A Literature Review of Cooling Center, Misting Station, Cool Pavement, and Cool Roof Intervention Evaluations
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Cool Pavements
3.1.1. Cool Pavement Evaluation Protocols
3.1.2. Cool Pavement Intervention Results: Surface Temperature, and Ambient Temperature
3.2. Cooling Centers
3.2.1. Cooling Center Evaluation Protocols
3.2.2. Cooling Center Results: Accessibility and Equity
3.3. Misting Stations
3.3.1. Misting Station Design
3.3.2. Misting Station Evaluation Protocols
3.3.3. Misting Station Results
3.4. Cool Roofs
3.4.1. Cool Roof Evaluation Methods
3.4.2. Cool Roof Results: Thermal Comfort and Meteorological Data
3.4.3. Cool Roof Results: Energy Savings
3.5. Summary of Metrics, Benefits, and Disadvantages in Cooling Intervention Evaluations
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. PubMed Search Terms
Appendix A.2. Web of Science Search Terms
References
- Luber, G.; McGeehin, M. Climate Change and Extreme Heat Events. Am. J. Prev. Med. 2008, 35, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The Urban Heat Island Effect, Its Causes, and Mitigation, with Reference to the Thermal Properties of Asphalt Concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Nwakaire, C.M.; Onn, C.C.; Yap, S.P.; Yuen, C.W.; Onodagu, P.D. Urban Heat Island Studies with Emphasis on Urban Pavements: A Review. Sustain. Cities Soc. 2020, 63, 102476. [Google Scholar] [CrossRef]
- Yang, L.; Qian, F.; Song, D.-X.; Zheng, K.-J. Research on Urban Heat-Island Effect. Procedia Eng. 2016, 169, 11–18. [Google Scholar] [CrossRef]
- Vaidyanathan, A.; Malilay, J.; Schramm, P.; Saha, S. Heat-Related Deaths — United States, 2004–2018. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 729–734. [Google Scholar] [CrossRef]
- Weinberger, K.R.; Harris, D.; Spangler, K.R.; Zanobetti, A.; Wellenius, G.A. Estimating the Number of Excess Deaths Attributable to Heat in 297 United States Counties. Environ. Epidemiol. 2020, 4, e096. [Google Scholar] [CrossRef]
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Hot Weather and Heat Extremes: Health Risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef]
- Wu, C.Y.H.; Zaitchik, B.F.; Swarup, S.; Gohlke, J.M. Influence of the Spatial Resolution of the Exposure Estimate in Determining the Association between Heat Waves and Adverse Health Outcomes. Ann. Am. Assoc. Geogr. 2019, 109, 875–886. [Google Scholar] [CrossRef]
- Mitchell, B.C.; Chakraborty, J. Exploring the Relationship between Residential Segregation and Thermal Inequity in 20 U.S. Cities. Local Environ. 2018, 23, 796–813. [Google Scholar] [CrossRef]
- Larsen, L. Urban Climate and Adaptation Strategies. Front. Ecol. Environ. 2015, 13, 486–492. [Google Scholar] [CrossRef]
- Reduce Urban Heat Island Effect. US EPA. Available online: https://www.epa.gov/green-infrastructure/reduce-urban-heat-island-effect (accessed on 7 June 2022).
