The Sensitivity of Vegetation Dynamics to Climate Change across the Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Normalized Difference Vegetation Index Data
2.3. Meteorological Records
2.4. Calculation of Vegetation Sensitivity (R2)
2.5. Sensitivity Analysis
3. Results
3.1. Relationships of NDVI with MAT and MAP
3.2. Seasonal Sensitivity between NDVI and Climate Records
3.3. Climate Change and Its Effect on Seasonal VSP and VST
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsu, J.S.; Powell, J.; Adler, P.B. Sensitivity of mean annual primary production to precipitation. Glob. Chang. Biol. 2012, 18, 2246–2255. [Google Scholar] [CrossRef]
- Tian, H.; Cao, C.; Wei, C.; Bao, S.; Yang, B.; Myneni, R.B. Response of vegetation activity dynamic to climatic change and ecological restoration programs in Inner Mongolia from 2000 to 2012. Ecol. Eng. 2015, 82, 276–289. [Google Scholar] [CrossRef]
- Ru, J.; Zhou, Y.; Hui, D.; Zheng, M.; Wan, S. Shifts of growing-season precipitation peaks decrease soil respiration in a semiarid grassland. Glob. Chang. Biol. 2018, 24, 1001–1011. [Google Scholar] [CrossRef]
- Radu, D.D.; Duval, T.P. Precipitation frequency alters peatland ecosystem structure and co2 exchange: Contrasting effects on moss, sedge, and shrub communities. Glob. Chang. Biol. 2018, 24, 2051–2065. [Google Scholar] [CrossRef] [PubMed]
- Siepielski, A.M.; Morrissey, M.B.; Buoro, M.; Carlson, S.M.; Caruso, C.M.; Clegg, S.M.; Coulson, T.; DiBattista, J.; Gotanda, K.M.; Francis, C.D.; et al. Precipitation drives global variation in natural selection. Science 2017, 355, 959–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asner, G.P.; Elmore, A.J.; Olander, L.P.; Martin, R.E.; Harris, A.T. Grazing systems, ecosystem responses, and global change. Annu. Rev. Environ. Resour. 2004, 29, 261–299. [Google Scholar] [CrossRef]
- Seddon, A.W.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.D.; Wilcox, K.R.; Power, S.A.; Tissue, D.T.; Knapp, A.K. Assessing community and ecosystem sensitivity to climate change—Toward a more comparative approach. J. Veg. Sci. 2017, 28, 235–237. [Google Scholar] [CrossRef] [Green Version]
- Knapp, A.K.; Beier, C.B.; David, D.; Classen, A.T.; Luo, Y.; Reichstein, M.; Smith, M.D.; Smith, S.D.; Bell, J.E.; Fay, P.A.; et al. Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems. Bioscience 2008, 58, 811–821. [Google Scholar] [CrossRef]
- Guo, Q.; Hu, Z.; Li, S.; Li, X.; Sun, X.; Yu, G. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: Effects of mean annual precipitation and its seasonal distribution. Glob. Chang. Biol. 2012, 18, 3624–3631. [Google Scholar] [CrossRef]
- Mariano, D.A.; Santos, C.A.C.D.; Wardlow, B.D.; Anderson, M.C.; Schiltmeyer, A.V.; Tadesse, T.; Svoboda, M.D. Use of remote sensing indicators to assess effects of drought and human-induced land degradation on ecosystem health in Northeastern Brazil. Remote Sens. Environ. 2018, 213, 129–143. [Google Scholar] [CrossRef]
- Craine, J.M.; Nippert, J.B.; Elmore, A.J.; Skibbe, A.M.; Hutchinson, S.L.; Brunsell, N.A. Timing of climate variability and grassland productivity. Proc. Natl. Acad. Sci. USA 2012, 109, 3401–3405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heisler-White, J.L.; Knapp, A.K.; Kelly, E.F. Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia 2008, 158, 129–140. [Google Scholar] [CrossRef]
