Genetic Algorithm-Optimized Extreme Learning Machine Model for Estimating Daily Reference Evapotranspiration in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sets
2.2. Penman–Monteith Model
2.3. Empirical Models
2.3.1. Romanenko Model
2.3.2. Makkink Model
2.3.3. Tabari Model
2.3.4. Irmak–Allen Model
2.3.5. Priestley–Taylor Model
2.4. Extreme Learning Machine and Optimization Algorithms
2.4.1. Extreme Learning Machine
2.4.2. Extreme Learning Machine Optimized by Genetic Algorithm
2.5. Input Combinations of Meteorological Parameters
2.6. Model Evaluation
3. Results
3.1. Performances of Reference Evapotranspiration Models in the Five Zones
3.2. Performances of Reference Evapotranspiration Models in Southwest China
4. Discussion
4.1. ELM Models Produced More Accurate ET0 Estimates Than Empirical Models in Southwest China
4.2. Combination of Input Parameters Decided Accuracy of ET0 Prediction Models
4.3. GA Improved the Performance of ELM Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, J.; Wu, L.; Zhang, F.; Xiang, Y.; Zheng, J. Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015. J. Hydrol. 2016, 542, 923–937. [Google Scholar] [CrossRef]
- Lai, C.; Chen, X.; Zhong, R.; Wang, Z. Implication of climate variable selections on the uncertainty of reference crop evapotranspiration projections propagated from climate variables projections under climate change. Agric. Water Manag. 2022, 259, 107273. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998.
- Fan, J.; Yue, W.; Wu, L.; Zhang, F.; Cai, H.; Wang, X.; Lu, X.; Xiang, Y. Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agric. For. Meteorol. 2018, 263, 225–241. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Samani, Z. Estimating solar radiation and evapotranspiration using minimum climatological data. J. Irrig. Drain. Eng. 2000, 126, 265–267. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, N.; Zhao, L.; Hu, X.; Gong, D. Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China. J. Hydrol. 2016, 536, 376–383. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F.; de Oliveira, R.A.; Filho, E.I.F. Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM–A new approach. J. Hydrol. 2019, 572, 556–570. [Google Scholar] [CrossRef]
- Balde, A.B.; Sow, A.; Muller, B.; Irmak, S.; N’Diaye, M.K.; Baboucarr, M.; Moukoumbi, Y.D.; Futakuchi, K.; Saito, K. Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley. J. Hydrol. Reg. Stud. 2015, 3, 139–159. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Cui, N.; Feng, Y.; Gong, D.; Hu, X. Improvement of Makkink model for reference evapotranspiration estimation using temperature data in Northwest China. J. Hydrol. 2018, 566, 264–273. [Google Scholar] [CrossRef]
