanalysis and Water Level Measurement-Based Model. An Application to the Trasimeno Lake, Italy" Atmosphere 13, no. 6: 949. https://doi.org/10.3390/atmos13060949
APA StyleBongioannini Cerlini, P., Saraceni, M., Silvestri, L., Meniconi, S., & Brunone, B. (2022). Monitoring the Water Mass Balance Variability of Small Shallow Lakes by an ERA5-Land Reanalysis and Water Level Measurement-Based Model. An Application to the Trasimeno Lake, Italy. Atmosphere, 13(6), 949. https://doi.org/10.3390/atmos13060949