Evaluation of Sea Ice Simulation of CAS-ESM 2.0 in Historical Experiment
Abstract
:1. Introduction
2. Model Description and Experiments
2.1. Model Description
2.2. Experiments and Simulation Results Used for Analysis
3. Results
3.1. Sea Ice Extent (SIE)
3.2. Sea Ice Concentration
3.3. Atmospheric and Oceanic Forcings Related to Sea Ice
3.4. Sea Ice Thickness and Motion
3.5. Sea Ice Mass Budget
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Stroeve, J.; Holland, M.M.; Meier, W.; Scambos, T.; Serreze, M. Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett. 2007, 34, L09501. [Google Scholar] [CrossRef]
- Liu, J.; Song, M.; Horton, R.M.; Hu, Y. Reducing spread in climate model projections of a September ice-free Arctic. Proc. Natl. Acad. Sci. USA 2013, 110, 12571–12576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, J.; Comiso, J. Solve Antarctica’s sea-ice puzzle. Nature 2017, 547, 275–277. [Google Scholar] [CrossRef] [PubMed]
- Durner, G.M.; Douglas, D.C.; Nielson, R.M.; Amstrup, S.C.; McDonald, T.L.; Stirling, I.; Mauritzen, M.; Born, E.W.; Wiig, Ø.; DeWeaver, E.; et al. Predicting 21stcentury polar bear habitat distribution from 647 global climate models. Ecol. Monogr. 2009, 79, 25–58. [Google Scholar] [CrossRef]
- Zhang, X.; Zeng, Q. A computational design of numerical world general circulation model. Chinese J. Atmos. Sci. 1988, 12, 149–165. (In Chinese) [Google Scholar]
- Zeng, Q.; Zhang, X.; Liang, X.; Yuan, C.; Chen, S. Documentation of IAP Two-Level Atmospheric General Circulation Model; 1989. [Google Scholar]
- Dai, Y.; Zeng, Q. A land surface model (IAP94) for climate studies part i: Formulation and validation in off-line experiments. Adv. Atmos. Sci. 1997, 14, 433–460. [Google Scholar]
- Zhou, G.; Zhang, Y.; Jiang, J.; Zhang, H.; Wu, B.; Cao, H.; Wang, T.; Hao, H.; Zhu, J.; Yuan, L.; et al. Earth System Model: CAS-ESM. Front. Data Comput. 2020, 2, 38–54. (In Chinese) [Google Scholar]
- Zhang, H.; Zhang, M.; Jin, J.; Fei, K.; Ji, D.; Wu, C.; Zhu, J.; He, J.; Chai, Z.; Xie, J.; et al. Description and Climate Simulation Performance of CAS-ESM Version 2. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002210. [Google Scholar] [CrossRef]
- Liu, H.; Lin, P.; Yu, Y.; Zhang, X. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2.0. Acta Meteorol. Sin. 2012, 26, 318–329. [Google Scholar] [CrossRef]
- Dai, Y.; Zeng, X.; Dickinson, R.E.; Baker, I.; Bonan, G.B.; Bosilovich, M.G.; Denning, S.; Dirmeyer, P.; Houser, P.R.; Niu, G. The Common Land Model (CLM). B. Am. Meteorol. Soc. 2003, 84, 1013–1023. [Google Scholar] [CrossRef] [Green Version]
- Hunke, E.C.; Lipscomb, W.H. CICE: The Los Alamos Sea Ice Model User’s Manual, Version 4; LA-CC-06-012; Los Alamos National Laboratory Tech. Rep.: Los Alamos, NM, USA, 2008. [Google Scholar]
- He, J.; Zhang, M.; Lin, W.; Colle, B.; Vogelmann, A.M. Simulations of a mid-latitude cyclone over the southern Great Plains usingthe WRF nested within the CESM. J. Adv. Model. Earth Syst. 2013, 5, 611–622. [Google Scholar] [CrossRef]
- Zhu, J.; Zeng, X.; Zhang, M.; Dai, Y.; Ji, D.; Li, F.; Zhang, Q.; Zhang, H.; Song, X. Evaluation of the new dynamic global vegetation model in CAS-ESM. Adv. Atmos. Sci. 2018, 35, 659–670. [Google Scholar] [CrossRef]