- Kisi, O.; Alizamir, M. Modelling reference evapotranspiration using a new wavelet conjunction heuristic method: Wavelet extreme learning machine vs. wavelet neural networks. Agric. For. Meteorol. 2018, 263, 41–48. [Google Scholar] [CrossRef]
- Mehdizadeh, S. Estimation of daily reference evapotranspiration (ETo) using artificial intelligence methods: Offering a new approach for lagged ETo data-based modeling. J. Hydrol. 2018, 559, 794–812. [Google Scholar] [CrossRef]
- Yassin, M.A.; Alazba, A.; Mattar, M.A. Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate. Agric. Water Manag. 2016, 163, 110–124. [Google Scholar] [CrossRef]
- Tabari, H.; Kisi, O.; Ezani, A.; Talaee, P.H. SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. J. Hydrol. 2012, 444, 78–89. [Google Scholar] [CrossRef]
- Chen, H.; Huang, J.J.; McBean, E. Partitioning of daily evapotranspiration using a modified shuttleworth-wallace model, random Forest and support vector regression, for a cabbage farmland. Agric. Water Manag. 2019, 228, 105923. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Abdullah, S.S.; Malek, M.; Abdullah, N.S.; Kisi, O.; Yap, K.S. Extreme Learning Machines: A new approach for prediction of reference evapotranspiration. J. Hydrol. 2015, 527, 184–195. [Google Scholar] [CrossRef]
- Chia, M.Y.; Huang, Y.F.; Koo, C.H. Swarm-based optimization as stochastic training strategy for estimation of reference evapotranspiration using extreme learning machine. Agric. Water Manag. 2020, 243, 106447. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, H.; Ma, X.; Fan, J.; Zhang, F. Daily reference evapotranspiration prediction based on hybridized extreme learning machine model with bio-inspired optimization algorithms: Application in contrasting climates of China. J. Hydrol. 2019, 577, 123960. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, X.; Zhou, H.; Wang, X.; Xing, X. Prediction model for daily reference crop evapotranspiration based on hybrid algorithm and principal components analysis in Southwest China. Comput. Electron. Agric. 2021, 190, 106424. [Google Scholar] [CrossRef]
- Wang, P.; Wu, X.; Hao, Y.; Wu, C.; Zhang, J. Is Southwest China drying or wetting? Spatiotemporal patterns and potential causes. Theor. Appl. Climatol. 2019, 139, 1–15. [Google Scholar] [CrossRef]
- Hassan, M.A.; Khalil, A.; Kaseb, S.; Kassem, M. Exploring the potential of tree-based ensemble methods in solar radiation modeling. Appl. Energ. 2017, 203, 897–916. [Google Scholar] [CrossRef]
- Wu, Z.; Cui, N.; Zhu, B.; Zhao, L.; Wang, X.; Hu, X.; Wang, Y.; Zhu, S. Improved Hargreaves Model Based on Multiple Intelligent Optimization Algorithms to Estimate Reference Crop Evapotranspiration in Humid Areas of Southwest China. Atmos.-Basel 2021, 12, 15. [Google Scholar] [CrossRef]