- Knapp, A.K.; Fay, P.A.; Blair, J.M.; Collins, S.L.; Smith, M.D.; Carlisle, J.D.; Harper, C.W.; Danner, B.T.; Lett, M.S.; Mccarron, J.K. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 2002, 298, 2202–2205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nippert, J.B.; Knapp, A.K.; Briggs, J.M. Intra-annual rainfall variability and grassland productivity: Can the past predict the future? Plant Ecol. 2006, 184, 65–74. [Google Scholar] [CrossRef]
- Wang, Z.P.; Zhang, X.Z.; He, Y.T.; Li, M.; Shi, P.L.; Zu, J.X.; Niu, B. Responses of normalized difference vegetation index (NDVI) to precipitation changes on the grassland of Tibetan Plateau from 2000 to 2015. Chin. J. Appl. Ecol. 2018, 29, 75–83. [Google Scholar]
- Bai, Y. Influence of seasonal distribution of precipitation on primary productivity of Stipa krylovii community. Chin. J. Plant Ecol. 1999, 23, 155–160. [Google Scholar]
- Zuidema, G.; Born, G.J.V.D.; Alcamo, J.; Kreileman, G.J.J. Simulating changes in global land cover as affected by economic and climatic factors. Water Air Soil Pollut. 1994, 76, 163–198. [Google Scholar] [CrossRef]
- Cui, L.; Wang, L.; Singh, R.P.; Lai, Z.; Jiang, L.; Yao, R. Association analysis between spatiotemporal variation of vegetation greenness and precipitation/temperature in the Yangtze River Basin (China). Environ. Sci. Pollut. Res. 2018, 25, 21867–21878. [Google Scholar] [CrossRef]
- Aerts, R.; Cornelissen, J.H.C.; Dorrepaal, E. Plant Performance in a Warmer World: General Responses of Plants from Cold, Northern Biomes and the Importance of Winter and Spring Events. Plant Ecol. 2006, 182, 65–77. [Google Scholar]
- Cui, Y. Preliminary Estimation of the Realistic Optimum Temperature for Vegetation Growth in China. Environ. Manag. 2013, 52, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Justice, C.O.; Hiernaux, P.H.Y. Monitoring the grasslands of the Sahel using NOAA AVHRR data: Niger 1983. Int. J. Remote Sens. 1986, 7, 1475–1497. [Google Scholar] [CrossRef]
- Menenti, M.; Azzali, S.; Verhoef, W.; Swol, R.V. Mapping agroecological zones and time lag in vegetation growth by means of fourier analysis of time series of NDVI images. Adv. Space Res. 1993, 13, 233–237. [Google Scholar] [CrossRef]
- Burgess, D.W.; Lewis, P.; Jpal, M. Topographic effects in AVHRR NDVI data. Remote Sens. Environ. 1995, 54, 223–232. [Google Scholar] [CrossRef]
- Rafique, R.; Zhao, F.; Jong, R.D.; Zeng, N.; Asrar, G.R. Global and Regional Variability and Change in Terrestrial Ecosystems Net Primary Production and NDVI: A Model-Data Comparison. Remote Sens. 2016, 8, 177. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhou, T.; Peng, P. Phenology Response to Climatic Dynamic across China’s Grasslands from 1985 to 2010. ISPRS Int. J. Geo-Inf. 2018, 7, 290. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.Y.; Dong, Z.B.; Lu, J.F.; Yan, C.Z. Driving forces of land use and land cover change (LUCC) in the Zoige Wetland, Qinghai-Tibetan Plateau. Sci. Cold Arid Reg. 2012, 4, 422–430. [Google Scholar]