- Li, F.; Zeng, X.; Levis, S. A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model. Biogeosciences 2012, 9, 2761–2780. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wang, Z.; Li, J.; Tang, X.; Ge, B.; Wu, X.; Wild, O.; Carmichael, G.R. GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: Model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions. Geocsic. Model. Dev. 2015, 8, 2857–2876. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Jin, J.; Liu, H.; Zhang, H.; Zhang, M.; Lin, P.; Zeng, Q.; Zhou, G.; Yu, Y.; Song, M.; et al. CAS-ESM2.0 Model Datasets for CMIP6 Ocean Model Intercomparison Project Phase 1 (OMIP1). Adv. Atmos. Sci. 2021, 38, 307–316. [Google Scholar] [CrossRef]
- Jin, J.; Zeng, Q.; Wu, L.; Liu, H.; Zhang, M. Formulation of a new ocean salinity boundary condition and impact on the simulated climate of an oceanic general circulation model. Sci. China Earth Sci. 2017, 60, 491–500. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Hunke, E.C.; Dukowicz, J.K. An elasticviscous-plastic model for sea ice dynamics. J. Phys. Oceanogr. 1997, 27, 1849–1867. [Google Scholar] [CrossRef] [Green Version]
- Lipscomb, W.H.; Hunke, E.C.; Maslowski, W.; Jakacki, J. Ridging, strength, and stability in high-resolution sea ice models. J. Geophys. Res. 2007, 112, C03S91. [Google Scholar] [CrossRef]
- Lipscomb, W.H.; Hunke, E.C. Modeling sea ice transport using incremental remapping. Mon. Weather Rev. 2004, 132, 1341–1354. [Google Scholar] [CrossRef]
- Collins, W.D.; Bitz, C.M.; Blackmon, M.L.; Bonan, G.B.; Bretherton, C.S.; Carton, J.A.; Chang, P.; Doney, S.C.; Hack, J.J.; Henderson, T.B.; et al. The community climate system model version 3 (CCSM3). J. Clim. 2006, 19, 2122–2143. [Google Scholar] [CrossRef]
- Ji, D.; Wang, L.; Feng, J.; Wu, Q.; Cheng, H.; Zhang, Q.; Yang, J.; Dong, W.; Dai, Y.; Gong, D.; et al. Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci. Model. Dev. 2014, 7, 2039–2064. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Dickinson, R.E.; Wang, Y. A Two-Big-Leaf model for canopy temperature, Photosynthesis, and Stomatal conductance. J. Clim. 2004, 17, 2281–2299. [Google Scholar] [CrossRef]
- Zeng, X.; Li, F.; Song, X. Development of the IAP dynamic global vegetation model. Adv. Atmos. Sci. 2014, 31, 505–514. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Shu, Q.; Wang, Q.; Song, Z.; Qiao, F.; Zhao, J.; Chu, M.; Li, X. Assessment of Sea Ice Extent in CMIP6 with Comparison to Observations and CMIP5. Geophys. Res. Lett. 2020, 47, e2020GL087965. [Google Scholar] [CrossRef]
- Shu, Q.; Song, Z.; Qiao, F. Assessment of sea ice simulations in the CMIP5 models. Cryosphere 2015, 9, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Bracegirdle, T.J.; Phillips, T.; Marshall, G.J.; Hosking, J.S. An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Clim. 2013, 26, 1473–1484. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Parkinson, C.L.; Gloersen, P.; Zwally, H.J. Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1; NASA DAAC at the National Snow and Ice Data Center: Boulder, CO, USA, 1996. [Google Scholar] [CrossRef]
- Comiso, J.C. Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2017. [Google Scholar]