- Zeng, Z.; Wu, W.; Zhou, Y.; Li, Z.; Hou, M.; Huang, H. Changes in Reference Evapotranspiration over Southwest China during 1960–2018: Attributions and Implications for Drought. Atmos.-Basel 2019, 10, 705. [Google Scholar] [CrossRef] [Green Version]
- Makkink, G.F. Testing the Penman Formula by Means of Lysimeters. J. Inst. Water Eng. 1957, 11, 277–288. [Google Scholar]
- Tabari, H.; Grismer, M.E.; Trajkovic, S. Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig. Sci. 2013, 31, 107–117. [Google Scholar] [CrossRef]
- Irmak, S.; Irmak, A.; Allen, R.G.; Jones, J.W. Solar and Net Radiation-Based Equations to Estimate Reference Evapotranspiration in Humid Climates. J. Irrig. Drain. Eng. 2003, 129, 336–347. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Liu, W.; Chung, C.E. Enhancing the Predicting Accuracy of the Water Stage Using a Physical-Based Model and an Artificial Neural Network-Genetic Algorithm in a River System. Water-Sui. 2014, 6, 1642–1661. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G.; Singh, A.; Jain, S. A hybrid deep neural network approach to estimate reference evapotranspiration using limited climate data. Neural Comput. Appl. 2021, 34, 4013–4032. [Google Scholar] [CrossRef]
- Mokhtar, A.; He, H.; Alsafadi, K.; Li, Y.; Zhao, H.; Keo, S.; Bai, C.; Abuarab, M.; Zhang, C.; Elbagoury, K.; et al. Evapotranspiration as a response to climate variability and ecosystem changes in southwest, China. Environ. Earth Sci. 2020, 79, 1–21. [Google Scholar] [CrossRef]
- Koca, A.; Oztop, H.F.; Varol, Y.; Koca, G.O. Estimation of solar radiation using artificial neural networks with different input parameters for Mediterranean region of Anatolia in Turkey. Expert Syst. Appl. 2011, 38, 8756–8762. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, N.; Feng, Y.; Gong, D.; Hu, X. Comparison of BP, PSO-BP and statistical models for predicting daily global solar radiation in arid Northwest China. Comput. Electron. Agric. 2019, 164, 104905. [Google Scholar] [CrossRef]
- Citakoglu, H. Comparison of artificial intelligence techniques via empirical equations for prediction of solar radiation. Comput. Electron. Agric. 2015, 118, 28–37. [Google Scholar] [CrossRef]
- Feng, Y.; Jia, Y.; Zhang, Q.; Gong, D.; Cui, N. National-scale assessment of pan evaporation models across different climatic zones of China. J. Hydrol. 2018, 564, 314–328. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, R.; Han, C.; Liu, Z.; Wang, X. Optimal Selection of Empirical Reference Evapotranspiration Method in 36 Different Agricultural Zones of China. Agronomy 2022, 12, 31. [Google Scholar] [CrossRef]
- Wang, L.; Kisi, O.; Zounemat-Kermani, M.; Li, H. Pan evaporation modeling using six different heuristic computing methods in different climates of China. J. Hydrol. 2017, 544, 407–427. [Google Scholar] [CrossRef]