- Piao, S.L.; Fang, J.Y.; Zhou, L.M.; Guo, Q.H.; Henderson, M.; Ji, W.; Li, Y.; Tao, S. Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. J. Geophys. Res. Atmos. 2003, 108, 4401. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, H.F.; Chen, B.Z.; Zhang, H.R.; Innes, J.L.; Wang, G.Y.; Yan, J.W.; Zheng, Y.H.; Zhu, Z.C.; Myneni, R.B. Changes in Vegetation Growth Dynamics and Relations with Climate over China’s Landmass from 1982 to 2011. Remote Sens. 2014, 6, 3263–3283. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Wu, S.Y.; Hou, S.G.; Xu, Z.W.; Lu, H.Y. Normalized Difference Vegetation Index-based assessment of climate change impact on vegetation growth in the humid-arid transition zone in northern China during 1982–2013. Int. J. Clim. 2019, 39, 5583–5598. [Google Scholar] [CrossRef]
- Kirilenko, A.P.; Solomon, A.M. Modeling dynamic vegetation response to rapid climate change using bioclimatic classification. Clim. Change 1998, 38, 15–49. [Google Scholar] [CrossRef]
- Liu, B.; Sun, J.; Liu, M.; Zeng, T.; Zhu, J. The aridity index governs the variation of vegetation characteristics in alpine grassland, Northern Tibet Plateau. PeerJ 2019, 7, e7272. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Xu, Y.; You, Q.; Flügel, W.A.; Pepin, N.; Yao, T. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 15101. [Google Scholar] [CrossRef]
- Wang, X.; Du, Z.; Shen, Y. Land use change and its driving forces on the Tibetan Plateau during 1990–2000. Catena 2008, 72, 56–66. [Google Scholar] [CrossRef]
- Fay, P.A.; Carlisle, J.D.; Knapp, A.K.; Blair, J.M.; Collins, S.L. Productivity responses to altered rainfall patterns in a C4-dominated grassland. Oecologia 2003, 137, 245–251. [Google Scholar] [CrossRef]
- Heislerwhite, J.L.; Blair, J.M.; Kelly, E.F.; Harmoney, K.; Knapp, A.K. Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Glob. Chang. Biol. 2010, 15, 2894–2904. [Google Scholar] [CrossRef]
- Swemmer, A.; Knapp, A.; Snyman, H. Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. J. Ecol. 2007, 95, 780–788. [Google Scholar] [CrossRef]
- Fu, Y.H.; Zhao, H.F.; Piao, S.L.; Marc, P.; Peng, S.S.; Zhou, G.Y.; Philippe, C.; Huang, M.T.; Annette, M.; Josep, P.; et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 2015, 526, 104–107. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wu, J.S.; Song, C.Q.; He, Y.T.; Niu, B.; Fu, G.; Tarolli, P.; Tietjen, B.; Zhang, X.Z. Temporal Variability of Precipitation and Biomass of Alpine Grasslands on the Northern Tibetan Plateau. Remote Sens. 2019, 11, 360. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.Y.; Xu, J.C.; Okuto, E.; Luedeling, E. Seasonal Response of Grasslands to Climate Change on the Tibetan Plateau. PLoS ONE 2012, 7, e49230. [Google Scholar]
- Potter, C.S.; Brooks, V. Global analysis of empirical relations between annual climate and seasonality of NDVI. Int. J. Remote Sens. 1998, 19, 2921–2948. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, T.; Liu, M.; Chen, Y.; Shang, H.; Zhu, L.; Shedayi, A.A.; Yu, H.; Cheng, G.; Liu, G.; et al. Linkages of the dynamics of glaciers and lakes with the climate elements over the Tibetan Plateau. Earth-Sci. Rev. 2018, 185, 308–324. [Google Scholar] [CrossRef]
- Sun, J.; Qin, X.J.; Yang, J. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau. Environ. Monit. Assess. 2016, 188, 20–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Liu, B.Y.; You, Y.; Li, W.P.; Liu, M.; Shang, H.; He, J.S. Solar radiation regulates the leaf nitrogen and phosphorus stoichiometry across alpine meadows of the Tibetan Plateau. Agric. For. Meteorol. 2019, 271, 92–101. [Google Scholar] [CrossRef]