- Zhang, J.; Woodgate, R.; Moritz, R. Sea ice response to atmospheric and oceanic forcing in the Bering Sea. J. Phys. Oceanogr. 2010, 40, 1729–1747. [Google Scholar] [CrossRef]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The Twentieth Century Reanalysis Project. Q. J. Roy. Meteor. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Mishonov, A. World Ocean Atlas 2013 Product Documentation; Boyer, T., Ed.; NOAA: Washington, DC, USA, 2013. [Google Scholar]
- Ricker, R.; Hendricks, S.; Kaleschke, L.; Tian-Kunze, X.; King, J.; Haas, C. A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. Cryosphere 2017, 11, 1607–1623. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett. 2018, 13, 105005. [Google Scholar] [CrossRef]
- Zhang, J.; Rothrock, D.A. Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev. 2003, 131, 845–861. [Google Scholar] [CrossRef] [Green Version]
- Tschudi, M.A.; Meier, W.N.; Stewart, J.S. An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC). Cryosphere 2020, 14, 1519–1536. [Google Scholar] [CrossRef]
- Notz, D.; Jahn, A.; Holland, M.; Hunke, E.; Massonnet, F.; Stroeve, J. The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): Understanding sea ice through climate-model simulations. Geosci. Model. Dev. 2016, 9, 3427–3446. [Google Scholar] [CrossRef] [Green Version]
- Keen, A.; Blockley, E.; Bailey, D.A.; Debernard, J.B.; Bushuk, M.; Delhaye, S.; Docquier, D.; Feltham, D.; Massonnet, F.; O’Farrell, S.; et al. An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models. Cryosphere 2021, 15, 951–982. [Google Scholar] [CrossRef]
- Song, Z.; Qiao, F.; Song, Y. Response of the equatorial basin-wide SST to non-breaking surface wave-induced mixing in a climate model: An amendment to tropical bias. J. Geophys. Res. 2012, 7, C00J26. [Google Scholar] [CrossRef]
- Stopa, J.E.; Sutherland, P.; Ardhuin, F. Strong and highly variable push of ocean waves on Southern Ocean sea ice. Proc. Natl. Acad. Sci. USA 2018, 115, 5861–5865. [Google Scholar] [CrossRef] [Green Version]
- Holland, P.R. The seasonality of Antarctic sea ice trends. Geophys. Res. Lett. 2014, 41, 4230–4237. [Google Scholar] [CrossRef] [Green Version]
- Bruno, M.S.; Madsen, O.S. Coupled circulation and ice floe movement model for partially ice-covered continental shelves. J. Geophys. Res. 1989, 94, 2065–2077. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Fan, P.; Jin, J.; He, J.; Song, M.; Zhang, H.; Fei, K.; Zhang, M.; Zeng, Q. Evaluation of Sea Ice Simulation of CAS-ESM 2.0 in Historical Experiment. Atmosphere 2022, 13, 1056. https://doi.org/10.3390/atmos13071056
Gao X, Fan P, Jin J, He J, Song M, Zhang H, Fei K, Zhang M, Zeng Q. Evaluation of Sea Ice Simulation of CAS-ESM 2.0 in Historical Experiment. Atmosphere. 2022; 13(7):1056. https://doi.org/10.3390/atmos13071056
Chicago/Turabian StyleGao, Xin, Peng Fan, Jiangbo Jin, Juanxiong He, Mirong Song, He Zhang, Kece Fei, Minghua Zhang, and Qingcun Zeng. 2022. "Evaluation of Sea Ice Simulation of CAS-ESM 2.0 in Historical Experiment" Atmosphere 13, no. 7: 1056. https://doi.org/10.3390/atmos13071056
APA StyleGao, X., Fan, P., Jin, J., He, J., Song, M., Zhang, H., Fei, K., Zhang, M., & Zeng, Q. (2022). Evaluation of Sea Ice Simulation of CAS-ESM 2.0 in Historical Experiment. Atmosphere, 13(7), 1056. https://doi.org/10.3390/atmos13071056