- Yin, Z.; Feng, Q.; Yang, L.; Deo, R.; Wen, X.; Si, J.; Xiao, S. Future Projection with an Extreme-Learning Machine and Support Vector Regression of Reference Evapotranspiration in a Mountainous Inland Watershed in North-West China. Water-Sui. 2017, 9, 880. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Wen, X.; Li, B.; Yang, Z.; Wu, M.; Ma, Y. Uncertainty analysis of artificial intelligence modeling daily reference evapotranspiration in the northwest end of China. Comput. Electron. Agric. 2020, 176, 105653. [Google Scholar] [CrossRef]
- Zhu, B.; Feng, Y.; Gong, D.; Jiang, S.; Zhao, L.; Cui, N. Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Comput. Electron. Agric. 2020, 173, 105430. [Google Scholar] [CrossRef]
- Antonopoulos, V.Z.; Antonopoulos, A.V. Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables. Comput. Electron. Agric. 2017, 132, 86–96. [Google Scholar] [CrossRef]
- Feng, Y.; Jia, Y.; Cui, N.; Zhao, L.; Li, C.; Gong, D. Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China. Agric. Water Manag. 2017, 181, 1–9. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, K.; Wu, G.; Zhou, C. Temperature annual cycle variations and responses to surface solar radiation in China between 1960 and 2016. Int. J. Climatol. 2021, 41, E2959–E2978. [Google Scholar] [CrossRef]
- Besharat, F.; Dehghan, A.A.; Faghih, A.R. Empirical models for estimating global solar radiation: A review and case study. Renew. Sustain. Energy Rev. 2013, 21, 798–821. [Google Scholar] [CrossRef]
- Ågnström, A. Solar and Terrestrial Radiation. 19. Mon. Weather Rev. 1924, 52, 83. [Google Scholar] [CrossRef]
- Mohapatra, P.; Chakravarty, S.; Dash, P.K. An improved cuckoo search based extreme learning machine for medical data classification. Swarm Evol. Comput. 2015, 24, 25–49. [Google Scholar] [CrossRef]
- Wu, Z.; Cui, N.; Hu, X.; Gong, D.; Wang, Y.; Feng, Y.; Jiang, S.; Lv, M.; Han, L.; Xing, L.; et al. Optimization of extreme learning machine model with biological heuristic algorithms to estimate daily reference crop evapotranspiration in different climatic regions of China. J. Hydrol. 2021, 603, 127028. [Google Scholar] [CrossRef]
- Tejada, A.T.; Ella, V.B.; Lampayan, R.M.; Reaño, C.E. Modeling Reference Crop Evapotranspiration Using Support Vector Machine (SVM) and Extreme Learning Machine (ELM) in Region IV-A, Philippines. Water-Sui. 2022, 14, 754. [Google Scholar] [CrossRef]
- Rosado-Muñoz, A.; Frances-Villora, J.V. Hardware implementation of real-time Extreme Learning Machine in FPGA: Analysis of precision, resource occupation and performance R. Comput. Electr. Eng. 2016, 51, 139–156. [Google Scholar]
- Whitley, D. A Genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [Google Scholar] [CrossRef]