- Sun, J.; Cheng, G.W.; Li, W.P.; Sha, Y.K.; Yang, Y.C. On the variation of NDVI with the principal climatic elements in the Tibetan Plateau. Remote Sens. 2013, 5, 1894–1911. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.L.; Zhang, Y.; Dong, J.; Xiao, X.M. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl. Acad. Sci. USA 2013, 110, 4309–4314. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, M.F. Interpolating mean rainfall using thin plate smoothing splines. Int. J. Geogr. Inf. Syst. 1995, 9, 385–403. [Google Scholar] [CrossRef]
- Hutchinson, M.F. ANUSPLIN version 4.2 User Guide. In Centre for Resource and Environmental Studies; Australian National University: Canberra, Australia, 2001. [Google Scholar]
- McKenney, D.W.; Pedlar, J.H.; Papadopol, P.; Hutchinson, M.F. The development of 1901–2000 historical monthly climate models for Canada and the United States. Agric. For. Meteorol. 2006, 138, 69–81. [Google Scholar] [CrossRef]
- Gu, S.X.; Xu, X.; Liu, S.Z. Analysis on the spatio-temporal changes of sustainable land use in Tibet. Wuhan Univ. J. Nat. Sci. 2006, 11, 937–944. [Google Scholar]
- Liu, J.Y.; Liu, M.L.; Tian, H.Q.; Zhuang, D.F.; Zhang, Z.X.; Zhang, W.; Tang, X.M.; Deng, X.Z. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Cui, J.; Wang, Y.; Zhou, T.; Jiang, L.; Qi, Q. Temperature Mediates the Dynamic of MODIS NPP in Alpine Grassland on the Tibetan Plateau, 2001–2019. Remote Sens. 2022, 14, 2401. [Google Scholar] [CrossRef]
- Sun, J.; Ma, B.B.; Lu, X.Y. Grazing enhances soil nutrient effects: Trade-offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau. Land Degrad. Dev. 2017, 29, 337–348. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, J.Q.; Shirkey, G.; John, R.; Wu, S.R.; Park, H.; Shao, C.L. Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecol. Process 2016, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wu, D.; Yang, L.; Zhou, T. Declining Effect of Precipitation on the Normalized Difference Vegetation Index of Grasslands in the Inner Mongolian Plateau, 1982–2010. Appl. Sci. 2021, 11, 8766. [Google Scholar] [CrossRef]
- Gao, Q.; Li, Y.; Wan, Y.; Lin, E.; Sheng, W.; Yang, K. Remote sensing monitoring the spatiotemporal changes of alpine grassland coverage in the Northern Tibet. Proc. SPIE—Int. Soc. Opt. Eng. 2006, 6298, 2982–2991. [Google Scholar]
- Kong, B.; Yu, H.; Du, R.; Wang, Q. Quantitative Estimation of Biomass of Alpine Grasslands Using Hyperspectral Remote Sensing. Rangel. Ecol. Manag. 2019, 72, 336–346. [Google Scholar] [CrossRef]
- Li, L.L.; Fan, J.R.; Chen, Y. The relationship analysis of vegetation cover, rainfall and land surface temperature based on remote sensing in Tibet, China. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 012034. [Google Scholar]
- Liang, T.; Feng, Q.; Yu, H.; Huang, X.; Lin, H.; An, S.; Ren, J. Dynamics of natural vegetation on the Tibetan Plateau from past to future using a comprehensive and sequential classification system and remote sensing data. Grassl. Sci. 2012, 58, 208–220. [Google Scholar] [CrossRef]
- Sun, J.; Qin, X.J. Precipitation and temperature regulate the seasonal changes of NDVI across the Tibetan Plateau. Environ. Earth Sci. 2016, 75, 291. [Google Scholar] [CrossRef]
- Wu, J.B.; Hong, J.T.; Wang, X.D.; Sun, J.; Lu, X.Y.; Fan, J.H.; Cai, Y.J. Biomass partitioning and its relationship with the environmental factors at the alpine steppe in Northern Tibet. PLoS ONE 2013, 8, e81986. [Google Scholar] [CrossRef]