- Eanes, A.M.; Lookingbill, T.R.; Hoffman, J.S.; Saverino, K.C.; Fong, S.S. Assessing Inequitable Urban Heat Islands and Air Pollution Disparities with Low-Cost Sensors in Richmond, Virginia. Sustainability 2020, 12, 10089. [Google Scholar] [CrossRef]
- Fan, J.Y.; Sengupta, R. Montreal’s Environmental Justice Problem with Respect to the Urban Heat Island Phenomenon. Can. Geogr. /Le Géographe Canadien 2021, 66, cag.12690. [Google Scholar] [CrossRef]
- Hsu, A.; Sheriff, G.; Chakraborty, T.; Manya, D. Disproportionate Exposure to Urban Heat Island Intensity across Major US Cities. Nat. Commun. 2021, 12, 2721. [Google Scholar] [CrossRef]
- Mashhoodi, B. Environmental Justice and Surface Temperature: Income, Ethnic, Gender, and Age Inequalities. Sustain. Cities Soc. 2021, 68, 102810. [Google Scholar] [CrossRef]
- Mitchell, B.C.; Chakraborty, J.; Basu, P. Social Inequities in Urban Heat and Greenspace: Analyzing Climate Justice in Delhi, India. Int. J. Environ. Res. Public Health 2021, 18, 4800. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, B.C.; Chakraborty, J. Landscapes of Thermal Inequity: Disproportionate Exposure to Urban Heat in the Three Largest US Cities. Environ. Res. Lett. 2015, 10, 115005. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Macintyre, H.L.; Heaviside, C. Potential Benefits of Cool Roofs in Reducing Heat-Related Mortality during Heatwaves in a European City. Environ. Int. 2019, 127, 430–441. [Google Scholar] [CrossRef]
- He, C.; Zhao, J.; Zhang, Y.; He, L.; Yao, Y.; Ma, W.; Kinney, P.L. Cool Roof and Green Roof Adoption in a Metropolitan Area: Climate Impacts during Summer and Winter. Environ. Sci. Technol. 2020, 54, 10831–10839. [Google Scholar] [CrossRef]
- Zhang, J.; Mohegh, A.; Li, Y.; Levinson, R.; Ban-Weiss, G. Systematic Comparison of the Influence of Cool Wall versus Cool Roof Adoption on Urban Climate in the Los Angeles Basin. Environ. Sci. Technol. 2018, 52, 11188–11197. [Google Scholar] [CrossRef] [PubMed]
- Middel, A.; Turner, V.K.; Schneider, F.A.; Zhang, Y.; Stiller, M. Solar Reflective Pavements—A Policy Panacea to Heat Mitigation? Environ. Res. Lett. 2020, 15, 064016. [Google Scholar] [CrossRef]
- Cheng, Y.-Y.; Lo, S.-L.; Ho, C.-C.; Lin, J.-Y.; Yu, S.L. Field Testing of Porous Pavement Performance on Runoff and Temperature Control in Taipei City. Water 2019, 11, 2635. [Google Scholar] [CrossRef] [Green Version]
- Kolokotsa, D.-D.; Giannariakis, G.; Gobakis, K.; Giannarakis, G.; Synnefa, A.; Santamouris, M. Cool Roofs and Cool Pavements Application in Acharnes, Greece. Sustain. Cities Soc. 2018, 37, 466–474. [Google Scholar] [CrossRef]
- Haselbach, L.; Boyer, M.; Kevern, J.T.; Schaefer, V.R. Cyclic Heat Island Impacts on Traditional versus Pervious Concrete Pavement Systems. Transp. Res. Rec. 2011, 2240, 107–115. [Google Scholar] [CrossRef]
- Santamouris, M.; Gaitani, N.; Spanou, A.; Saliari, M.; Giannopoulou, K.; Vasilakopoulou, K.; Kardomateas, T. Using Cool Paving Materials to Improve Microclimate of Urban Areas – Design Realization and Results of the Flisvos Project. Build. Environ. 2012, 53, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Bradford, K.; Abrahams, L.; Hegglin, M.; Klima, K. A Heat Vulnerability Index and Adaptation Solutions for Pittsburgh, Pennsylvania. Environ. Sci. Technol. 2015, 49, 11303–11311. [Google Scholar] [CrossRef]
- Voelkel, J.; Hellman, D.; Sakuma, R.; Shandas, V. Assessing Vulnerability to Urban Heat: A Study of Disproportionate Heat Exposure and Access to Refuge by Socio-Demographic Status in Portland, Oregon. Int. J. Environ. Res. Public Health 2018, 15, 640. [Google Scholar] [CrossRef] [Green Version]
- Fraser, A.; Chester, M.; Eisenman, D. Strategic Locating of Refuges for Extreme Heat Events (or Heat Waves). Urban Clim. 2018, 25, 109–119. [Google Scholar] [CrossRef]
- Fraser, A.M.; Chester, M.V.; Eisenman, D.; Hondula, D.M.; Pincetl, S.S.; English, P.; Bondank, E. Household Accessibility to Heat Refuges: Residential Air Conditioning, Public Cooled Space, and Walkability. Environ. Plan. B Urban Anal. City Sci. 2017, 44, 1036–1055. [Google Scholar] [CrossRef] [Green Version]
