Solar Ultraviolet Radiation Temporal Variability Analysis from 2-Year of Continuous Observation in an Amazonian City of Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments and Data
2.1.1. Ground-Based UVR Instrument at Santarém
2.1.2. Cloud Clover Data from Santarem’s International Airport
2.2. Methods and Statistical Analysis
3. Results and Discussion
3.1. UVR Hour-Daily Series in Clear Sky and All Sky Conditions
3.2. UVR Monthly Average in Clear Sky and All Sky Conditions
3.3. Average Level of UVR According to the Period in Clear Sky and All Sky Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corrêa, M.D.P.; Pires, L.C. Doses of erythemal ultraviolet radiation observed in Brazil. Int. J. Dermatol. 2013, 52, 966–973. [Google Scholar] [CrossRef]
- Salas, L.F.S.; Rojas, J.L.F.; Filho, A.J.P.; Karam, H.A. Ultraviolet solar radiation in the tropical central Andes (12.0 °S). Photochem. Photobiol. Sci. 2017, 16, 954–971. [Google Scholar] [CrossRef] [PubMed]
- Cadet, J.-M.; Bencherif, H.; Cadet, N.; Lamy, K.; Portafaix, T.; Belus, M.; Brogniez, C.; Auriol, F.; Metzger, J.-M.; Wright, C. Solar UV Radiation in the Tropics: Human Exposure at Reunion Island (21° S, 55° E) during Summer Outdoor Activities. Int. J. Environ. Res. Public Health 2020, 17, 8105. [Google Scholar] [CrossRef] [PubMed]
- Lamy, K.; Portafaix, T.; Brogniez, C.; Lakkala, K.; Pitkänen, M.R.A.; Arola, A.; Forestier, J.-B.; Amelie, V.; Toihir, M.A.; Rakotoniaina, S. UV-Indien network: Ground-based measurements dedicated to the monitoring of UV radiation over the western Indian Ocean. Earth Syst. Sci. Data 2021, 13, 4275–4301. [Google Scholar] [CrossRef]
- Bernhard, G.H.; Neale, R.E.; Barnes, P.W.; Neale, P.J.; Zepp, R.G.; Wilson, S.R.; Andrady, A.L.; Bais, A.F.; McKenzie, R.L.; Aucamp, P.J.; et al. Environmental effects of stratospheric ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2019. Photochem. Photobiol. Sci. 2020, 19, 542–584. [Google Scholar] [CrossRef]
- De Oliveira, M.J.; Baptista, G.M.D.M.; Carneiro, C.D.R.; Vecchia, F.A.D.S. Ciclos climáticos e causas naturais das mudanças do clima. Terrae Didat. 2018, 13, 149–184. [Google Scholar] [CrossRef] [Green Version]
- Gholamnia, R.; Abtahi, M.; Dobaradaran, S.; Koolivand, A.; Jorfi, S.; Khaloo, S.S.; Bagheri, A.; Vaziri, M.H.; Atabaki, Y.; Alhouei, F.; et al. Spatiotemporal analysis of solar ultraviolet radiation based on Ozone Monitoring Instrument dataset in Iran, 2005–2019. Environ. Pollut. 2021, 287, 117643. [Google Scholar] [CrossRef]
- du Preez, D.; Bencherif, H.; Portafaix, T.; Lamy, K.; Wright, C. Solar Ultraviolet Radiation in Pretoria and Its Relations to Aerosols and Tropospheric Ozone during the Biomass Burning Season. Atmosphere 2021, 12, 132. [Google Scholar] [CrossRef]
- Foyo-Moreno, I.; Vida, J.; Alados-Arboledas, L. Ground based ultraviolet (290–385 nm) and broadband solar radiation measurements in south-eastern Spain. Int. J. Clim. 1998, 18, 1389–1400. [Google Scholar] [CrossRef] [Green Version]
- Bais, A.F.; Lucas, R.M.; Bornman, J.F.; Williamson, C.E.; Sulzberger, B.; Austin, A.; Wilson, S.R.; Andrady, A.L.; Bernhard, G.; McKenzie, R.L.; et al. Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. Photochem. Photobiol. Sci. 2018, 17, 127–179. [Google Scholar] [CrossRef]
- Lucas, R.M.; Byrne, S.N.; Correale, J.; Ilschner, S.; Hart, P.H. Ultraviolet radiation, vitamin D and multiple sclerosis. Neurodegener. Dis. Manag. 2015, 5, 413–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindqvist, P.G.; Epstein, E.; Nielsen, K.; Landin-Olsson, M.; Ingvar, C.; Olsson, H. Avoidance of sun exposure as a risk factor for major causes of death: A competing risk analysis of the Melanoma in Southern Sweden cohort. J. Intern. Med. 2016, 280, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, P.G.; Landin-Olsson, M. The relationship between sun exposure and all-cause mortality. Photochem. Photobiol. Sci. 2016, 16, 354–361. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; International Commission on Non-Ionizing Radiation Protection. Global Solar UV Index: A Practical Guide; World Health Organization: Geneva, Switzerland, 2002; Available online: https://apps.who.int/iris/handle/10665/42459 (accessed on 29 April 2021).