- Sun, J.; Cheng, G.; Li, W. Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau. Biogeosciences 2013, 10, 1707–1715. [Google Scholar] [CrossRef] [Green Version]
- Esmeijer-Liu, A.J.; Aerts, R.; Kürschner, W.M.; Bobbink, R.; Lotter, A.F.; Verhoeven, J.T.A. Nitrogen enrichment lowers Betula pendula green and yellow leaf stoichiometry irrespective of effects of elevated carbon dioxide. Plant Soil 2009, 316, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.; Zhang, X.S.; Scurlock, J.M.O. Synthesis and analysis of biomass and net primary productivity in Chinese forests. Ann. For. Sci. 2001, 58, 351–384. [Google Scholar] [CrossRef]
- Ding, M.J.; Zhang, Y.L.; Sun, X.M.; Liu, L.S.; Wang, Z.F.; Bai, W.Q. Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009. Chin. Sci. Bull. 2013, 58, 396–405. [Google Scholar] [CrossRef] [Green Version]
- Dong, M.Y.; Jiang, Y.; Zheng, C.T.; Zhang, D.Y. Trends in the thermal growing season throughout the Tibetan Plateau during 1960―2009. Agric. For. Meteorol. 2012, 166–167, 201–206. [Google Scholar] [CrossRef]
- Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M.D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 2007, 22, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Gian-Reto, W.; Eric, P.; Peter, C.; Annette, M.; Camille, P.; Beebee, T.J.C.; Jean-Marc, F.; Ove, H.G.; Franz, B. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar]
- Menzel, A.; Sparks, T.; Estrella, N.; Koch, E.; Aasa, A.; Aha, R.; Alm-Kubler, K.; Bissolli, P.; Braslavska, O.; Briede, A. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 2006, 12, 1969–1976. [Google Scholar] [CrossRef]
- Garonna, I.; De, J.R.; de Wit, A.J.; Mücher, C.A.; Schmid, B.; Schaepman, M.E. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982–2011). Glob. Chang. Biol. 2015, 20, 3457–3470. [Google Scholar] [CrossRef]
- Gonsamo, A. Circumpolar vegetation dynamics product for global change study. Remote Sens. Environ. 2016, 182, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Gonsamo, A.; Chen, J.M.; Ooi, Y.W. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extra-tropical ecosystems. Glob. Chang. Biol. 2017, 24, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Forkel, M.; Carvalhais, N.; Rödenbeck, C.; Keeling, R.; Heimann, M.; Thonicke, K.; Zaehle, S.; Reichstein, M. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 2016, 351, 696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonsamo, A.; D’Odorico, P.; Chen, J.M.; Wu, C.; Buchmann, N. Changes in vegetation phenology are not reflected in atmospheric CO2 and 13C/12C seasonality. Glob. Chang. Biol. 2017, 23, 4029–4044. [Google Scholar] [CrossRef]
- Graven, H.D.; Keeling, R.F.; Piper, S.C.; Patra, P.K.; Stephens, B.B.; Wofsy, S.C.; Welp, L.R.; Sweeney, C.; Tans, P.P.; Kelley, J.J. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 2013, 341, 1085–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keeling, C.D. Atmospheric CO2 and 13CO2 Exchange with the Terrestrial Biosphere and Oceans from 1978 to 2000: Observations and Carbon Cycle Implications. In A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems; Springer: New York, NY, USA, 2005; Volume 177, pp. 83–113. [Google Scholar]
- Keenan, T.F.; Gray, J.; Friedl, M.A.; Toomey, M.; Bohrer, G.; Hollinger, D.Y.; Munger, J.W.; O’Keefe, J.; Schmid, H.P.; Wing, I.S.; et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 2014, 4, 598–604. [Google Scholar] [CrossRef]