- Farnham, C.; Emura, K.; Mizuno, T. Evaluation of Cooling Effects: Outdoor Water Mist Fan. Build. Res. Inf. 2015, 43, 334–345. [Google Scholar] [CrossRef]
- Di Giuseppe, E.; Ulpiani, G.; Cancellieri, C.; Di Perna, C.; D’Orazio, M.; Zinzi, M. Numerical Modelling and Experimental Validation of the Microclimatic Impacts of Water Mist Cooling in Urban Areas. Energy Build. 2021, 231, 110638. [Google Scholar] [CrossRef]
- Ulpiani, G.; Di Giuseppe, E.; Di Perna, C.; D’Orazio, M.; Zinzi, M. Thermal Comfort Improvement in Urban Spaces with Water Spray Systems: Field Measurements and Survey. Build. Environ. 2019, 156, 46–61. [Google Scholar] [CrossRef]
- Ulpiani, G.; di Perna, C.; Zinzi, M. Mist Cooling in Urban Spaces: Understanding the Key Factors behind the Mitigation Potential. Appl. Therm. Eng. 2020, 178, 115644. [Google Scholar] [CrossRef]
- Zheng, K.; Yuan, C.; Wong, N.H.; Cen, C. Dry Mist Systems and Its Impact on Thermal Comfort for the Tropics. Sustain. Cities Soc. 2019, 51, 101727. [Google Scholar] [CrossRef]
- Desert, A.; Naboni, E.; Garcia, D. The Spatial Comfort and Thermal Delight of Outdoor Misting Installations in Hot and Humid Extreme Environments. Energy Build. 2020, 224, 110202. [Google Scholar] [CrossRef]
- Vanos, J.K.; Wright, M.K.; Kaiser, A.; Middel, A.; Ambrose, H.; Hondula, D.M. Evaporative Misters for Urban Cooling and Comfort: Effectiveness and Motivations for Use. Int. J. Biometeorol. 2020, 66, 357–369. [Google Scholar] [CrossRef]
- Lee, L.S.H.; Jim, C.Y. Urban Woodland on Intensive Green Roof Improved Outdoor Thermal Comfort in Subtropical Summer. Int. J. Biometeorol. 2019, 63, 895–909. [Google Scholar] [CrossRef]
- Susca, T.; Gaffin, S.R.; Dell’osso, G.R. Positive Effects of Vegetation: Urban Heat Island and Green Roofs. Environ. Pollut. 2011, 159, 2119–2126. [Google Scholar] [CrossRef]
- Vellingiri, S.; Dutta, P.; Singh, S.; Sathish, L.; Pingle, S.; Brahmbhatt, B. Combating Climate Change-Induced Heat Stress: Assessing Cool Roofs and Its Impact on the Indoor Ambient Temperature of the Households in the Urban Slums of Ahmedabad. Indian J. Occup. Environ. Med. 2020, 24, 25–29. [Google Scholar] [CrossRef]
- Koura, J.; Manneh, R.; Belarbi, R.; El Khoury, V.; El Bahawati, M. Seasonal Variability of Temperature Profiles of Vegetative and Traditional Gravel-Ballasted Roofs: A Case Study for Lebanon. Energy Build. 2017, 151, 358–364. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kawashima, S.; Hama, T.; Nakamura, K. Thermal Mitigation of Hydroponic Green Roof Based on Heat Balance. Urban For. Urban Green. 2017, 24, 92–100. [Google Scholar] [CrossRef]
- Paolini, R.; Zinzi, M.; Poli, T.; Carnielo, E.; Mainini, A.G. Effect of Ageing on Solar Spectral Reflectance of Roofing Membranes: Natural Exposure in Roma and Milano and the Impact on the Energy Needs of Commercial Buildings. Energy Build. 2014, 84, 333–343. [Google Scholar] [CrossRef]
- Sisco, L.; Monzer, S.; Farajalla, N.; Bashour, I.; Saoud, I.P. Roof Top Gardens as a Means to Use Recycled Waste and A/C Condensate and Reduce Temperature Variation in Buildings. Build. Environ. 2017, 117, 127–134. [Google Scholar] [CrossRef]
- Höppe, P. The Physiological Equivalent Temperature - a Universal Index for the Biometeorological Assessment of the Thermal Environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Jendritzky, G.; Höppe, P. The UTCI and the ISB. Int. J. Biometeorol. 2017, 61, 23–27. [Google Scholar] [CrossRef]
- Lundgren-Kownacki, K.; Hornyanszky, E.D.; Chu, T.A.; Olsson, J.A.; Becker, P. Challenges of Using Air Conditioning in an Increasingly Hot Climate. Int. J. Biometeorol. 2018, 62, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Daanen, H.; Bose-O’Reilly, S.; Brearley, M.; Flouris, D.A.; Gerrett, N.M.; Huynen, M.; Jones, H.M.; Lee, J.K.W.; Morris, N.; Norton, I.; et al. COVID-19 and Thermoregulation-Related Problems: Practical Recommendations. Temperature 2021, 8, 1–11. [Google Scholar] [CrossRef]