- Ministério da Saúde. Instituto Nacional de Câncer José Alencar Gomes da Silva. Estimativa 2020: Incidência de Câncer no Brasil. 2019. Available online: https://www.inca.gov.br/sites/ufu.sti.inca.local/files/media/document/estimativa-2020-incidencia-de-cancer-no-brasil.pdf (accessed on 12 June 2021).
- Fountoulakis, I.; Diémoz, H.; Siani, A.-M.; Laschewski, G.; Filippa, G.; Arola, A.; Bais, A.F.; De Backer, H.; Lakkala, K.; Webb, A.R.; et al. Solar UV Irradiance in a Changing Climate: Trends in Europe and the Significance of Spectral Monitoring in Italy. Environments 2019, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- EEAP. Environmental Effects and Interactions of Stratospheric Ozone Depletion, UV Radiation, and Climate Change; 2018 Assessment Report; Environmental Effects Assessment Panel, United Nations Environment Programme (UNEP): Nairobi, Kenya, 2018; pp. 5–18. Available online: https://ozone.unep.org/science/assessment/eeap (accessed on 23 April 2022).
- Cadet, B.; Goldfarb, L.; Faduilhe, D.; Baldy, S.; Giraud, V.; Keckhut, P.; Réchou, A. A sub-tropical cirrus clouds climatology from Reunion Island (21°S, 55°E) lidar data set. Geophys. Res. Lett. 2003, 30, 1130. [Google Scholar] [CrossRef] [Green Version]
- Cazorla, A.; Olmo, F.J.; Alados-Arboledas, L. Development of a sky imager for cloud cover assessment. J. Opt. Soc. Am. A 2007, 25, 29–39. [Google Scholar] [CrossRef]
- Saiz-Lopez, A.; Lamarque, J.-F.; Kinnison, D.E.; Tilmes, S.; Ordóñez, C.; Orlando, J.J.; Conley, A.J.; Plane, J.M.C.; Mahajan, A.S.; Santos, G.S.; et al. Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere. Atmos. Chem. Phys. 2012, 12, 3939–3949. [Google Scholar] [CrossRef] [Green Version]
- Estupiñán, J.G.; Raman, S.; Crescenti, G.H.; Streicher, J.J.; Barnard, W.F. Effects of clouds and haze on UV-B radiation. J. Geophys. Res. Earth Surf. 1996, 101, 16807–16816. [Google Scholar] [CrossRef]
- Moreira, D.S.; Longo, K.M.; Freitas, S.R.; Yamasoe, M.A.; Mercado, L.M.; Rosário, N.E.; Gloor, E.; Viana, R.S.M.; Miller, J.B.; Gatti, L.V.; et al. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region. Atmos. Chem. Phys. 2017, 17, 14785–14810. [Google Scholar] [CrossRef] [Green Version]
- Chand, D.; Guyon, P.; Artaxo, P.; Schmid, O.; Frank, G.P.; Rizzo, L.V.; Mayol-Bracero, O.L.; Gatti, L.V.; Andreae, M.O. Optical and physical properties of aerosols in the boundary layer and free troposphere over the Amazon Basin during the biomass burning season. Atmos. Chem. Phys. 2006, 6, 2911–2925. [Google Scholar] [CrossRef] [Green Version]
- Bevan, S.L.; North, P.; Grey, W.M.F.; Los, S.O.; Plummer, S.E. Impact of atmospheric aerosol from biomass burning on Amazon dry-season drought. J. Geophys. Res. Earth Surf. 2009, 114, D09204. [Google Scholar] [CrossRef] [Green Version]
- Artaxo, P.; Dias, M.A.F.D.S.; Nagy, L.; Luizão, F.J.; da Cunha, H.B.; Quesada, C.A.N.; Marengo, J.A.; Krusche, A. Perspectivas de pesquisas na relação entre clima e o funcionamento da floresta Amazônica. Ciência e Cultura. 2014, 66, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Teramoto, É.T.; Escobedo, J.F.; Martins, D. Modelos estatísticos para estimativa da irradiação solar UV horária em Botucatu/SP/Brasil. Rev. Bras. De Energ. Sol. 2014, 5, 44–51. Available online: https://rbens.emnuvens.com.br/rbens/article/view/107 (accessed on 15 April 2022).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Moraes, G.J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Jacinto, A.I.; Simas, M.T.M.; Bianchi, R.; Oliveira, K.N.; Rech, C.M.C.B. Aspectos Físicoterritoriais e Atrações Turísticas do Município de Santarém, Pará. 2006. Available online: http://www2.ifes.com.br/webifes/revista/REVIST (accessed on 11 May 2022).