- Myneni, R.B.; Keeling, C.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Zhuang, Y.L.; Zhao, W. Study on the Ecological Effects of Condensed Water on an Annual Plant in a Temperate Desert. Arid Zone Res. 2009, 26, 526–532. [Google Scholar] [CrossRef]
- Fang, J. An Overview on Eco-hydrological Effects of Condensation Water. J. Desert Res. 2013, 3, 275–281. [Google Scholar]
- Suseela, V.; Conant, R.T.; Wallenstein, M.D.; Dukes, J.S. Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Glob. Chang. Biol. 2015, 18, 336–348. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, X.L.; Zhou, C.; Zhang, H. Responses of grassland vegetation to climatic variations on different temporal scales in Hulun Buir Grassland in the past 30 years. J. Geogr. Sci. 2011, 21, 634–650. [Google Scholar] [CrossRef]
- Xu, Z.X.; Gong, T.L.; Li, J.Y. Decadal trend of climate in the Tibetan Plateau—Regional temperature and precipitation. Hydrol. Process. 2008, 22, 3056–3065. [Google Scholar] [CrossRef]
- Ye, J.S.; Reynolds, J.F.; Sun, G.J.; Li, F.M. Impacts of increased variability in precipitation and air temperature on net primary productivity of the Tibetan Plateau: A modeling analysis. Clim. Change 2013, 119, 321–332. [Google Scholar] [CrossRef]
- Zhang, X.; Duan, K.Q.; Shi, P.H.; Yang, J.H. Effect of lake surface temperature on the summer precipitation over the Tibetan Plateau. J. Mt. Sci. 2016, 13, 802–810. [Google Scholar] [CrossRef]
- Irvine, P.J.; Sriver, R.L.; Keller, K. Tension between reducing sea-level rise and global warming through solar-radiation management. Nat. Clim. Change 2012, 2, 97–100. [Google Scholar] [CrossRef]
- Ruosteenoja, K.; Räisänen, P. Seasonal Changes in Solar Radiation and Relative Humidity in Europe in Response to Global Warming. J. Clim. 2013, 26, 2467–2481. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T. Global warming due to increasing absorbed solar radiation. Geophys. Res. Lett. 2009, 36, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Dergachev, V.A.; Vasiliev, S.S.; Raspopov, O.M.; Jungner, H. Impact of the geomagnetic field and solar radiation on climate change. Geomagn. Aeron. 2012, 52, 959–976. [Google Scholar] [CrossRef]
Year | VSP | VST | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | Spring | Summer | Autumn | Winter | Year | Spring | Summer | Autumn | Winter | |
1982 | 0.65 | 0.05 | 0.61 | 0.68 | 0.64 | 0.22 | 0.33 | 0.15 | 0.03 | 0.29 |
1983 | 0.67 | 0.10 | 0.66 | 0.68 | 0.34 | 0.26 | 0.33 | 0.21 | 0.04 | 0.39 |
1984 | 0.66 | 0.16 | 0.63 | 0.59 | 0.48 | 0.28 | 0.40 | 0.15 | 0.04 | 0.40 |
1985 | 0.65 | 0.16 | 0.65 | 0.58 | 0.18 | 0.22 | 0.33 | 0.16 | 0.03 | 0.25 |
1986 | 0.65 | 0.10 | 0.58 | 0.61 | 0.34 | 0.28 | 0.37 | 0.23 | 0.03 | 0.38 |
1987 | 0.66 | 0.22 | 0.63 | 0.49 | 0.19 | 0.27 | 0.37 | 0.23 | 0.03 | 0.37 |
1988 | 0.63 | 0.11 | 0.62 | 0.57 | 0.33 | 0.28 | 0.41 | 0.16 | 0.02 | 0.42 |
1989 | 0.69 | 0.14 | 0.60 | 0.61 | 0.52 | 0.26 | 0.38 | 0.19 | 0.04 | 0.33 |
1990 | 0.65 | 0.15 | 0.69 | 0.50 | 0.64 | 0.21 | 0.34 | 0.08 | 0.02 | 0.37 |
1991 | 0.63 | 0.15 | 0.58 | 0.51 | 0.52 | 0.26 | 0.39 | 0.16 | 0.03 | 0.38 |
1992 | 0.70 | 0.13 | 0.72 | 0.63 | 0.49 | 0.25 | 0.33 | 0.18 | 0.04 | 0.33 |
1993 | 0.70 | 0.11 | 0.77 | 0.60 | 0.54 | 0.20 | 0.28 | 0.12 | 0.02 | 0.31 |
1994 | 0.71 | 0.17 | 0.75 | 0.68 | 0.55 | 0.25 | 0.36 | 0.16 | 0.03 | 0.36 |