Zone | Station | Lon (°) | Lat (°) | H (m) | Tmax (°C) | Tmin (°C) | RH (%) | u2 (m·s−1) | Rs (MJ·m−2·d−1) | Rn (MJ·m−2·d−1) |
---|---|---|---|---|---|---|---|---|---|---|
QTP | Shiquanhe | 80.05 | 32.30 | 4278 | 9.02 | −5.98 | 31 | 1.89 | 20.03 | 11.54 |
Gaize | 84.25 | 32.09 | 4414 | 8.90 | −7.19 | 34 | 2.51 | 18.97 | 11.04 | |
Anduo | 91.06 | 32.21 | 5200 | 5.25 | −8.04 | 53 | 2.50 | 17.50 | 10.40 | |
Zedang | 91.46 | 29.16 | 3560 | 17.28 | 2.93 | 42 | 1.51 | 18.26 | 10.41 | |
NSP | Hongyuan | 102.33 | 32.48 | 3491 | 10.72 | −4.57 | 70 | 1.72 | 15.67 | 9.29 |
Ganzi | 100 | 31.37 | 3393 | 14.70 | 0.11 | 56 | 1.32 | 16.44 | 9.54 | |
Zuogong | 97.5 | 29.40 | 3780 | 13.26 | −1.10 | 55 | 1.00 | 15.91 | 3.15 | |
SB | Bazhong | 106.46 | 31.52 | 417 | 21.72 | 13.71 | 77 | 0.65 | 12.77 | 7.60 |
Dazu | 105.42 | 29.42 | 394 | 21.49 | 14.28 | 83 | 2.6 | 11.52 | 7.17 | |
YGP | Dali | 100.11 | 25.42 | 1990 | 21.49 | 10.66 | 67 | 1.76 | 16.31 | 10.65 |
Huize | 103.15 | 26.24 | 2188 | 19.33 | 9.02 | 69 | 1.92 | 16.63 | 10.84 | |
Meitan | 107.28 | 27.46 | 792 | 19.68 | 12.51 | 80 | 1.32 | 11.95 | 8.29 | |
Yuanjiang | 101.59 | 23.36 | 400 | 31.01 | 19.45 | 67 | 1.61 | 17.06 | 11.43 | |
GB | Laibin | 109.09 | 23.46 | 96 | 25.72 | 18.15 | 75 | 1.12 | 13.64 | 8.12 |
Bama | 107.15 | 24.08 | 254 | 26.15 | 17.36 | 80 | 0.95 | 13.87 | 8.25 |
Extreme Learning Machine | Extreme Learning Machine Optimized by Genetic Algorithm | Input Data | Empirical Models |
---|---|---|---|
ELM1 | GA-ELM1 | Tmax, Tmin | Romanenko (Ro) |
ELM2 | GA-ELM2 | Tmax, Tmin, Rs | Makkink (MK) |
ELM3 | GA-ELM3 | Tmax, Tmin, Rn | Tabari (TAB) |
ELM4 | GA-ELM4 | Tmax, Tmin, Rs, u2, RH | Irmak–Allen (IA) |
ELM5 | GA-ELM5 | Tmax, Tmin, Rn, u2, RH | Priestley–Taylor (PT) |
Sub-zone | Model | Training | Testing | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (mm·d−1) | RRMSE | MAE (mm·d−1) | GPI | Rank | R2 | RMSE (mm·d−1) | RRMSE | MAE (mm·d−1) | GPI | Rank | ||
QTP | ELM1 | 0.94 | 0.62 | 0.17 | 0.49 | −0.40 | 10 | 0.85 | 0.60 | 0.15 | 0.48 | −0.50 | 10 |
ELM2 | 0.97 | 0.41 | 0.11 | 0.33 | 0.06 | 7 | 0.93 | 0.40 | 0.10 | 0.31 | 0.00 | 8 | |
ELM3 | 0.98 | 0.40 | 0.11 | 0.31 | 0.10 | 6 | 0.94 | 0.40 | 0.10 | 0.31 | 0.02 | 6 | |
ELM4 | 0.99 | 0.20 | 0.20 | 0.16 | 0.38 | 4 | 0.98 | 0.21 | 0.05 | 0.16 | 0.45 | 4 | |
ELM5 | 0.99 | 0.15 | 0.04 | 0.11 | 0.63 | 3 | 0.99 | 0.12 | 0.03 | 0.09 | 0.63 | 2 | |
GA-ELM1 | 0.95 | 0.62 | 0.17 | 0.49 | −0.39 | 8 | 0.86 | 0.61 | 0.15 | 0.48 | −0.50 | 9 | |
GA-ELM2 | 0.97 | 0.42 | 0.11 | 0.33 | 0.06 | 9 | 0.94 | 0.40 | 0.10 | 0.31 | 0.01 | 7 | |
GA-ELM3 | 0.98 | 0.40 | 0.11 | 0.31 | 0.10 | 5 | 0.94 | 0.39 | 0.10 | 0.30 | 0.03 | 5 | |
GA-ELM4 | 0.99 | 0.14 | 0.04 | 0.11 | 0.64 | 2 | 0.99 | 0.15 | 0.04 | 0.11 | 0.58 | 3 | |