- de Pádua Andrade, S.C.; de Jesus Corrêa, J.A.; Mestre em Meteorologia, U.A.D.; Grande, P.B.C. Estimativa do saldo de radiação instantâneo à superfície para a cidade de Santarém-PA, através de imagens do Landsat 5-TM. Rev. Bras. Geogr. Física 2014, 7, 653–661. [Google Scholar] [CrossRef]
- Williams, E. Contrasting Convective Regimes over the Amazon: Implications for Cloud Electrification. J. Geophys. Res. 2002, 107, 8082. [Google Scholar] [CrossRef] [Green Version]
- Apogee Instruments. Ultraviolet Sensor Model SU-100 Manual. Available online: https://www.apogeeinstruments.com/content/SU-100-spec-sheet.pdf (accessed on 11 March 2019).
- Redemet (n.d.). API Redemet. Available online: https://www.redemet.aer.mil.br/?i=facilidades&p=api-redemet) (accessed on 29 April 2021).
- Como Decodificar o METAR e o SPECI. Força Aérea Brasileira. Available online: https://ajuda.decea.mil.br/base-de-conhecimento/como-decodificar-o-metar-e-o-speci/ (accessed on 28 April 2021).
- Silva, A.A.; Souza-Echer, M.P. Ground-based observations of clouds through both ver automatic imager and human observation. Meteorol. Appl. 2015, 23, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Cadet, J.-M.; Portafaix, T.; Bencherif, H.; Lamy, K.; Brogniez, C.; Auriol, F.; Metzger, J.-M.; Boudreault, L.-E.; Wright, C.Y. Inter-Comparison Campaign of Solar UVR Instruments under Clear Sky Conditions at Reunion Island (21°S, 55°E). Int. J. Environ. Res. Public Health 2020, 17, 2867. [Google Scholar] [CrossRef] [Green Version]
- Neto, J.V.; dos Santos, C.B.; Torres, É.M.; Estrela, C. Boxplot: Um recurso gráfico para a análise e interpretação de dados quantitativos. Odontológica Bras. Cent. 2017, 26, 1–6. Available online: https://www.robrac.org.br/seer/index.php/ROBRAC/article/view/1132/897 (accessed on 8 January 2022).
- Porfirio, A.C.S.; De Souza, J.L.; Lyra, G.B.; Lemes, M.A.M. An assessment of the global UV solar radiation under various sky conditions in Maceió-Northeastern Brazil. Energy 2012, 44, 584–592. [Google Scholar] [CrossRef]
- Lamy, K.; Portafaix, T.; Brogniez, C.; Godin-Beekmann, S.; Bencherif, H.; Morel, B.; Pazmino, A.; Metzger, J.M.; Auriol, F.; Deroo, C.; et al. Ultraviolet radiation modelling from ground-based and satellite measurements on Reunion Island, southern tropics. Atmos. Chem. Phys. 2018, 18, 227–246. [Google Scholar] [CrossRef] [Green Version]
- Sacchetti, F.Z.; Gisbert, R.F. La Radiacion Ultravioleta en Bolivia. 2003. Available online: https://iris.paho.org/handle/10665.2/31072 (accessed on 10 February 2022).