- Binagwaho, A.; Mathewos, K.; Davis, S. Time for the Ethical Management of COVID-19 Vaccines. Lancet Glob. Health 2021, 9, E1169–E1171. [Google Scholar] [CrossRef]
- Bambrick, H.J.; Capon, A.G.; Barnett, G.B.; Beaty, R.M.; Burton, A.J. Climate Change and Health in the Urban Environment: Adaptation Opportunities in Australian Cities. Asia Pac. J. Public Health 2011, 23, 67S–79S. [Google Scholar] [CrossRef]
- Rohat, G.; Wilhelmi, O.; Flacke, J.; Monaghan, A.; Gao, J.; van Maarseveen, M.; Dao, H. Assessing Urban Heat-Related Adaptation Strategies under Multiple Futures for a Major, U.S. City. Clim. Chang. 2021, 164, 61. [Google Scholar] [CrossRef]
- Sharifi, A.; Pathak, M.; Joshi, C.; He, B.-J. A Systematic Review of the Health Co-Benefits of Urban Climate Change Adaptation. Sustain. Cities Soc. 2021, 74, 103190. [Google Scholar] [CrossRef]
- Lenzholzer, S.; Carsjens, G.-J.; Brown, R.D.; Tavares, S.; Vanos, J.; Kim, Y.; Lee, K. Awareness of Urban Climate Adaptation Strategies –an International Overview. Urban Clim. 2020, 34, 100705. [Google Scholar] [CrossRef]
Cool Pavement Type | Metrics | Results | Article Location & Reference |
---|---|---|---|
Solar-reflective Guard Top CoolSeal | Hourly measurements: radiation flux densities, ambient air temperature, surface temperature, horizontal wind speed, relative humidity | CoolSeal surface was 6 °C cooler than control at midday, mean radiant temperature was 4 °C hotter at midday | Los Angeles, CA, USA [22] |
Porous concrete bricks and porous asphalt | Ten-minute measurements: surface temperature, over 12-h | Surface temperature, compared to control pavement: up to 17 °C cooler for porous asphalt and up to 14.3 °C cooler for permeable bricks | Taipei City, Taiwan [23] |
Porous concrete bricks and porous asphalt | Hourly thermal images to collect surface temperature, solar reflectivity was 0.69 | Compared to control, averaged 0.3K cooler ambient temperature | Acharnes, Greece [24] |
Pervious concrete pavement | Daily and cumulative: heat gains, ambient air temperature data collected over the course of a summer | Lower cumulative heat gain, compared to control | Ames, IA, USA [25] |
Light-yellow concrete blocks | Two days of measuring: surface temperature, ambient air temperature, wind speed, pollutant concentration, calculated cooling power comfort index; solar reflectivity exceeded 0.85 | Surface temperature averaged 11.3 °C cooler than control | Athens, Greece [26] |
Type of Roof | Parameters | Results | Article and Location |
---|---|---|---|
Intensive green roof | Collected sunny and cloudy day measurements of ambient air temperature, relative humidity, black globe temperature, insolation, wind speed, and surface temperature to calculate the UTCI and PET | Compared to control in sunny weather: surface temperature cooler by 4.9 °C, ambient air temperature by 1.6 °C, UTCI by 5.5 °C, and PET by 10.9 °C | Hong Kong, China [38] |
High-reflective roof, extensive green roof | Measured surface, ambient air temperature, and surface albedo at two sampling times (at night and during the day) | The surface temperature for the white and green roofs had a 30 °C lower oscillation than the control roof | New York City, USA [39] |
Thermocol, solar reflective paint, airlite ventilation sheeting, modular roofing | Minutely measurements of indoor ambient air temperature and humidity | Indoor ambient air temperature significantly lower for solar reflective white paint (compared to unpainted tin) and thermocol (compared to tin/asbestos) | Ahmedabad, India [40] |
Gravel, thin soil vegetated, thick soil vegetated | Minutely measurements for one year of ambient air temperature and surface temperature | Thick soil decreased ambient air temperatures by 35%, compared to a drop by 34% for thin soil | El Koura, Lebanon [41] |
Hydroponic greening system for rice | Measured heat flux, surface temperature, and ambient air temperature above systems | Hydroponic ambient air temperature was 1.8 °C cooler than the comparison | Osaka and Kyoto, Japan [42] |