GA-ELM5 | 0.99 | 0.05 | 0.01 | 0.04 | 0.83 | 1 | 0.99 | 0.07 | 0.02 | 0.04 | 0.75 | 1 | |
Ro | / | / | / | / | / | / | 0.69 | 1.26 | 0.33 | 1.05 | −2.06 | 13 | |
MK | / | / | / | / | / | / | 0.91 | 1.33 | 0.34 | 1.23 | −2.11 | 14 | |
TAB | / | / | / | / | / | / | 0.91 | 1.50 | 0.49 | 1.84 | −3.03 | 15 | |
IA | / | / | / | / | / | / | 0.83 | 0.74 | 0.19 | 0.61 | −0.83 | 12 | |
PT | / | / | / | / | / | / | 0.91 | 0.72 | 0.18 | 0.59 | −0.70 | 11 | |
NSP | ELM1 | 0.92 | 0.61 | 0.19 | 0.50 | −0.47 | 10 | 0.76 | 0.60 | 0.18 | 0.48 | −0.57 | 10 |
ELM2 | 0.96 | 0.42 | 0.13 | 0.33 | 0.00 | 8 | 0.90 | 0.39 | 0.12 | 0.31 | 0.00 | 8 | |
ELM3 | 0.96 | 0.41 | 0.12 | 0.32 | 0.03 | 6 | 0.91 | 0.38 | 0.11 | 0.30 | 0.04 | 6 | |
ELM4 | 0.99 | 0.17 | 0.05 | 0.13 | 0.55 | 4 | 0.98 | 0.17 | 0.05 | 0.13 | 0.55 | 4 | |
ELM5 | 0.99 | 0.10 | 0.03 | 0.07 | 0.71 | 2 | 0.99 | 0.09 | 0.03 | 0.07 | 0.72 | 2 | |
GA-ELM1 | 0.92 | 0.61 | 0.19 | 0.50 | −0.47 | 9 | 0.77 | 0.60 | 0.18 | 0.47 | −0.56 | 9 | |
GA-ELM2 | 0.96 | 0.42 | 0.13 | 0.32 | 0.00 | 7 | 0.90 | 0.3 | 0.11 | 0.31 | 0.01 | 7 | |
GA-ELM3 | 0.96 | 0.40 | 0.12 | 0.31 | 0.03 | 5 | 0.91 | 0.38 | 0.11 | 0.29 | 0.05 | 5 | |
GA-ELM4 | 0.99 | 0.14 | 0.04 | 0.11 | 0.61 | 3 | 0.99 | 0.14 | 0.04 | 0.11 | 0.62 | 3 | |
GA-ELM5 | 0.99 | 0.03 | 0.01 | 0.03 | 0.84 | 1 | 0.999 | 0.03 | 0.01 | 0.03 | 0.84 | 1 | |
Ro | / | / | / | / | / | / | 0.59 | 1.26 | 0.37 | 1.07 | −2.20 | 13 | |
MK | / | / | / | / | / | / | 0.74 | 1.52 | 0.42 | 1.31 | −2.61 | 14 | |
TAB | / | / | / | / | / | / | 0.57 | 1.97 | 0.55 | 1.83 | −3.86 | 15 | |
IA | / | / | / | / | / | / | 0.74 | 0.81 | 0.22 | 0.62 | −0.99 | 11 | |
PT | / | / | / | / | / | / | 0.80 | 0.93 | 0.26 | 0.72 | −1.19 | 12 | |
SB | ELM1 | 0.85 | 0.70 | 0.23 | 0.55 | −0.36 | 10 | 0.81 | 0.75 | 0.22 | 0.56 | −0.45 | 11 |
ELM2 | 0.92 | 0.56 | 0.18 | 0.41 | 0.01 | 7 | 0.89 | 0.57 | 0.17 | 0.42 | 0.00 | 8 | |
ELM3 | 0.94 | 0.54 | 0.18 | 0.39 | 0.08 | 5 | 0.90 | 0.56 | 0.16 | 0.42 | 0.03 | 6 | |
ELM4 | 0.99 | 0.18 | 0.06 | 0.14 | 0.88 | 4 | 0.99 | 0.18 | 0.05 | 0.13 | 0.92 | 4 | |
ELM5 | 0.99 | 0.07 | 0.02 | 0.06 | 1.10 | 2 | 0.99 | 0.08 | 0.03 | 0.06 | 1.10 | 2 | |
GA-ELM1 | 0.87 | 0.70 | 0.23 | 0.55 | −0.35 | 9 | 0.81 | 0.74 | 0.22 | 0.56 | −0.44 | 10 | |
GA-ELM2 | 0.92 | 0.57 | 0.19 | 0.42 | 0.01 | 8 | 0.89 | 0.57 | 0.17 | 0.42 | 0.01 | 7 | |
GA-ELM3 | 0.93 | 0.54 | 0.18 | 0.40 | 0.07 | 6 | 0.90 | 0.56 | 0.16 | 0.41 | 0.03 | 5 | |
GA-ELM4 | 0.99 | 0.14 | 0.04 | 0.10 | 0.97 | 3 | 0.99 | 0.13 | 0.04 | 0.10 | 0.99 | 3 | |
GA-ELM5 | 0.99 | 0.04 | 0.01 | 0.03 | 1.18 | 1 | 0.99 | 0.04 | 0.01 | 0.03 | 2.00 | 1 | |
Ro | / | / | / | / | / | / | 0.69 | 1.32 | 0.39 | 1.09 | −1.8 | 14 | |
MK | / | / | / | / | / | / | 0.85 | 1.49 | 0.44 | 1.36 | −2.2 | 15 | |