1995 | 0.74 | 0.19 | 0.61 | 0.70 | 0.53 | 0.29 | 0.41 | 0.17 | 0.03 | 0.40 |
1996 | 0.66 | 0.19 | 0.65 | 0.54 | 0.49 | 0.23 | 0.33 | 0.14 | 0.03 | 0.34 |
1997 | 0.67 | 0.19 | 0.65 | 0.60 | 0.23 | 0.22 | 0.33 | 0.12 | 0.02 | 0.35 |
1998 | 0.73 | 0.15 | 0.77 | 0.57 | 0.49 | 0.24 | 0.36 | 0.13 | 0.02 | 0.34 |
1999 | 0.68 | 0.30 | 0.68 | 0.51 | 0.40 | 0.22 | 0.36 | 0.16 | 0.01 | 0.29 |
2000 | 0.63 | 0.17 | 0.60 | 0.54 | 0.59 | 0.21 | 0.35 | 0.08 | 0.02 | 0.33 |
2001 | 0.63 | 0.22 | 0.55 | 0.55 | 0.64 | 0.23 | 0.35 | 0.09 | 0.02 | 0.36 |
2002 | 0.58 | 0.19 | 0.67 | 0.37 | 0.52 | 0.24 | 0.39 | 0.13 | 0.04 | 0.31 |
2003 | 0.70 | 0.11 | 0.68 | 0.59 | 0.54 | 0.27 | 0.38 | 0.18 | 0.03 | 0.39 |
2004 | 0.73 | 0.19 | 0.75 | 0.65 | 0.65 | 0.21 | 0.33 | 0.11 | 0.03 | 0.33 |
2005 | 0.73 | 0.18 | 0.71 | 0.56 | 0.60 | 0.27 | 0.38 | 0.16 | 0.05 | 0.37 |
2006 | 0.73 | 0.22 | 0.71 | 0.61 | 0.60 | 0.24 | 0.36 | 0.13 | 0.05 | 0.30 |
2007 | 0.70 | 0.22 | 0.69 | 0.49 | 0.61 | 0.22 | 0.33 | 0.10 | 0.03 | 0.36 |
2008 | 0.69 | 0.24 | 0.58 | 0.55 | 0.60 | 0.26 | 0.39 | 0.13 | 0.06 | 0.31 |
2009 | 0.68 | 0.21 | 0.64 | 0.60 | 0.39 | 0.25 | 0.35 | 0.16 | 0.05 | 0.34 |
2010 | 0.51 | 0.12 | 0.37 | 0.46 | 0.53 | 0.21 | 0.32 | 0.14 | 0.03 | 0.27 |
2011 | 0.66 | 0.16 | 0.61 | 0.57 | 0.62 | 0.22 | 0.36 | 0.12 | 0.02 | 0.32 |
2012 | 0.73 | 0.23 | 0.67 | 0.64 | 0.64 | 0.25 | 0.38 | 0.16 | 0.03 | 0.34 |
2013 | 0.72 | 0.28 | 0.68 | 0.61 | 0.61 | 0.23 | 0.40 | 0.12 | 0.03 | 0.29 |
precipitation | Variable | Direct Effect | Indirect Effect | Total Effect | temperature | Variable | Direct Effect | Indirect Effect | Total Effect |
PSp | TSp | ||||||||
MAT | 0.000 | 0.429 | 0.429 | MAT | 0.000 | 0.062 | 0.062 | ||
MAP | 0.000 | 0.108 | 0.108 | MAP | 0.000 | 0.016 | 0.016 | ||
CC | 0.554 | 0.000 | 0.554 *** | CC | 0.080 | 0.000 | 0.080 | ||
PSu | TSu | ||||||||
MAT | 0.000 | −0.027 | −0.027 | MAT | 0.000 | −0.331 | −0.331 | ||
MAP | 0.000 | −0.007 | −0.007 | MAP | 0.000 | −0.084 | −0.084 | ||
CC | −0.034 | 0.000 | −0.034 | CC | −0.428 | 0.000 | −0.428 ** | ||
PAu | TAu | ||||||||
MAT | 0.000 | −0.159 | −0.159 | MAT | 0.000 | 0.110 | 0.110 | ||
MAP | 0.000 | −0.040 | −0.040 | MAP | 0.000 | 0.028 | 0.028 | ||
CC | −0.205 | 0.000 | −0.205 | CC | 0.142 | 0.000 | 0.142 | ||
PWi | TWi | ||||||||
MAT | 0.000 | 0.370 | 0.370 | MAT | 0.000 | −0.231 | −0.231 | ||
MAP | 0.000 | 0.094 | 0.094 | MAP | 0.000 | −0.058 | −0.058 | ||
CC | 0.478 | 0.000 | 0.478 ** | CC | −0.298 | 0.000 | −0.298 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Tang, Q.; Zhou, Y.; Zeng, T.; Zhou, T. The Sensitivity of Vegetation Dynamics to Climate Change across the Tibetan Plateau. Atmosphere 2022, 13, 1112. https://doi.org/10.3390/atmos13071112
Liu B, Tang Q, Zhou Y, Zeng T, Zhou T. The Sensitivity of Vegetation Dynamics to Climate Change across the Tibetan Plateau. Atmosphere. 2022; 13(7):1112. https://doi.org/10.3390/atmos13071112
Chicago/Turabian StyleLiu, Biying, Qunli Tang, Yuke Zhou, Tao Zeng, and Ting Zhou. 2022. "The Sensitivity of Vegetation Dynamics to Climate Change across the Tibetan Plateau" Atmosphere 13, no. 7: 1112. https://doi.org/10.3390/atmos13071112
APA StyleLiu, B., Tang, Q., Zhou, Y., Zeng, T., & Zhou, T. (2022). The Sensitivity of Vegetation Dynamics to Climate Change across the Tibetan Plateau. Atmosphere, 13(7), 1112. https://doi.org/10.3390/atmos13071112