- Corrêa, M.D.P.; Godin-Beekmann, S.; Haeffelin, M.; Brogniez, C.; Verschaeve, F.; Saiag, P.; Pazmiño, A.; Mahé, E. Comparison between UV index measurements performed by research-grade and consumer-products instruments. Photochem. Photobiol. Sci. 2010, 9, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Sentelhas, P.C.; Pereira, A.R.; Angelocci, L. Meteorologia agrícola. Departamento de Física e Meteorologia. ESALQ/USP. 2000. Available online: https://www.yumpu.com/pt/document/read/50581317/apostila-meteorologia-agra-cola-2007-leb-esalq-usp (accessed on 18 January 2022).
- Longo, K.M.; Freitas, S.R.; Andreae, M.O.; Yokelson, R.; Artaxo, P.; Rizzo, L.V.; Paixão, M.; De Lucca, S.; Oliveira, P.H.; Lara, L.L.; et al. Biomass burning in Amazonia: Emissions, long-range transport of smoke and its regional and remote impacts. In Amazonia and Global Change; American Geophysical Union: Washington, DC, USA, 2009; Volume 186, pp. 207–232. [Google Scholar] [CrossRef] [Green Version]
- de Sá, S.S.; Rizzo, L.V.; Palm, B.B.; Campuzano-Jost, P.; Day, D.A.; Yee, L.D.; Wernis, R.; Isaacman-VanWertz, G.; Brito, J.; Carbone, S.; et al. Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate matter in central Amazonia during the dry season. Atmos. Chem. Phys. 2019, 19, 7973–8001. [Google Scholar] [CrossRef] [Green Version]
- Cirino, G.G.; Souza, R.A.F.; Adams, D.K.; Artaxo, P. The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon. Atmos. Chem. Phys. 2014, 14, 6523–6543. [Google Scholar] [CrossRef] [Green Version]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; O’Neill, N.T.; Schafer, J.S.; Dubovik, O.; Smirnov, A.; Yamasoe, M.A.; Artaxo, P. High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions. Geophys. Res. Lett. 2003, 30, 2003GL017861. [Google Scholar] [CrossRef] [Green Version]
- Procopio, A.S.; Artaxo, P.; Kaufman, Y.J.; Remer, L.A.; Schafer, J.S.; Holben, B.N. Multiyear analysis of amazonian biomass burning smoke radiative forcing of climate. Geophys. Res. Lett. 2004, 31, L03108. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Sauer, T.; Prueger, J. Radiation Balance. In Encyclopedia of Soils in the Environment; Elsevier: Amsterdam, The Netherlands, 2005; pp. 355–359. [Google Scholar] [CrossRef]
Octas | Sky Coverage Code |
---|---|
0 | CAVOK |
1 | FEW |
2 | FEW |
3 | SCT (Scattered) |
4 | SCT (Scattered) |
5 | BKN (Broken) |
6 | BKN (Broken) |
7 | BKN (Broken) |
8 | OVC (Overcast) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, G.; Souza, S.; Neto, H.; Branches, R.; Silva, R.; Peres, L.; Pinheiro, D.; Lamy, K.; Bencherif, H.; Portafaix, T. Solar Ultraviolet Radiation Temporal Variability Analysis from 2-Year of Continuous Observation in an Amazonian City of Brazil. Atmosphere 2022, 13, 1054. https://doi.org/10.3390/atmos13071054
Reis G, Souza S, Neto H, Branches R, Silva R, Peres L, Pinheiro D, Lamy K, Bencherif H, Portafaix T. Solar Ultraviolet Radiation Temporal Variability Analysis from 2-Year of Continuous Observation in an Amazonian City of Brazil. Atmosphere. 2022; 13(7):1054. https://doi.org/10.3390/atmos13071054
Chicago/Turabian StyleReis, Gabriela, Samuel Souza, Helvécio Neto, Rardiles Branches, Rodrigo Silva, Lucas Peres, Damaris Pinheiro, Kevin Lamy, Hassan Bencherif, and Thierry Portafaix. 2022. "Solar Ultraviolet Radiation Temporal Variability Analysis from 2-Year of Continuous Observation in an Amazonian City of Brazil" Atmosphere 13, no. 7: 1054. https://doi.org/10.3390/atmos13071054
APA StyleReis, G., Souza, S., Neto, H., Branches, R., Silva, R., Peres, L., Pinheiro, D., Lamy, K., Bencherif, H., & Portafaix, T. (2022). Solar Ultraviolet Radiation Temporal Variability Analysis from 2-Year of Continuous Observation in an Amazonian City of Brazil. Atmosphere, 13(7), 1054. https://doi.org/10.3390/atmos13071054