TAB | / | / | / | / | / | / | 0.89 | 1.26 | 0.37 | 1.13 | −1.60 | 13 | |
IA | / | / | / | / | / | / | 0.88 | 0.69 | 0.20 | 0.52 | −0.26 | 9 | |
PT | / | / | / | / | / | / | 0.89 | 0.88 | 0.26 | 0.73 | −0.71 | 12 | |
YGP | ELM1 | 0.80 | 0.76 | 0.23 | 0.58 | −0.93 | 10 | 0.71 | 0.76 | 0.22 | 0.58 | −0.95 | 11 |
ELM2 | 0.95 | 0.35 | 0.10 | 0.25 | 0.10 | 6 | 0.93 | 0.36 | 0.10 | 0.26 | 0.13 | 6 | |
ELM3 | 0.93 | 0.39 | 0.11 | 0.27 | 0.00 | 8 | 0.91 | 0.41 | 0.12 | 0.30 | 0.00 | 8 | |
ELM4 | 0.99 | 0.14 | 0.04 | 0.11 | 0.54 | 4 | 0.99 | 0.15 | 0.04 | 0.11 | 0.60 | 4 | |
ELM5 | 0.99 | 0.10 | 0.03 | 0.07 | 0.64 | 2 | 0.99 | 0.11 | 0.03 | 0.08 | 0.68 | 2 | |
GA-ELM1 | 0.80 | 0.75 | 0.23 | 0.58 | −0.92 | 9 | 0.71 | 0.76 | 0.22 | 0.58 | −0.94 | 10 | |
GA-ELM2 | 0.95 | 0.34 | 0.10 | 0.25 | 0.10 | 5 | 0.93 | 0.35 | 0.10 | 0.26 | 0.14 | 5 | |
GA-ELM3 | 0.94 | 0.38 | 0.11 | 0.27 | 0.01 | 7 | 0.92 | 0.39 | 0.11 | 0.28 | 0.04 | 7 | |
GA-ELM4 | 0.99 | 0.12 | 0.04 | 0.09 | 0.59 | 3 | 0.99 | 0.11 | 0.03 | 0.09 | 0.67 | 3 | |
GA-ELM5 | 0.99 | 0.07 | 0.02 | 0.05 | 0.71 | 1 | 0.99 | 0.07 | 0.02 | 0.05 | 0.76 | 1 | |
Ro | / | / | / | / | / | / | 0.77 | 1.17 | 0.33 | 0.92 | −1.73 | 15 | |
MK | / | / | / | / | / | / | 0.88 | 0.94 | 0.27 | 0.78 | −1.20 | 13 | |
TAB | / | / | / | / | / | / | 0.85 | 0.96 | 0.28 | 0.75 | −1.23 | 14 | |
IA | / | / | / | / | / | / | 0.85 | 0.81 | 0.25 | 0.72 | −1.02 | 12 | |
PT | / | / | / | / | / | / | 0.84 | 0.73 | 0.22 | 0.60 | −0.80 | 9 | |
GB | ELM1 | 0.59 | 0.77 | 0.20 | 0.61 | −0.63 | 10 | 0.73 | 0.77 | 0.19 | 0.60 | −0.40 | 10 |
ELM2 | 0.87 | 0.60 | 0.15 | 0.46 | 0.01 | 6 | 0.83 | 0.63 | 0.15 | 0.48 | 0.00 | 8 | |
ELM3 | 0.88 | 0.61 | 0.16 | 0.46 | 0.01 | 7 | 0.83 | 0.63 | 0.15 | 0.47 | 0.01 | 6 | |
ELM4 | 0.99 | 0.18 | 0.05 | 0.14 | 0.99 | 4 | 0.98 | 0.18 | 0.04 | 0.13 | 1.06 | 4 | |
ELM5 | 0.99 | 0.11 | 0.03 | 0.07 | 1.15 | 2 | 0.99 | 0.10 | 0.03 | 0.07 | 1.22 | 2 | |
GA-ELM1 | 0.56 | 0.62 | 0.20 | 0.61 | −0.50 | 9 | 0.73 | 0.77 | 0.19 | 0.59 | −0.39 | 9 | |
GA-ELM2 | 0.89 | 0.60 | 0.15 | 0.46 | 0.03 | 5 | 0.83 | 0.63 | 0.15 | 0.48 | 0.00 | 7 | |
GA-ELM3 | 0.87 | 0.61 | 0.15 | 0.47 | 0.01 | 8 | 0.84 | 0.62 | 0.15 | 0.47 | 0.02 | 5 | |
GA-ELM4 | 0.99 | 0.15 | 0.04 | 0.12 | 1.05 | 3 | 0.99 | 0.15 | 0.04 | 0.11 | 1.12 | 3 | |
GA-ELM5 | 0.99 | 0.03 | 0.01 | 0.03 | 1.29 | 1 | 0.99 | 0.03 | 0.01 | 0.02 | 1.36 | 1 | |
Ro | / | / | / | / | / | / | 0.36 | 1.61 | 0.39 | 1.28 | −2.48 | 13 | |
MK | / | / | / | / | / | / | 0.80 | 1.88 | 0.45 | 1.76 | −2.87 | 14 | |
TAB | / | / | / | / | / | / | 0.82 | 1.54 | 0.37 | 1.41 | −2.08 | 12 | |
IA | / | / | / | / | / | / | 0.82 | 1.01 | 0.24 | 0.81 | −0.82 | 11 | |
PT | / | / | / | / | / | / | 0.83 | 2.64 | 0.63 | 2.24 | −4.25 | 15 |