Modified bitumen, PVC, polyolefin | Solar reflectance measured every three months for two years | Solar reflectivity diminished by 0.14 and 0.22 at the respective sites | Rome and Milano, Italy [43] |
Gray roof tiles | Measured energy saved inside the building and surface temperature of tiles | Energy use was reduced by 17% in the summer months | Acharnes, Greece [24] |
Garden boxes (one with mulch substrate, the other cardboard pellets) | Measured temperature under garden boxes and plant growth in the garden boxes | Mulch substrate measured a maximum temperature 2 °C cooler than control box | Beirut, Lebanon [44] |
Temperature Evaluation Metrics | Cool Pavements | Cooling Centers | Misting Stations | Cool Roofs | References |
---|---|---|---|---|---|
Surface temperature | X | X | [22,23,24,26,37,38,41,42,44] | ||
Air temperature (ambient) | X | X | X | [25,26,32,35,36,37,38,40,41,42] | |
Air temperature (indoor) | X | [40] | |||
Radiant temperature | X | [22] | |||
Heat gain | X | [25] | |||
Predicted temperature | X | [24,26] | |||
Globe temperature | X | [38] | |||
Relative humidity | X | X | X | [22,33,38,40] | |
Wind speed | X | X | [22,26,38] | ||
Atmospheric pressure | X | [35] | |||
Solar Reflectivity/irradiance | X | [24,26] | |||
Insolation | X | [38] | |||
Albedo | X | [39,43] | |||
Heat flux | X | [42] | |||
Cooling power comfort index (wind and ambient temperature) | X | [26] | |||
Universal thermal climate index (UTCI) | X | X | [36,37,38] | ||
Physiological equivalent temperature (PET) | X | X | [36,37,38] |
Cooling Centers | Cool Roofs | References | |
---|---|---|---|
Equitable access with heat vulnerability index (HVI) | X | [27] | |
Access weighted by income, race, education, age, and language | X | [28] | |
Access to cooling centers, no vulnerability adjustment | X | [27,28,29,30] | |
SES, heat stress, housing type, and ventilation vulnerability | X | [40] |
Thermal Comfort Metric | Definition |
---|---|
ASHRAE TSV scale | How warm a participant feels. |
Bedford TCV scale | How comfortable a participant feels. |
Thermal comfort questionnaire | Participants respond to questionnaire prompts with questions about comfort and cooling capacity of the intervention in question. |
Physiological equivalent temperature (PET) and universal thermal climate index (UTCI) | PET [45] and UTCI [46]: require data collection on ambient air temperature, relative humidity, wind speed, globe temperature, and pressure, as well as inputs for standardized personal human-parameters (average height, clothing, etc.). |
Cooling power comfort index | A calculation based on observed mean radiant temperature and wind speed. |
Intervention | Benefits | Disadvantages |
---|---|---|
Cool pavements |
|
|
Cooling centers |
| |
Misting stations |
| |
Cool roofs |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Black-Ingersoll, F.; de Lange, J.; Heidari, L.; Negassa, A.; Botana, P.; Fabian, M.P.; Scammell, M.K. A Literature Review of Cooling Center, Misting Station, Cool Pavement, and Cool Roof Intervention Evaluations. Atmosphere 2022, 13, 1103. https://doi.org/10.3390/atmos13071103
Black-Ingersoll F, de Lange J, Heidari L, Negassa A, Botana P, Fabian MP, Scammell MK. A Literature Review of Cooling Center, Misting Station, Cool Pavement, and Cool Roof Intervention Evaluations. Atmosphere. 2022; 13(7):1103. https://doi.org/10.3390/atmos13071103
Chicago/Turabian StyleBlack-Ingersoll, Flannery, Julie de Lange, Leila Heidari, Abgel Negassa, Pilar Botana, M. Patricia Fabian, and Madeleine K. Scammell. 2022. "A Literature Review of Cooling Center, Misting Station, Cool Pavement, and Cool Roof Intervention Evaluations" Atmosphere 13, no. 7: 1103. https://doi.org/10.3390/atmos13071103
APA StyleBlack-Ingersoll, F., de Lange, J., Heidari, L., Negassa, A., Botana, P., Fabian, M. P., & Scammell, M. K. (2022). A Literature Review of Cooling Center, Misting Station, Cool Pavement, and Cool Roof Intervention Evaluations. Atmosphere, 13(7), 1103. https://doi.org/10.3390/atmos13071103