Model | Training | Testing | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (mm·d−1) | RRMSE | MAE | GPI | Rank | R2 | RMSE (mm·d−1) | RRMSE | MAE | GPI | Rank | |
ELM1 | 0.9409 | 0.4093 | 0.1282 | 0.3425 | 0.2608 | 10 | 0.7311 | 0.7744 | 0.1873 | 0.5979 | −0.3987 | 10 |
ELM2 | 0.9887 | 0.1944 | 0.0604 | 0.1520 | 0.2316 | 8 | 0.8279 | 0.6285 | 0.1520 | 0.4772 | 0.0000 | 8 |
ELM3 | 0.9874 | 0.1724 | 0.0536 | 0.1316 | 0.1934 | 6 | 0.8344 | 0.6263 | 0.1514 | 0.4742 | 0.0124 | 6 |
ELM4 | 0.9957 | 0.1077 | 0.0335 | 0.0861 | 0.1878 | 4 | 0.9843 | 0.1769 | 0.0428 | 0.1321 | 1.0623 | 4 |
ELM5 | 0.9977 | 0.0886 | 0.0275 | 0.0694 | 0.0541 | 2 | 0.9947 | 0.1034 | 0.0251 | 0.0720 | 1.2241 | 2 |
GA-ELM1 | 0.9450 | 0.4080 | 0.1278 | 0.3340 | 0.0492 | 9 | 0.7325 | 0.7707 | 0.1863 | 0.5935 | −0.3882 | 9 |
GA-ELM2 | 0.9886 | 0.1898 | 0.0590 | 0.1476 | 0.0116 | 7 | 0.8288 | 0.6267 | 0.1516 | 0.4760 | 0.0043 | 7 |
GA-ELM3 | 0.9905 | 0.1716 | 0.0534 | 0.1308 | 0.0013 | 5 | 0.8359 | 0.6238 | 0.1508 | 0.4704 | 0.0207 | 5 |
GA-ELM4 | 0.9965 | 0.1053 | 0.0327 | 0.0845 | −0.5054 | 3 | 0.9892 | 0.1460 | 0.0353 | 0.1143 | 1.1235 | 3 |
GA-ELM5 | 0.9985 | 0.0746 | 0.0232 | 0.0593 | −0.5197 | 1 | 0.9995 | 0.0326 | 0.0079 | 0.0244 | 1.3645 | 1 |
Ro | / | / | / | / | / | / | 0.3605 | 1.6057 | 0.3875 | 1.2791 | −2.4820 | 13 |
MK | / | / | / | / | / | / | 0.7965 | 1.8755 | 0.4532 | 1.7643 | −2.8667 | 14 |
TAB | / | / | / | / | / | / | 0.8177 | 1.5410 | 0.3722 | 1.4144 | −2.0800 | 12 |
IA | / | / | / | / | / | / | 0.8212 | 1.0084 | 0.2437 | 0.8147 | −0.8158 | 11 |
PT | / | / | / | / | / | / | 0.8266 | 2.6417 | 0.6319 | 2.2367 | −4.2538 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Wu, Z.; Cui, N.; Zhang, W.; Wang, Y.; Hu, X.; Gong, D.; Zheng, S. Genetic Algorithm-Optimized Extreme Learning Machine Model for Estimating Daily Reference Evapotranspiration in Southwest China. Atmosphere 2022, 13, 971. https://doi.org/10.3390/atmos13060971
Liu Q, Wu Z, Cui N, Zhang W, Wang Y, Hu X, Gong D, Zheng S. Genetic Algorithm-Optimized Extreme Learning Machine Model for Estimating Daily Reference Evapotranspiration in Southwest China. Atmosphere. 2022; 13(6):971. https://doi.org/10.3390/atmos13060971
Chicago/Turabian StyleLiu, Quanshan, Zongjun Wu, Ningbo Cui, Wenjiang Zhang, Yaosheng Wang, Xiaotao Hu, Daozhi Gong, and Shunsheng Zheng. 2022. "Genetic Algorithm-Optimized Extreme Learning Machine Model for Estimating Daily Reference Evapotranspiration in Southwest China" Atmosphere 13, no. 6: 971. https://doi.org/10.3390/atmos13060971
APA StyleLiu, Q., Wu, Z., Cui, N., Zhang, W., Wang, Y., Hu, X., Gong, D., & Zheng, S. (2022). Genetic Algorithm-Optimized Extreme Learning Machine Model for Estimating Daily Reference Evapotranspiration in Southwest China. Atmosphere, 13(6), 971. https://doi.org/10.3390/atmos13060971